
Received October 15, 2018, accepted November 21, 2018, date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2883500

New Approach for Conversational Agent
Definition by Non-Programmers: A Visual
Domain-Specific Language
LUIS RODRÍGUEZ-GIL 1, JAVIER GARCÍA-ZUBIA 2, (Senior Member, IEEE),
PABLO ORDUÑA1, (Member, IEEE), AITOR VILLAR-MARTINEZ3,
AND DIEGO LÓPEZ-DE-IPIÑA3
1LabsLand-C. Gordóniz, 48002 Bilbao, Spain
2Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain
3DeustoTech-Deusto Foundation, 48007 Bilbao, Spain

Corresponding author: Luis Rodríguez-Gil (luis@labsland.com)

ABSTRACT Intelligent tutors and conversational agents (CAs) have proven to be useful learning tools.
They have potential not only as stand-alone devices but also as integrable components to enrich and
complement other educational resources. For this, new authoring approaches and platforms are required.
They should be accessible to non-programmers (such as most teachers) and they should be integrable
into current web-based educational platforms. This paper proposes a new approach to define such agents
through a visual domain-specific language based on Google Blockly (a scratch-like language). It also
develops a web-based integrable authoring platform to serve as a prototype, describing the requirements and
architecture. To evaluate whether this novel approach is effective, a multi-stage experiment was conducted.
First, participants learned to use the prototype authoring platform through an interactive tutorial. Second, they
created a CAwith a specific domain model. Times and performance were measured. Finally, they answered a
standardized usability questionnaire (UMUX) and a purpose-specific survey. Results show that participants
were able to learn to use the domain-specific language in a short time. Moreover, the purpose-specific survey
indicates that their perception of the approach (and its potential) is positive. The standardized questionnaire
indicates that even in its prototype stage, its usability is satisfactory.

INDEX TERMS Visual programming languages, customizable systems, conversational agents, intelligent
tutoring systems, online learning, online labs.

I. INTRODUCTION
Conversational agents (CAs) and intelligent tutoring sys-
tems (ITSs) have existed for decades [1], [2]. Those two types
of systems have different characteristics. The former focus on
representing a human, often featuring a virtual body. The lat-
ter provide a learning environment, are often task-based, and
try to resemble human tutoring to leverage its advantages [3].
They have aspects in common, and some ITSs include or are
based on CAs [1].

Throughout the years, significant research efforts have
been dedicated to these systems. Traditionally, one of the
aspects that have drawn more attention is their natural lan-
guage processing (NLP) capabilities. For example, this was
the focus of Eliza [4], one of the first and most influen-
tial CAs. It relied on a simple pattern-matching algorithm

to create the illusion of intelligence. Other researchers have
experimented with Embodied CAs [5], [6], which aim to
increase believability by also having a virtual animated body.
Attention has also been directed towards approaches for
building systems with comprehensive domain models, and
powerful authoring tools [7], [8].

CAs have many potential applications. One of those is
education (e.g., tutoring or question answering [9]). They
also have applications in other fields: they can provide
customer service, information, or act as a virtual com-
panion or website tour guide [10]. Interest in them keeps
growing. However, they can be expensive to create; and
domain experts do not always have programming experi-
ence. Effective authoring tools are important to reduce those
obstacles [7], [11].

5262
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-3611-1418
https://orcid.org/0000-0002-4462-8487


L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

FIGURE 1. Embedding an agent designed by a non-programmer into a VISIR remote lab.

In this work we describe a novel approach for the cre-
ation of web-based CAs and we present the architecture of
a web-based authoring platform that uses it. Although the
main example use case are remote lab guides, the approach
and agents are intended to be general-purpose. Its main goal
is to be used by non-programmers. The approach relies on a
simple Domain-Specific Language (DSL) based on Google
Blockly [12] —a library for creating visual block program-
ming languages that has been successfully used by non-
programmers, including children [13]— and are designed to
create domain-independent agents that may be integrated
into external platforms. The main novelty in this approach
is the use of a non-programmer oriented visual DSL for the
definition of the agent behavior.

Though this work can be applied for the authoring of many
types of CA, the main use case that will be described through-
out this work is the creation of web-embeddable guides and
educational agents. Throughout the last years, the use of edu-
cational technologies such as online courses, MOOCs [14],
and online laboratories [15]–[17] has increased, and the trend
is expected to continue. Some research works and large
initiatives, such as the European project Go-Lab, suggest
that for the wide and successful adoption of these tools it
is important that teachers are able to provide customized
experiences for their students [18]–[22]. In this context, edu-
cational agents that are customizable by non-programmers
and easily embedded into educational contents (e.g., online
exercises or online labs) to provide guidance may add signif-
icant value. This is the intended main practical application
of this scheme. Figure 1 illustrates this with an example:
a non-programmer-defined CA accompanies an instance of

the VISIR [23] remote lab, in order to provide specific guid-
ance for a practice.

This contribution focuses on providing the means for the
general non-programming public (such as most students,
or most teachers) to create and customize their own agents.
Agents with improved NLP capabilities, natural conversa-
tions or high believability would be supported by the exten-
sible nature of the proposed scheme, but are beyond the
scope of this contribution. Non-programming users define the
knowledge domain of the agent through a Google Blockly
based DSL. This approach and these agents are intended to
be most useful for use cases where the number of rules is
not large, the user input is scope-specific and a well-defined
conversational output is preferred. The authoring platform
that is proposed in this work is designed to create relatively
simplistic agents. However, Google Blockly has been used as
a programming language, and it is designed to be extensible.
As such, future systems that use this approach could provide
arbitrarily advanced functionality through additional custom
blocks, which in Google Blockly are akin to functions in
traditional programming languages.

This paper is organized as follows: Section II describes
in more detail the relevant state of the art on customiz-
able CAs, authoring tools, and languages oriented for non-
programmers. Section III analyzes the requirements for the
proposed approach and the authoring platform. Section IV
presents the proposed approach. Section V details the plat-
form architecture. Section VI describes the methodology of
the study that has been conducted to evaluate how easily
such an authoring approach can be learned, how usable it is,
and what the user perception is. Section VII describes the

VOLUME 7, 2019 5263



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

results of the study, organized around the research questions.
Section VIII discusses these results. Section IX summarizes
the conclusions. Finally, Section X proposes future lines of
work and potential applications.

A. PURPOSE AND RESEARCH QUESTIONS
The purpose of this work is to propose a novel approach
to enable non-programmers to define custom CAs through
the use of a Visual DSL; to create a prototype web-based
authoring platform that implements that approach and that
satisfies real-world technical requirements; and to answer the
following research questions:

1) How easy to learn is the proposed approach? Can
non-programmers learn it in a reasonable time?

2) How usable is the proposed approach?
3) Is the proposed approach perceived as valuable and

intuitive?

II. RELATED WORK
A. AGENT AUTHORING TOOLS AND NON-PROGRAMMERS
Creating agents can take significant time and effort. Author-
ing tools can be leveraged to create agents faster and
more efficiently, reducing the amount of time and resources
required [8], [24]. Research efforts are dedicated towards
their development and improvement. For example, research
is being conducted on authoring tools for collaborative ITS
and CA environments [8], [25], [26], on integrating ITSs into
serious games [27], on developing authoring models such
as Authoring by Tutoring [28], on making mobile author-
ing tools [29], and on making authoring tools available to
non-programmers [27], [30]–[33]. This last goal is, indeed,
the main focus of this work.

Past research efforts have led to various authoring tools
and frameworks which aim to reduce the skills and amount
of time required to create tutors. Tools such as CTAT [34],
which is a well-known set of tools that relies on the Jess rule-
language; frameworks such as GIFT [35] or other authoring
tools such as TDK [36]. Different models are available to
specify the ITSs and CAs, with varying levels of power
and complexity, and different advantages and disadvan-
tages. For example, CTAT’s cognitive tutor creation relies
on XML and Jess rules.1 It is used by systems such as [30].
It is powerful, but, though it does indeed require no pro-
gramming experience, it tends to require considerable IT
expertise. Specifically, it requires knowledge of computer
languages such as the aforementioned ones, and, gener-
ally, it involves using relatively complex environments such
as the Flash IDE or Eclipse. Other tools rely on specific
XML-based languages [33]. CTAT’s example-tracing tutor
creation requires no JESS knowledge and is simpler [37].
Works such as [31] rely on conversation trees. In this case,
the non-programming authors build a tree structure, specify-
ing for each branch a selection of responses among which the
end-user can choose. Other systems rely on NLP and other

1http://ctat.pact.cs.cmu.edu

techniques to extract information from different sources and
automatically generate an ITS or a CA [38], [39].

In this work we propose a novel model to define such
an agent. A domain specific language (DSL) that relies on
a Visual Programming Language specifically designed for
non-programmers has been created. Through it, even those
users who are not experienced in IT can specify rules and
customize the behavior and domain-model of the agent.

B. VISUAL PROGRAMMING LANGUAGES
Visual programming languages are those that are based on
graphical elements. Examples of those elements are puzzle
blocks, in the case of Google Blockly [12] and Scratch [40];
or block diagrams, in the case of LabView [41]. They rely
on drag-and-drop and other spatial actions instead of being
based on text. As an example, Figure 2 shows the Scratch
environment, oriented for children.

FIGURE 2. The Scratch visual programming language and environment.

Visual programming languages have proven their use-
fulness in certain domains such as education [42]: Google
Blockly or Scratch have been designed to be intuitive and
easily understood [43], even by very young students. Google
Blockly has been used to teach them programming [44], [45].
It is particularly fit for these tasks [43], because, among other
reasons:
• It is intuitive: students can see the blocks that are avail-
able and check whether they connect.

• Students do not need to remember a syntax and adhere
to it before they start getting results.

• No syntax errors: if the blocks fit, then the program is
valid.2

Google Blockly is Open Source. It is based on blocks
that the user can drag-and-drop to connect to each other
and nest them. Once the blocks are arranged, Blockly
can generate executable code for text-based languages
(e.g., JavaScript, Python, and other languages), so that it can
be run. JavaScript is the one most commonly used, because
then it can run straightaway in the browser. Although it is

2This does not necessarily imply that the program does what the user
expects. It only implies that it can be translated into a text-based language
with no syntax errors.

5264 VOLUME 7, 2019



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

originally designed to teach young students programming,
it is also designed to be completely customizable, includ-
ing the blocks, the connections, the generated code and the
looks. For that reason, it is particularly effective for creating
visual DSLs. It has been used for purposes as varied as edu-
cational robots scripting [46], smart home applications [47]
and business processes modeling [48].

III. REQUIREMENTS
This section describes, first, the general requirements for
the proposed approach. Second, it describes additional, more
specific requirements for the prototype authoring platform.
Later sections of this paper (see Section VII) will evaluate
whether these requirements are met. The main design goals
for the proposed approach are the following:
• Low skill requirements: Non-programmers should be
able to use it.

• Simple and predictable output: The CA creators
should be able to easily predict the output, which should
be well-defined.

• Integrable into other resources: The produced agents
are meant to be integrated into other educational
resources.

Additionally, the authoring platform that implements the
proposed approach should meet the following practical and
technical requirements:
• Web-based and mobile-friendly: The tools and the
produced conversational agents should be fully web-
based, thus available anywhere.

• Integrable agents into external systems: As previously
described, the generated agents are not meant to be
stand-alone. Instead, they are meant to be integrated into
other systems such as Learning Management Systems
or Remote Labs, as an aide. It should be technically
possible to integrate them with minimal intervention
from the external systems.

The proposed approach is designed to be extensible.
Advances in related fields could be leveraged to provide
advanced features for the produced agents (e.g., speech
recognition, realistic conversations). Though those capabil-
ities are beyond the scope of this work, the authoring plat-
form and the visual language could be extended to make
use of advanced Natural Language Processing (NLP) tech-
niques. The current proposed version focuses on being able
to produce predictable, known and controlled output, without
requiring data sets. It does not aim for the agents to be
particularly powerful from an Artificial Intelligence point of
view, but aims for simplicity instead.

In the next subsections, the aforementioned goals and
requirements are described in more detail.

A. LOW SKILL REQUIREMENTS
Domain experts do not necessarily have programming or
advanced IT skills. So that they can create and customize
the agents, it is important that the authoring tool be easy
to use and intuitive. It should avoid requiring knowledge of

programming or of computer languages (such as XML, JSON
or AIML) that are not necessarily easy to understand for the
general public.

B. SIMPLE AND PREDICTABLE OUTPUT
The design goal of some CAs is to be as natural as possible.
Such an agent should be able to provide varied and often
unexpected output, like a human would. Some agents, such
as Tay by Microsoft, even rely on previous conversations
to learn new answers. This is, however, not the goal of the
model proposed in this work. Natural agents are not without
drawbacks. For instance, the agent by Microsoft, which has
since been shut down, is known to have learned to be racist,
utter profanities, and, in short, behave in a way that was
particularly unexpected and undesirable for its creators.3 The
model proposed in this work explicitly sacrifices believability
so that it can be easier to define, the output can be predictable
and more easily understood, and no data sets are required.

C. INTEGRABLE INTO OTHER RESOURCES
The CAs produced by the authoring platform are not meant
to be used stand-alone. They are meant to be integrated into
other educational contents, such as online labs. Those can be
relatively complex virtual labs, as in the case of the PhET
simulations [49]. Or even online interfaces to real equip-
ment, as in the case of remote labs [15], [50]. Online labs
are often designed to satisfy many use-cases, which makes
it hard for students to use them without guidance. In this
case, for instance, a CA designed by a non-programmer
would be able to provide context-specific information, pro-
vide non-intrusive help when needed, and enhance the lab
experience.

D. WEB-BASED AND MOBILE FRIENDLY
The goal of the described architecture is to be accessible to as
many people as possible. For that purpose, it is very important
that it is based on standard web technologies and that it
supports mobile devices. This is critical for education: nowa-
days many schools and students rely on mobile and tablet
devices [51]–[54]. This implies that the architecture must
only rely on web standards, and avoid certain proprietary
technologies, such as Adobe Flash or Java Applets. Though
common in the past, they no longer have wide support and
have significant security implications [55].

This is also important for the platform to be deploy-
able easily in different networks and environments. School
and institutional networks are often restricted. Relying on
non-HTTP ports, or on plugins or technologies which require
administrator privileges to deploy, would make the system
unacceptable to many potential users.

E. INTEGRABLE AGENTS INTO EXTERNAL SYSTEMS
As previously described, the produced CAs are meant to
be integrable into other educational resources. From a tech-
nical point of view, those external resources are typically

3http://money.cnn.com/2016/03/24/technology/tay-racist-microsoft/

VOLUME 7, 2019 5265



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

web-based platforms (such as Moodle instances or online
labs) hosted by external providers. To be able to be used
effectively, a key feature is that the produced agents should
be able to be integrated into those resources without requiring
intervention from the administrators of the external system
(As an example, see Figure 1).

IV. PROPOSED APPROACH
One of the main focuses for the proposed approach is to allow
non-programmers to create and customize CAs. Therefore,
as described, it relies on a visual DSL. We have designed the
DSL specifically for this purpose, and it is one of the contri-
butions of this work. It relies on the Google Blockly library.
Google Blockly was initially oriented towards children, and
can thus be used to create intuitive and easy to use languages.
This tool is described in more detail in later sections. It is
oriented towards extensibility. The functionality of Google
Blockly, and thus, the functionality of the DSL, depends on
the blocks they provide. A block is, in that way, akin to a
function in a standard programming language.

The non-programming authors, who are the domain
experts, define the behavior of the CAs through that visual
DSL. This DSL is fully based on a set of custom blocks
that we have created. The base block is a Conversation
Node block. The non-programming authors attach conditions
and actions to them, which also take the form of blocks.
A very simple condition block, for instance, would be a
words detected in input block. A very simple action block, for
instance, would be a say block. The variety, power, and com-
plexity of action and condition blocks would vary depending
on the purpose, needs, audience and platform, and can be
tailored and extended easily.

With no extensions, the language and the prototype author-
ing platform are designed to be simplistic. This makes the
agents most useful for creating narrow-scope agents, in which
the inputs of the end-user are predictable and in which the
author wants fine-grained control over the output of the agent.
However, it makes them unsuitable for realistic human-like
conversations.

One of the main motivations of this work is to enable
non-programmers (such as teachers or even students) to cre-
ate and integrate bots in educational content such as MOOCs,
online courses, and remote [56], [57], virtual [49] or hybrid
labs [58]. For this purpose, the approach is also designed
for straightforward interaction with these systems. The bots
themselves, as the prototype platform shows, can be inte-
grated along with that content. Also, the language is built
to support straightforward interaction. An example is the
raise event block. It can be used, for instance, for propos-
ing and evaluating teacher-defined practical exercises. Thus,
teachers could create an agent that proposes an exercise,
integrate it into a generic virtual lab, and have their students
solve the particular exercise using that generic lab. The agent
would describe the exercise, provide guidance, evaluate the
response, and raise a particular event when the exercise is
solved.

Although not explored in detail in this work, this
scheme is suitable for Embodied CAs (ECAs) [59], because
the described DSL, with the proper blocks, would allow
the author to control accurately the behavior and actions
of the virtual character.

A. VISUAL DOMAIN-SPECIFIC LANGUAGE
In this section we detail the visual DSL and its basic blocks.
However, as previously described, the system is designed
to be extensible. Depending on the platforms, target, and
advances in the state of the art, specific platforms that imple-
ment it may easily extend it.

1) BASE CONVERSATION NODE
The basic block is the Conversation Node. This block estab-
lishes the conditions under which the node will be triggered,
and the actions that will be executed when the conditions are
met. Figure 3 shows an example with two base conversation
nodes, each of which contains condition and action blocks.
Users can attach or remove actions and conditions by simply
dragging-and-dropping them.

FIGURE 3. Example of two base nodes with condition and action blocks
within.

2) CONDITION BLOCKS
• Contains-words condition block: Contains-words is a
basic condition block. It triggers the conversation node
when the user’s input contains all of the specified words.
More than one word can be specified by separating them
with plus signs or with spaces, as shown in Figure 3.

• Logic condition block: The logic condition blocks
let users combine conditions with logical operators.
An example is the AND block. They can be nested to
build complex conditions.

• Previous-node block: The previous-node block can be
used to specify that the node should only be triggered
when the last triggered node was a specific one. That is
a simple way to handle, for instance, responses to yes/no
questions without requiring the use of contexts, or more
complicated schemes.

• Default condition block: There is a special block that
can be used to specify nodes that will be triggered by
default when no other node is triggered. This block can
be used to specify default responses. Another way is to
simply rely on the ordering of the blocks.

5266 VOLUME 7, 2019



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

3) ACTION BLOCKS
• Say block: The most basic action block is the say block.
In the case of the prototype authoring platform, it will
simply display the text in a speech bubble above the
virtual agent’s head.

• Raise-event block: Raises a specific custom event. It is
intended to be captured by the external system the CA is
integrated into. The actual purpose of this will depend
upon the external system, which can provide specific
events. Those can, for example, enable teachers to pro-
pose custom exercises through the CA system.

4) NODE ORDERING
Each node is ordered vertically, and the order is explicitly
shown as a number. This defines the priority of a specific
node. Users can rely on ordering to trigger different nodes
depending on whether the higher-priority nodes conditions
are met or not. Thus, when two different nodes have con-
ditions that partially overlap (for example, one node is to
be triggered when the user says ‘‘who are you’’ and the
other when the user says something with ‘‘you’’), the less
restricting ones will normally be lower-priority and act as
context-specific defaults.

B. STRENGTHS AND WEAKNESSES
The main strengths of the proposed approach are the
following:

• Simplicity: Non-programmers can learn and use it
easily.

• Fine-grained control: Agent authors can control
exactly what the bot says and when.

• Power: Despite its simplicity, Blockly can support a
fully-fledged programming language. With extended
blocks, it can provide as much power as one. Alternative
approaches that are oriented for non-programmers such
as example-tracing tend to be less powerful.

• Integration: The approach can be integrated easily into
other systems. In more automated systems, or in systems
on which the author does not have a fine-grained control
over the output, it can be less obvious how to interact
with other systems reliably. Likewise, it makes it suitable
for controlling a virtual agent, and thus the behavior of
an ECA.

• Predictability: Authors can easily predict the exact out-
put of the bot under given conditions. Thus, for a given
question, they can know exactly if the bot will be able to
answer, and how; avoiding surprises and indeterminacy.

• No data or training required: The system does not rely
on corpora, datasets, or training.

• Language-agnostic: While systems that rely on
NLP techniques and data corpora tend to be tai-
lored towards a specific language (such as English),
the described approach, without specialized blocks,
is language-agnostic.

And the main weaknesses would be the following:
• Limited scope: This approach is not suitable for the
creation of agents with a large body of knowledge.
Too many nodes would be time-consuming to create
manually.

• Realistic language: Without advanced NLP blocks, it is
not suitable for generating realistic conversations. For
this purpose, the intended predictability is also a disad-
vantage: being unpredictable would add realism.

• No automation: No automatic learning or information
extraction functionalities are present.

As a consequence of this, these agents are suitable for these
cases in which the authors want to obtain a narrow-scope
agent, in a context in which they can predict the input, and
want fine-grained control over the results. This is the case of
several educational contexts, such as a remote lab, in which
the range of possible questions and interactions is limited
and can be predicted by the domain expert (the teacher) and
in which the said expert does not need (or even want) the
students to have broad-scope conversations with the agent.
This is also an advantage for these contexts in which authors
may want to use different languages, because the approach
is language-agnostic. It is also important to remark that the
approach is intended to lead to embeddable agents, not stand-
alone ones (for which realistic conversations would probably
be more important).

V. PLATFORM ARCHITECTURE
The architecture is fully web-based and it relies on certain key
technologies to provide the required features while maintain-
ing platform independence. This sectionwill describe the pro-
posed architecture, which has been designed, developed and
evaluated. To better understand how the authoring platform
looks and works in practice, a short screencast is supplied as
an online Multimedia Material (‘authoring.mp4’).

To describe the architecture it is important to remark the
two different perspectives:
• The authoring tool: For the authors, who normally will
be domain experts.

• The conversational agent component: Which will be
integrated into an external system, such as an LMS or
a remote lab, and implement the agent defined by the
author.

A. KEY TECHNOLOGIES
1) GOOGLE BLOCKLY
Google Blockly4 [12], which was briefly described earlier,
is an Open Source visual programming language created by
Google. It is originally intended to teach basic programming
to young students. They can first learn basic programming
concepts, such as logic, variables and loops in Blockly, and
once they understand them they can move to the normally
less-intuitive text-based languages.

4https://developers.google.com/blockly/

VOLUME 7, 2019 5267



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

FIGURE 4. Authoring Tool’s main view.

Google Blockly is designed to be customized and modified
easily. Completely new blocks and code generators can be
developed, so it is well-suited to create visual domain-specific
programming languages. In this work, we have designed and
developed such a language so that non-programming users
can very easily be able to define the logic of their CAs, which
will be described in the next sections.

2) UNITY AND WEBGL
Unity3D5 is a very popular 3D application creation tool. The
3D applications created in Unity can be exported to different
platforms. One of those are browsers, through WebGL [60].
WebGL is a standard by the Chronos group: a web-based
graphical API that makes accelerated 3D graphics available
on the Web. Though it is not part of the HTML5 standard
itself, it has strong ties to it and is supported by every major
browser, including mobile ones. Although SVG or Canvas
can also be used for web-based graphics, WebGL is more
powerful; it supports full 3D acceleration, shaders and rel-
atively low-level access to the graphics card.

Thus, using Unity and WebGL for the CAs we can get
agents that:
• Are fully 3D and can rely on advanced shaders and
animation and be in a virtual environment.

• Are fully web-based and cross-platform, being deploy-
able even in mobile and tablet devices.

B. AUTHORING TOOL
As described in earlier sections, the goal of the authoring tool
is to enable users, including those without programming or
IT knowledge, to create and customize their own CA relying
on a visual domain-specific language that has been designed

5https://unity3d.com

FIGURE 5. Authoring system architecture overview.

and implemented for that purpose. A screen capture of the
main view of the Authoring Tool can be observed in Figure 4.
An overview of the architecture of the authoring system is
depicted in Figure 5.

Several components form the authoring tool. The
authors —who will generally be non-programming domain
experts— interact with it through the Interface, which is
a web-application and which is thus supported in all the
main browsers and in tablets. The authoring tool web-
app as a whole is managed by the Authoring System Server,
which is, essentially, the server-side. The agent authors use
theGoogle Blockly based visual DSL to create and customize
the agents (thus defining the domain model). This component
is also responsible for generating the JSON specification
(see Figure 6) from the visual code, and forwarding it to
either the server (for storage) or to the 3D agent component.

5268 VOLUME 7, 2019



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

FIGURE 6. Example of the advanced JSON view for an agent. This is
transparent to the user and normally not visible.

FIGURE 7. The end-user perspective.

The 3D agent component within the Authoring System is
there so that the authors can test their agents in real-time and
check whether they function as they expect.

C. END-USER PERSPECTIVE
From the perspective of the platform described in this work,
there are two different kind of users.
• Authors: They will use the authoring tool to create and
customize conversational agents. They are not expected
to have programming or IT knowledge, but can be con-
sidered domain-experts.

• End-users: They will use the CAs created and cus-
tomized by the author-users. They will not necessarily
have programming or IT knowledge either.

The CAs created through this platform are purposefully
simplistic, and are not meant to be used as stand-alone
intelligent tutors. Instead, they are integrable and add value
to external educational systems, such as LMSs or remote
labs. The end-user perspective is summarized in Figure 7

and an example can be observed in Figure 1. The end-users
interact with an external system, which could be for instance
a web-based remote lab. The 3D agent component would
then be displayed as an iframe within that remote lab. The
remote lab would forward interactions to the component,
which implements the agent previously defined by an author-
user. The interactions are forwarded through a bidirectional
JavaScript API based on window.postMessage, which will
be described in more detail in later sections. The purpose
of this API is to guarantee that the agent component can be
integrated into other systems, including those that are hosted
in a different domain than the actual tool.

D. COMPONENTS
This section describes in a lower-level detail the key compo-
nents of the platform.

1) GOOGLE BLOCKLY BASED DSL
Throughout this work we have developed a Blockly-based
DSL based on rules to enable the users (non-programmers)
to easily define the behavior of the agent. The language relies
on a set of custom blocks that internally generate JSON code
(transparently to the users, unless they choose otherwise).
Then, the CA engine interprets that JSON code to behave in
the way that the non-programmer user defined.

The language for this implementation, which is meant to
act as an example implementation for the model, is purpose-
fully designed to be very simplistic. It is based on trigger-
nodes. Users specify the conditions under which the node will
be triggered, and the actions that will take place once the node
is triggered. The most common and relevant action is to say
a specific sentence, though the system itself supports other
actions.

FIGURE 8. The Conversational Agent component architecture.

2) INTEGRABLE 3D TUTOR COMPONENT
The 3D tutor component itself, as previously described, is
created in Unity3D and exported to WebGL (JavaScript).
Its architecture is depicted in Figure 8. This component con-
tains the conversation engine that receives the JSON DSL—
which is essentially the knowledge model— and the input
from the user, and chooses the appropriate actions. It also pro-
vides a virtual 3D environment with a 3D body for the tutor,

VOLUME 7, 2019 5269



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

which can speak according to the engine and carry out other
actions.

3) INTEGRATION
The architecture described in this work is meant to be inte-
grable into other systems such as Learning Management
Systems, virtual laboratories and remote laboratories. For that
purpose, as described in Section II, the 3D tutor component
has been created in Unity3D to be exported into WebGL and
integrated anywhere as an HTML5 iframe. It contains the CA
engine that interprets the provided JSON, receives input from
the user, and runs the specified actions when appropriate.
It communicates through the JavaScriptwindow.postMessage
API instead of communicating through JavaScript directly so
that it can avoid cross-domain issues that would arise when
hosting the 3D tutor component into a different domain’s
iframe.

E. ARCHITECTURE VALIDATION
In order to validate the architecture and to conduct further
experiments, the DSL, the Conversational Agent engine, and
the Authoring Tool have all been implemented. Then, it has
been verified that the main technical and functional goals are
met. The tools can indeed be used to create 3D conversational
agents using the proposed visual blocks-based DSL. The
tools, both to author and to use the agents, are all fully web-
based. The agents can be successfully integrated into external
web contents. The proposed language-level features are all
supported by the implemented DSL, and the blocks can be
extended easily so new features could be added. These imple-
mentations of the architecture have been used to conduct the
user experiments that are described in the following sections.

VI. METHODOLOGY
To evaluate the proposed approach and to explore the research
questions that were specified in Section I-A, user tests were
conducted. For this, the following software platforms were
created:
• The prototype web-based authoring platform whose
architecture was described in Section V.

• A web-based testing platform to lead the study partic-
ipants through several predefined stages, during which
they use the authoring platform, and data is collected.

In the final stage, participants were asked to fill a standard-
ized UMUX questionnaire (that measures usability), and a
custom survey to evaluate their perception of the authoring
platform and of the proposed approach.

A. THE TESTING PLATFORM
A web platform was created to lead participants through
the stages depicted in Figure 9. First, in the example stage,
they see and use a resulting CA for the first time. Second,
in the tutorial stage, they learn how to use the authoring
tools through an interactive tutorial. Third, in the challenge
stage, they are given a topic and several constraints and are
asked to create a CA. Fourth, in the survey stage, they provide
feedback about their experience.

FIGURE 9. Experiment stages that the participants follow.

A short screencast is provided as an online Multimedia
Material (‘experiment.mp4’), briefly demonstrating the test-
ing platform and how users go through its various stages.
It may be noteworthy that in the video the stages are com-
pleted very fast: real first-time users will need to read through
the text, make more errors, and take much more time (as the
time measurements in Section VII show).

B. STAGES
1) EXAMPLE STAGE
The goal of this stage is to familiarize the participant with
the CAs. This specific CA speaks about the laws of thermody-
namics. However, the content itself is not important, because
in practice it will depend on each agent’s author. To ensure
that the participant uses the agent sufficiently, wemeasure the
different agent responses that are triggered. Once 5 different
responses are triggered, the participants may continue to the
next step.

2) TUTORIAL STAGE
The goal of this stage is to teach the test subject to create
CAs using the prototype authoring tools and the visual DSL.
This is challenging, because even though the visual DSL is
designed to be intuitive, time is constrained and concepts
such as CAs, computer languages, or logical conditions are
novel to most participants. The system automatically evalu-
ates whether what they are doing is right or wrong, provides
tips, and suggests the next step to take. Users cannot skip to
the next step until their current step works as intended.

3) CHALLENGE STAGE
In the challenge stage, participants apply what they have
learned to create a CA. We provide a topic —in this
case, a museum guide— and several constraints. This way,
we ensure that the resulting data is comparable and that they
use several types of visual blocks, including complex ones.
In this stage they can still see a ‘cheatsheet’ with examples,
but they receive no guiding or tips. They only receive feed-
back about whether the constraints are currently met or not.
A screenshot of this stage can be seen in Figure 10.

4) SURVEY STAGE
In this last stage the participants fill a 9-question survey,
which is actually split in two different parts. The first part
is a standardized UMUX (Usability Metric for User Experi-
ence) survey [61], [62]. UMUX is a four-items Likert scale
to assess an application’s perceived usability. It is designed
to measure the three dimensions of usability defined by
the ISO 9241-11 standard [63] (effectiveness, efficiency and

5270 VOLUME 7, 2019



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

FIGURE 10. Screenshot of the Challenge stage of the experiment.

satisfaction) and to provide similar results to the longer
ten-items System Usability Scale (SUS) [64], [65], but with
less questions. Through this questionnaire the usability of the
authoring platform prototype and the visual DSL that it relies
on is measured. The second part has six questions, which are
more specific, and are designed to evaluate the perception of
the participants and their satisfaction with the approach and
the authoring tools. All participants were Spanish-speaking,
so the original questionnaires were in Spanish. The translated
survey questions are detailed in Table 1.

C. PARTICIPANTS
32 first-year students from the University of Deusto, in Spain,
took part in the study. 14 of them were from the campus in
San Sebastian andwere enrolled in a Business Administration
degree. 18 of them were from the campus in Bilbao and were
enrolled in an Electronics Engineering degree. Participation
was voluntary. The main intended audience of the author-
ing platform are non-programming users with some tech-
nology experience. Therefore, the students met the criteria.

They played the role of content creators. The students were
non-programmers and all were familiar with technology such
as graphical interfaces and web browsing. All were native
Spanish speakers.

D. PROCEDURE
Two group sessions were held in total, one for each campus.
The first one had 14 of the participants, while the second
had 18. Each student had access to a computer. An hour
of time was allocated for each session. During the session,
students were briefly introduced to the topic of CAs and the
purpose of the authoring platform. Then, theywere directed to
the tutorial platform and provided some general advice (such
as making sure to follow the instructions at each stage very
precisely, because the system is automated and they would
be unable to advance otherwise). The participants then went
through each of the stages, directed by the testing platform,
and at their own pace. The interactive tutorial of the platform
is designed to be self-sufficient, but the participants were
allowed to ask questions and they received directions when

VOLUME 7, 2019 5271



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

TABLE 1. UMUX and custom questionnaires.

FIGURE 11. Average time in seconds that participants spent in each
stage (n=32). Error bars show 95% confidence intervals.

they got stuck in a particular step or came across a potential
technical issue.

VII. RESULTS
The results of this research are organized around the Research
Questions enumerated in Section I-A.

A. HOW EASY TO LEARN IS THE PROPOSED APPROACH?
The testing platform measured the time that the participants
spent in each stage. The average times in seconds are shown
in Figure 11. The error bars show the 95% (α = 0.05)
confidence intervals. The sum of the average times for each
stage is 2732 seconds for all stages (45.5 minutes).

The tutorial stage, as expected, took the longest:
1563 seconds (26.05 minutes) on average. The fastest par-
ticipant took 1112 seconds (18.5 minutes) while the slowest
took 2920 seconds (48.67 minutes). The challenge stage
took 614 seconds (10.23 minutes) on average. The fastest
participant took 293 seconds (4.88 minutes) while the slowest
took 1183 seconds (19.71 minutes).

B. HOW USABLE IS THE PROPOSED APPROACH?
As previously described, the evaluation of the authoring plat-
form usability has relied on a conventional UMUX question-
naire. As [61] explain, odd items are scored as [score−1] and
even items are scored as [7− score]. The preliminary UMUX

TABLE 2. Results of the custom survey Q5-Q8 (n=32).

score is thus in the 0-24 range. The sum for each participant
is then divided by 24 and multiplied by 100 to convert it to
the 0-100 SUS-like scale. The mean score is then calculated.

The UMUX mean score for the 32 participants is 73.31.
The standard deviation is 15.62, with a 95% (α = 0.05)
confidence interval half-width of 5.41 ([67.89 − 78.72]).
According to [65], this score is in the acceptable range and
can be considered ‘‘good’’, though not ‘‘excellent’’. However,
considering that the platform is a research prototype, and
that the participants had a short time to learn to use the rela-
tively powerful visual language, the result can be considered
satisfactory.

C. IS THE PROPOSED APPROACH PERCEIVED
AS VALUABLE AND INTUITIVE?
The second part of the survey consisted of 5 questions. The
first four, for consistency, use a Likert-scale with 7 points.
However, unlike the UMUX ones, they are specific and are
considered independently rather than as a metric. The last
question is an invitation to freely comment anything. The
results of this questionnaire are summarized in Table 2. They
show that users overwhelmingly believe that everyone would
be capable of creating bots with such a visual language (x̄ =
5.78), that it would be useful to integrate bots into educational
content (x̄ = 6.00), and that the proposed visual DSL is
intuitive (x̄ = 5.94).

5272 VOLUME 7, 2019



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

Only a few of the participants chose to respond to the
free-comments question (Q9), which was optional. Most of
the participants left the question blank. However, feedback
from the few that did answer was remarkably positive. The
comments (translated) were:
• ‘‘It is extremely easy to use. Very intuitive and simple.’’
• ‘‘It’s a very good idea and I hope it moves forward!’’
• ‘‘I would remark how intuitive it is’’
• ‘‘Very good’’

VIII. DISCUSSION
This work has proposed an approach to create and customize
CAs using a visual DSL that is friendly for non-programmers.
An authoring platform has been created to showcase the
approach and to study its effectiveness, and a user study has
been conducted.

A. THE PROPOSED APPROACH
The experience and the results suggest that, indeed,
the approach can be a useful way to define CAs, especially
for non-programmers. This does not necessarily mean that
it is the best approach for all cases, but it may be the most
appropriate for some of them. Alternative approaches such as
using a text-based formal language (such as AIML or XML)
may yield more flexibility, but in exchange can generally be
expected to be harder to learn. On the contrary, approaches
such as example-tracing may be easier to learn than the
proposed visual DSL, but are (at least if not combined with
other approaches) significantly less powerful. Thus, using a
visual DSL can be considered a compromise between sim-
plicity and power that may be very appropriate for some
domains.

An additional advantage of this approach is that its capa-
bilities and complexity can be tailored freely. In such a visual
language, those depend on the blocks that are provided by
the authoring platform. Thus, the platform can offer blocks
that are more or less complex depending on the needs and
audience, and advances in related areas could be leveraged
easily. For instance, some advanced functionalities that may
be integrated easily into the blocks system would be:
• Text-to-speech: Integrated into the say block, using an
API such as Google’s.

• Speech-to-text: Integrated into the keywords-recognition
block, using an API such as Google’s,6 and automati-
cally providing the API with clues about the expected
words to increase accuracy.

• Blocks to control the behavior of the 3D agent to lever-
age advances in Embodied Conversational Agent (ECA)
research.

• Blocks to raise evaluation events so that the domain-
expert can create, propose and evaluate customized
exercises for online laboratories without requiring
collaboration from the author of the lab.

6https://cloud.google.com/speech/

B. AUTHORING PLATFORM PROTOTYPE
In general the results have been satisfactory. Usability,
according to the UMUX questionnaire and the previously
mentioned thresholds, can be considered good enough,
though there is still some room for improvement. The per-
ception that users had of the platform was very positive (and
generally, higher than their usability perception).

From a technical perspective, the technology choices were
appropriate. Google Blockly was chosen as a base for the
visual DSL, and it has met the requirements. It has been
stable, easy to extend and intuitive enough for the participants
to learn to use it in a very short time and with very little
help. Similarly, the choice of Unity andWebGL as a rendering
engine to implement the CA’s interpreter engine and ECA has
been satisfactory. It allows it to be web-based and can be run,
as was the goal, in almost any browser, and thus meets the
universality, security and deployability goals that we had set
in section II.

Though exploring it in detail was not the focus of this work,
it is also noteworthy that the interactive tutorial could be
improved. Although it was effective (participants were able to
learn how to create agents in a short time) some participants
found it frustrating. Not allowing users to skip to the next step
until they have done the current one properly is an effective
means to guarantee that the learning goals are achieved, but
at the same time can be found frustrating if they are unable
to find the mistake in a short time, or if they don’t receive
appropriate feedback. Ways to improve this issue could be
explored.

IX. CONCLUSIONS
To create effective educational CAs, domain knowledge
is required. This work has proposed a novel method to
define such agents that is both simple —accessible to non-
programmers— and expressive—capable of supporting com-
plex rules and being extended with additional blocks—.
It has also described an authoring platform that leverages
that method to allow non-programmers to define their own
agents. These agents are embeddable into external educa-
tional content, without requiring explicit collaboration from
the content’s creator.

The results of the study suggest that a visual DSL based
on Blockly is indeed a promising way to define CAs for non-
programmers. Even though the platform is still a prototype,
the participants of the study were able to learn to use them
fast, and created their own CA. Additionally, the standard
UMUX usability test suggests that the authoring tools pro-
totype and the visual DSL that it relies on have satisfactory
usability already. With additional work it can be expected to
produce better results. The specific survey, as well, shows that
participants are very satisfied with their use of the tool, and
believe that it has significant potential. The approach itself
(using a visual DSL to allow non-programmers to create or
customize CAs) seems promising. Although the visual DSL
is expressive, non-programmers can learn and understand it in

VOLUME 7, 2019 5273



L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

a short time. An additional advantage of this approach is that
the visual language could be extended with custom blocks
that provide additional capabilities and that leverage advances
in related areas.

X. FUTURE WORK
In the future certain improvements and modifications to the
CA model could be investigated:
• The language processing system is currently very sim-
plistic and based on keywords. It might be worthwhile
to find ways to apply more advanced NLP techniques to
the CA engine, and to checkwhether the new capabilities
are useful enough, taking into account the potential cost
in simplicity.

• The set of potential actions of the engine is currently
limited. It might be worthwhile to add new synchronized
animations or 3D interactions, relying on the existing
literature about embodied CAs.

Apart from those lines of research that mainly involve
improvements to the CA model and engine, certain potential
applications that relate to online laboratories and that could
be explored are worth mentioning:
• As a non-programmer customizable intelligent tutor for
an online lab, which may guide students and provide
specific advice on its usage, expectations and results.

• Additionally, as a non-programmer customizable intel-
ligent tutor which also offers automatic evaluation capa-
bilities. Thus, the teachers could integrate a tutor into the
online lab of their choice, design the problem description
and the expected output, and have the intelligent agent
automatically evaluate students. This would be particu-
larly useful because virtual and remote labs often just
offer an open environment but not a customized practice
session or experience, and because in distance education
the teacher often has to evaluate a large number of
students, and tools which make this easier can have a
significant impact.

REFERENCES
[1] B. D. Nye, A. C. Graesser, and X. Hu, ‘‘Autotutor and family: A review of

17 years of natural language tutoring,’’ Int. J. Artif. Intell. Educ., vol. 24,
no. 4, pp. 427–469, 2014.

[2] J. Cassell et al., ‘‘Embodiment in conversational interfaces: Rea,’’ in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 1999, pp. 520–527.

[3] K. Vanlehn, ‘‘The behavior of tutoring systems,’’ Int. J. Artif. Intell. Educ.,
vol. 16, no. 3, pp. 227–265, 2006.

[4] J. Weizenbaum, ‘‘ELIZA—A computer program for the study of natural
language communication between man and machine,’’ Commun. ACM,
vol. 9, no. 1, pp. 36–45, 1966.

[5] S. Kopp, L. Gesellensetter, N. C. Krämer, and I. Wachsmuth, ‘‘A conver-
sational agent as museum guide—Design and evaluation of a real-world
application,’’ in Proc. Int. Workshop Intell. Virtual Agents. Kos, Greece:
Springer, 2005, pp. 329–343.

[6] T. W. Bickmore, D. Utami, R. Matsuyama, and M. K. Paasche-Orlow,
‘‘Improving access to online health information with conversational
agents: A randomized controlled experiment,’’ J. Med. Internet Res.,
vol. 38, no. 1, pp. 2057–2060, 2016, doi: 10.2196/jmir.5239.

[7] V. Aleven, J. Sewall, O. Popescu, M. van Velsen, S. Demi, and B. Leber,
‘‘Reflecting on twelve years of ITS authoring tools research with CTAT,’’
in Design Recommendations for Intelligent Tutoring Systems. Orlando,
FL, USA: U.S. Army Research Laboratory, 2015, pp. 263–283.

[8] J. K. Olsen, D. M. Belenky, V. Aleven, N. Rummel, J. Sewall, and
M. Ringenberg, ‘‘Authoring tools for collaborative intelligent tutoring
system environments,’’ in Proc. Int. Conf. Intell. Tutoring Syst. Honolulu,
HI, USA: Springer, 2014, pp. 523–528.

[9] A. Kerry, R. Ellis, and S. Bull, ‘‘Conversational agents in e-learning,’’
in Applications and Innovations in Intelligent Systems XVI. Cambridge,
U.K.: Springer, 2009, pp. 169–182.

[10] V. L. Rubin, Y. Chen, and L. M. Thorimbert, ‘‘Artificially intelligent
conversational agents in libraries,’’ Library Hi Tech, vol. 28, no. 4,
pp. 496–522, 2010.

[11] V. Aleven, B. M. Mclaren, J. Sewall, and K. R. Koedinger, ‘‘A new
paradigm for intelligent tutoring systems: Example-tracing tutors,’’ Int. J.
Artif. Intell. Educ., vol. 19, no. 2, pp. 105–154, 2009.

[12] R. Doe. (2017).Google Blockly—AVisual Programming Editor. Accessed:
Jan. 2017. [Online]. Available: http://code.google.com/p/blockly

[13] J. Trower and J. Gray, ‘‘Blockly language creation and applications: Visual
programming for media computation and bluetooth robotics control,’’ in
Proc. 46th ACM Tech. Symp. Comput. Sci. Educ., 2015, p. 5.

[14] L. Pappano, ‘‘The year of the MOOC,’’ The New York Times, 2012.
[15] J. Ma and J. V. Nickerson, ‘‘Hands-on, simulated, and remote laboratories:

A comparative literature review,’’ ACM Comput. Surv., vol. 38, no. 3, p. 7,
2006.

[16] S. Dormido, ‘‘Control learning: Present and future,’’ Annu. Rev. Control,
vol. 28, no. 1, pp. 115–136, 2004.

[17] J. E. Froyd, P. C. Wankat, and K. A. Smith, ‘‘Five major shifts in 100 years
of engineering education,’’ in Proc. IEEE, vol. 100, pp. 1344–1360,
May 2012, doi: 10.1109/JPROC.2012.2190167.

[18] T. de Jong, S. Sotiriou, and D. Gillet, ‘‘Innovations in STEM education:
The go-lab federation of online labs,’’ Smart Learn. Environ., vol. 1, no. 1,
p. 3, 2014.

[19] M. J. Rodríguez-Triana et al., ‘‘Rich open educational resources for per-
sonal and inquiry learning: Agile creation, sharing and reuse in educational
social media platforms,’’ in Proc. Int. Conf. Web Open Access Learn.
(ICWOAL), 2014, pp. 1–6.

[20] D. Gillet, T. De Jong, S. Sotirou, and C. Salzmann, ‘‘Personalised learning
spaces and federated online labs for STEM education at school,’’ in Proc.
IEEE Global Eng. Educ. Conf. (EDUCON), Mar. 2013, pp. 769–773.

[21] S. Govaerts et al., ‘‘Towards an online lab portal for inquiry-based STEM
learning at school,’’ in Proc. Int. Conf. Web-Based Learn.Kenting, Taiwan:
Springer, 2013, pp. 244–253.

[22] L. Rodriguez-Gil et al., ‘‘OpenSocial application builder and customizer
for school teachers,’’ in Proc. IEEE 14th Int. Conf. Adv. Learn. Technol.
(ICALT), Jul. 2014, pp. 31–33.

[23] M. Tawfik et al., ‘‘Virtual instrument systems in reality (VISIR) for remote
wiring and measurement of electronic circuits on breadboard,’’ IEEE
Trans. Learn. Technol., vol. 6, no. 1, pp. 60–72, Jan./Mar. 2013.

[24] J. Lester, B. Mott, J. Rowe, and R. Taylor, ‘‘Principles for pedagogical
agent authoring tools,’’ in Design Recommendations for Intelligent Tutor-
ing Systems: Authoring Tools and ExpertModeling Techniques. AnnArbor,
MI, USA: Robert Sottilare, 2015, p. 151.

[25] J. K. Olsen, D. M. Belenky, V. Aleven, and N. Rummel, ‘‘Intelligent
tutoring systems for collaborative learning: Enhancements to authoring
tools,’’ in Proc. Int. Conf. Artif. Intell. Educ.Memphis, TN, USA: Springer,
2013, pp. 900–903.

[26] R. Kumar and C. P. Rose, ‘‘Architecture for building conversational agents
that support collaborative learning,’’ IEEE Trans. Learn. Technol., vol. 4,
no. 1, pp. 21–34, Jan./Mar. 2011.

[27] C. Ray and S. Gilbert, ‘‘Bringing authoring tools for intelligent tutoring
systems and serious games closer together: Integrating GIFTwith the unity
game engine,’’ in Proc. AIED Workshops, vol. 7, 2013, p. 37.

[28] N. Matsuda, W. W. Cohen, and K. R. Koedinger, ‘‘Teaching the teacher:
Tutoring simstudent leads to more effective cognitive tutor authoring,’’ Int.
J. Artif. Intell. Educ., vol. 25, no. 1, pp. 1–34, 2015.

[29] M. Virvou and E. Alepis, ‘‘Mobile educational features in authoring tools
for personalised tutoring,’’ Comput. Educ., vol. 44, no. 1, pp. 53–68, 2005.

[30] V. Aleven, R. Baker, Y. Wang, J. Sewall, and O. Popescu, ‘‘Bringing non-
programmer authoring of intelligent tutors to MOOCs,’’ in Proc. 3rd ACM
Conf. Learn. Scale, 2016, pp. 313–316.

[31] H. C. Lane, M. G. Core, M. J. Hays, D. Auerbach, and M. Rosenberg,
‘‘Situated pedagogical authoring: Authoring intelligent tutors from a stu-
dent’s perspective,’’ in Proc. Int. Conf. Artif. Intell. Educ. Springer, 2015,
pp. 195–204.

5274 VOLUME 7, 2019

http://dx.doi.org/10.2196/jmir.5239
http://dx.doi.org/10.1109/JPROC.2012.2190167


L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

[32] K. R. Koedinger, V. Aleven, N. Heffernan, B. McLaren, and
M. Hockenberry, ‘‘Opening the door to non-programmers: Authoring
intelligent tutor behavior by demonstration,’’ in Proc. Int. Conf. Intell.
Tutoring Syst.Maceió, Brazil: Springer, 2004, pp. 162–174.

[33] T. Bickmore and L. Ring, ‘‘Making it personal: End-user authoring of
health narratives delivered by virtual agents,’’ in Proc. Int. Conf. Intell.
Virtual Agents. Springer, 2010, pp. 399–405.

[34] V. Aleven, B. M. McLaren, J. Sewall, and K. R. Koedinger, ‘‘The cog-
nitive tutor authoring tools (CTAT): Preliminary evaluation of efficiency
gains,’’ in Proc. 8th Int. Conf. Intell. Tutoring Syst. (ITS). Berlin, Germany:
Springer, 2006, pp. 61–70.

[35] R. A. Sottilare, K. W. Brawner, B. S. Goldberg, and H. K. Holden, ‘‘The
generalized intelligent framework for tutoring (GIFT),’’ U.S. Army Res.
Lab. Hum. Res. Eng. Directorate, Orlando, FL, USA, Tech. Rep., 2012,
doi: 10.13140/2.1.1629.6003.

[36] S. B. Blessing, ‘‘A programming by demonstration authoring tool for
model-tracing tutors,’’ in Authoring Tools for Advanced Technology Learn-
ing Environments. Springer, 2003, pp. 93–119.

[37] V. Aleven et al., ‘‘Example-tracing tutors: Intelligent tutor development for
non-programmers,’’ Int. J. Artif. Intell. Educ., vol. 26, no. 1, pp. 224–269,
2016.

[38] B. A. Shawar and E. Atwell, ‘‘A chatbot as a novel corpus visualization
tool,’’ in Proc. LREC, 2004.

[39] J. Feng, S. Bangalore, and M. Rahim, ‘‘WebTalk: Mining Websites for
automatically building dialog systems,’’ in Proc. IEEE Workshop Autom.
Speech Recognit. Understand. (ASRU), Dec. 2003, pp. 168–173.

[40] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, ‘‘The
Scratch programming language and environment,’’ ACM Trans. Comput.
Educ., vol. 10, no. 4, p. 16, 2010.

[41] G. W. Johnson, LabVIEW Graphical Programming. New York, NY, USA:
McGraw-Hill, 1997.

[42] J.-M. Sáez-López, M. Román-González, and E. Vázquez-Cano, ‘‘Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using ‘Scratch’ in five schools,’’ Comput.
Educ., vol. 97, pp. 129–141, Jun. 2016.

[43] W.-H. Kuan, C.-H. Tseng, S. Chen, and C.-C. Wong, ‘‘Development of a
computer-assisted instrumentation curriculum for physics students: Using
LabVIEW and Arduino platform,’’ J. Sci. Educ. Technol., vol. 25, no. 3,
pp. 427–438, 2016.

[44] F. Kalelioğlu, ‘‘A new way of teaching programming skills to
K-12 students: Code.org,’’ Comput. Hum. Behav., vol. 52, pp. 200–210,
Nov. 2015.

[45] D. Kumar, ‘‘Digital playgrounds for early computing education,’’ ACM
Inroads, vol. 5, no. 1, pp. 20–21, 2014.

[46] I. Iturrate et al., ‘‘A mobile robot platform for open learning based on
serious games and remote laboratories,’’ in Proc. 1st Int. Conf. Portuguese
Soc. Eng. Educ. (CISPEE), 2013, pp. 1–7.

[47] M. Á. Serna, C. J. Sreenan, and S. Fedor, ‘‘A visual programming frame-
work for wireless sensor networks in smart home applications,’’ in Proc.
IEEE 10th Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process. (ISSNIP),
Apr. 2015, pp. 1–6.

[48] J. Wiriyakul and T. Senivongse, ‘‘A visual editor for language-independent
scripting for BPMNmodeling,’’ in Proc. 12th Int. Joint Conf. Comput. Sci.
Softw. Eng. (JCSSE), Jul. 2015, pp. 156–161.

[49] C. E. Wieman, W. K. Adams, and K. K. Perkins, ‘‘PhET: Simulations that
enhance learning,’’ Science, vol. 322, no. 5902, pp. 682–683, 2008.

[50] M. Kaluz, J. Garcia-Zubia, M. Fikar, and L. Cirka, ‘‘A flexible and config-
urable architecture for automatic control remote laboratories,’’ IEEE Trans.
Learn. Technol., vol. 8, no. 3, pp. 299–310, Jul. 2015.

[51] H. Crompton, D. Burke, K. H. Gregory, and C. Gräbe, ‘‘The use of mobile
learning in science: A systematic review,’’ J. Sci. Educ. Technol., vol. 25,
no. 2, pp. 149–160, 2016.

[52] L. J. Couse and D. W. Chen, ‘‘A tablet computer for young children?
Exploring its viability for early childhood education,’’ J. Res. Technol.
Educ., vol. 43, no. 1, pp. 75–96, 2010.

[53] S. N. Şad and Ö. Göktaş, ‘‘Preservice teachers’ perceptions about using
mobile phones and laptops in education as mobile learning tools,’’ Brit. J.
Educ. Technol., vol. 45, no. 4, pp. 606–618, 2014.

[54] D. G. de la Iglesia, J. F. Calderón, D. Weyns, M. Milrad, and
M. Nussbaum, ‘‘A self-adaptive multi-agent system approach for col-
laborative mobile learning,’’ IEEE Trans. Learn. Technol., vol. 8, no. 2,
pp. 158–172, Apr. 2015.

[55] McAfee, ‘‘McAfee labs threats report: May 2015,’’ Intel Secur.,
Santa Clara, CA, USA, Tech. Rep., May 2015.

[56] J. Chacon, H. Vargas, G. Farias, J. Sanchez, and S. Dormido, ‘‘EJS, JIL
server, and LabVIEW: An architecture for rapid development of remote
labs,’’ IEEE Trans. Learn. Technol., vol. 8, no. 4, pp. 393–401,
Oct./Dec. 2015.

[57] D. Lowe, S. Murray, E. Lindsay, and D. Liu, ‘‘Evolving remote laboratory
architectures to leverage emerging Internet technologies,’’ IEEE Trans.
Learn. technol., vol. 2, no. 4, pp. 289–294, Oct. 2009.

[58] L. Rodriguez-Gil, J. Garcia-Zubia, P. Orduna, and D. Lopez-de Ipina,
‘‘Towards new multiplatform hybrid online laboratory models,’’ IEEE
Trans. Learn. Technol., vol. 10, no. 3, pp. 318–330, Jul./Sep. 2016.

[59] J. Cassell, ‘‘Embodied conversational interface agents,’’ Commun. ACM,
vol. 43, no. 4, pp. 70–78, 2000.

[60] C. Marrin, ‘‘WebGL specification,’’ Khronos WebGL Working Group,
Tech. Rep., 2011.

[61] K. Finstad, ‘‘The usability metric for user experience,’’ Interacting Com-
put., vol. 22, no. 5, pp. 323–327, 2010.

[62] M. I. Berkman and D. Karahoca, ‘‘Re-assessing the usability metric
for user experience (UMUX) scale,’’ J. Usability Stud., vol. 11, no. 3,
pp. 89–109, 2016.

[63] International Organization for Standardization, 9241-11:1998, 1998,
‘‘Ergonomic Requirements for OfficeWork with Visual Display Terminals
(VDTs): Guidance on Usability.’’

[64] J. Brooke, ‘‘SUS-A quick and dirty usability scale,’’ Usability Eval. Ind.,
vol. 189, no. 194, pp. 4–7, 1996.

[65] A. Bangor, P. T. Kortum, and J. T. Miller, ‘‘An empirical evaluation of
the system usability scale,’’ Int. J. Hum.–Comput. Interact., vol. 24, no. 6,
pp. 574–594, 2008.

LUIS RODRÍGUEZ-GIL received the dual degree
in computer engineering and industrial organiza-
tion engineering in 2013, theM.Sc. degree in infor-
mation security in 2014, and the Ph.D. degree in
computer science from the University of Deusto
in 2017. During his Ph.D., he co-founded the
LabsLand remote labs company, on which he
is currently a full-time as its CTO. Since 2009,
he has been a part of theWebLab-Deusto Research
Group, collaborating in the development of the

WebLab-Deusto RLMS. Throughout this time, he has authored various peer-
reviewed publications and contributed to several open source projects.

JAVIER GARCÍA-ZUBIA (M’08–SM’11) received
the Ph.D. degree in computer science from the
University of Deusto, Spain. He is a Full Professor
with the Faculty of Engineering, University of
Deusto. He is the Leader of the WebLab-Deusto
Research Group. His research interest is focused
on remote laboratory design, implementation, and
evaluation.

PABLO ORDUÑA (M’05) received the degree
in computer engineering and the Ph.D. degree
from the University of Deusto in 2007 and
2013, respectively. During his Ph.D., he was a
Visiting Researcher twice for six weeks each,
in the MIT CECI in 2011 and UNED DIEEC
in 2012. He has also attended two programs for
entrepreneurship training at Singularity Univer-
sity: Global Solutions Program and Launchpad.
Since 2004, he has also been involved in the

WebLab-Deusto Research Group, leading the design and development of
WebLab-Deusto, and a Later Researcher and the Project Manager of the
MORElab (DeustoTech Internet) until 2017. He is the CEO at LabsLand
(spin-off of the WebLab-Deusto project), and an external collaborator at
DeustoTech.

VOLUME 7, 2019 5275

http://dx.doi.org/10.13140/2.1.1629.6003


L. Rodriguez-Gil et al.: New Approach for CA Definition by Non-Programmers

AITOR VILLAR-MARTINEZ received the B.Sc.
andM.Sc. degrees in telecommunication engineer-
ing in telecommunication engineering from the
University of Deusto in 2016 and 2018, respec-
tively, where he is currently pursuing the Ph.D.
degree with a focus on working and researching
about remote laboratories and their technologies.
Since 2014, he has collaborated with several uni-
versity projects, such as the Smart Moto Challenge
in 2015 and 2016 editions. In 2017, he started

working at LabsLand (spin-off of the University of Deusto and the
WebLab-Deusto Project) as a Hardware/Software Developer.

DIEGO LÓPEZ-DE-IPIÑA received the Ph.D.
degree from the University of Cambridge in 2002.
Responsible for several modules in the B.Sc. and
M.Sc. degrees in computer engineering, he is
interested in pervasive computing, IoT, semantic
service middleware, open linked data, and social
data mining. He is an Associate Professor and
a P.R. of the MORElab Group and the Direc-
tor of the DeustoTech Internet Unit, and of the
Ph.D. Program within the Faculty of Engineer-

ing, University of Deusto. He is taking and has taken part in several big
consortium-based research European (IES CITIES, MUGGES, SONOPA,
CBDP, GO-LAB, and LifeWear) and Spanish projects, and has more than
70 publications in relevant international conference and journals, including
more than 25 JCR-indexed articles.

5276 VOLUME 7, 2019


	INTRODUCTION
	PURPOSE AND RESEARCH QUESTIONS

	RELATED WORK
	AGENT AUTHORING TOOLS AND NON-PROGRAMMERS
	VISUAL PROGRAMMING LANGUAGES

	REQUIREMENTS
	LOW SKILL REQUIREMENTS
	SIMPLE AND PREDICTABLE OUTPUT
	INTEGRABLE INTO OTHER RESOURCES
	WEB-BASED AND MOBILE FRIENDLY
	INTEGRABLE AGENTS INTO EXTERNAL SYSTEMS

	PROPOSED APPROACH
	VISUAL DOMAIN-SPECIFIC LANGUAGE
	BASE CONVERSATION NODE
	CONDITION BLOCKS
	ACTION BLOCKS
	NODE ORDERING

	STRENGTHS AND WEAKNESSES

	PLATFORM ARCHITECTURE
	KEY TECHNOLOGIES
	GOOGLE BLOCKLY
	UNITY AND WEBGL

	AUTHORING TOOL
	END-USER PERSPECTIVE
	COMPONENTS
	GOOGLE BLOCKLY BASED DSL
	INTEGRABLE 3D TUTOR COMPONENT
	INTEGRATION

	ARCHITECTURE VALIDATION

	METHODOLOGY
	THE TESTING PLATFORM
	STAGES
	EXAMPLE STAGE
	TUTORIAL STAGE
	CHALLENGE STAGE
	SURVEY STAGE

	PARTICIPANTS
	PROCEDURE

	RESULTS
	HOW EASY TO LEARN IS THE PROPOSED APPROACH?
	HOW USABLE IS THE PROPOSED APPROACH?
	IS THE PROPOSED APPROACH PERCEIVED AS VALUABLE AND INTUITIVE?

	DISCUSSION
	THE PROPOSED APPROACH
	AUTHORING PLATFORM PROTOTYPE

	CONCLUSIONS
	FUTURE WORK
	REFERENCES
	Biographies
	LUIS RODRÍGUEZ-GIL
	JAVIER GARCÍA-ZUBIA
	PABLO ORDUÑA
	AITOR VILLAR-MARTINEZ
	DIEGO LÓPEZ-DE-IPIÑA


