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ABSTRACT Planetary gear is an important part of the transmission system of large electromechanical
equipment. Therefore, it is very important to monitor the degradation of the state of the planetary gear.
A method for the degradation state recognition of planetary gear based on the features with multiple
perspectives and linear local tangent space alignment (LLTSA) algorithm is presented. First, the time
domain features of the original vibration signal are extracted, which have the statistical properties and
global significance. Then, the detailed features which pay more attention to the detailed information of the
vibration signal are extracted on the basis of improved complete ensemble empirical mode decomposition
with adaptive noise, and all those features constitute high dimensional original features. In order to solve
the problems of information redundancy and interference features, the original features are processed by
LLTSA, and the extraction of low dimensional sensitive features can be achieved. Finally, the optimized
support vector machine is studied to recognize the low dimensional sensitive features. The result shows that
the proposed method can recognize different degradation states of planetary gear accurately and effectively.

INDEX TERMS Degradation state, ICEEMDAN, LLTSA, OSVM, planetary gear.

I. INTRODUCTION
Planetary gear is the important part of the transmission sys-
tem of large electromechanical equipment, and to ensure the
safe and reliable operation of planetary gear, the technologies
of condition monitoring and fault diagnosis have received
more and more attention [1]–[3]. But in general, planetary
gear will undergo a series of degradation processes before
fatal fault. The accurate recognition of the current degradation
state can effectively prevent further degradation and ultimate
failure of planetary gear, and the support for maintenance
and management can be provided. Meanwhile, degradation
state recognition is also the foundation of planetary gear fault
prediction [4], so the study on degradation state recognition
of planetary gear is of greater andmore practical significance.

Compared with the vibration signal analysis of the fixed-
axis gear, it is more difficult to deal with the vibration signal
of planetary gear. The main reason is as follows: (1) The
planetary gear is a strong nonlinear system composed of

multiple components. Its planet gear not only meshes with
sun gear, but also engages with inner ring gear, which cause
that the vibration excitation is more complicated. (2) The
planet gear revolves around its own axis, at the same time,
it travels with the planet carrier around the sun gear, and ‘‘the
passage effect’’ is generated. (3) In general, the installation
position of vibration sensor is fixed, and the relative posi-
tion between the meshing point of planetary gear and the
installation position of vibration sensor is always changing.
Therefore, in the operation process of planetary gear, the
transmission path of the vibration generated by gear meshing
to the installation position of vibration sensor is time-varying.
These factors cause that the measured vibration signal has
more complex characteristics with strong nonlinear, non-
stationary and coupling, and the phenomenon of amplitude
modulation (AM) and frequency modulation (FM) is more
obvious. Therefore, the traditional signal processing meth-
ods are not suitable for dealing with the vibration signal of
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planetary gear. In addition, although the nature of degradation
state recognition is still the problem of pattern recognition,
but it is also different from fault diagnosis. Because differ-
ent degradation states belong to the same type of fault, the
differences among the vibration signals are smaller, and the
recognition is more difficult. Therefore, the feature extraction
is crucial in the degradation state recognition of planetary
gear. The traditional feature extraction method for fault diag-
nosis is to extract the fault feature information from only
one perspective. However, when faced with the problem of
degradation states recognition, the feature information cannot
be extracted fully and completely. Finally, the incomplete
feature information will result in a larger recognition error
rate. So the feature extraction of planetary gears from dif-
ferent perspectives can enrich the feature information that
can reflect the degradation state of planetary gear greatly
and effectively, which is advantageous for degradation state
recognition of planetary gear.

With respect to feature extraction, the time domain feature
contains a wealth of equipment state information, so extract-
ing time domain feature directly from original vibration
signal has been widely used. It has statistical properties
and global significance and is a useful feature extraction
method [5]. In addition, the signal decomposition method
is used to convert the original vibration signal into a series
of signal components with different varying trends, and then
the detailed features are extracted by some nonlinear feature
quantization methods. This idea also has been applied to
fault diagnosis. Combining these two extraction idea can
obtain more full and complete fault features, and the feature
extraction from multiple perspectives is more conducive
to the degradation state recognition. At present, the signal
decomposition and feature analysis methods that can be used
for non-stationary signal include short-time Fourier transform
(STFT), slow feature analysis (SFA), wavelet transform,
empirical mode decomposition (EMD) and so on. SFA is
often used in industrial process monitoring, and its improved
algorithms, such as global preserving statistics slow feature
analysis (GSSFA) and slow feature discriminant analysis
(SFDA), have been developed and put forward succes-
sively [6]. However, those SFA based methods are generally
applied to the monitoring of batch process, and they are more
suitable for analyzing the non-stationary signal with slowly
varying [7]. But the operation of planetary gear is a contin-
uous process, although the vibration signal of planetary gear
has the non-stationary characteristics, but it changes quickly
and its frequency is relatively high. So the SFA basedmethods
are not very suitable for processing the vibration signals of
planetary gear, and the signal feature with fast varying will be
ignored. Wavelet transform and EMD can be applied to the
decomposition and processing of the vibration signal of plan-
etary gear. However, wavelet transform does not have the self-
adaptability to signal processing, and EMDhas serious modal
aliasing problem [8]. To solve the modal aliasing problem of
EMD, ensemble empirical mode decomposition (EEMD) [9]
method was invented. However, the decomposition process

of EEMD is not complete, and it will have a larger recon-
struction error. Relatively speaking, as an improved form of
EMD, the complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) [10] has a better analytical
ability. This method overcomes the problem of mode mix-
ing and has a better reconstruction performance. However,
CEEMDAN still has two problems: (1) The obtained intrinsic
mode functions (IMFs) include some residual noise; (2) The
decomposition result contains ‘‘spurious’’ modes. To solve
these two problems, the ICEEMDAN was proposed [11].
The vibration signal of planetary gear can be decomposed
into a set of high quality IMFs by ICEEMDAN. The fea-
tures extracted from each IMF pay more attention to the
detailed information of vibration signal, which can reflect the
detailed differences of different vibration signals. In addition,
the single feature extracted from one perspective contains
less information and is not comprehensive. Multiple features
extracted from each IMF such as permutation entropy, box
dimension and energy can enrich the feature information, and
they can acquire slight differences among various vibration
signals of different degradation states. Based on the above
analysis, the original features with multiple perspectives
can be constructed using the time domain features and the
detailed features extracted from IMFs, and they are advanta-
geous to the degradation state recognition of planetary gear.

With the increasing of original features, information redun-
dancy is also increased. And the correlation between different
features will inevitably lead to the existence of interference
redundant feature, which interferes with classification and
recognition. Therefore, it is also important to reduce the
dimension of original features and extract the sensitive fea-
tures. Currently, there are some dimension reduction meth-
ods, such as principal component analysis (PCA) [12] and
linear discriminant analysis (LDA) [13], are mainly aimed at
linear data. Therefore, these methods are not suitable for pro-
cessing the vibration signal of planetary gear. In order to deal
with the dimension reduction of nonlinear original features,
some methods based on kernel function have been proposed
by scholars and represented by kernel principal component
analysis (KPCA) [14]. However, these methods ignore the
useful feature information contained in the high order sta-
tistical properties. Additionally, how to determine the kernel
function and its parameters is important to the dimension
reduction result. Compared with the methods outlined above,
the idea of manifold learning is to discover the inherent
structure of the low-dimensional smooth manifold, which is
embedded in high dimensional nonlinear data space [15]. The
difference information from the manifold structure of dif-
ferent states can reflect the characteristics of different states
and their evolution process. Therefore, manifold learning can
be used to reduce the dimension of original features. The
manifold learning method usually includes locality preserv-
ing projections (LPP) [16], LLTSA and so on. LLTSA is one
of the most widely used and effective methods in manifold
learning. It fully considers the topological structure and local
information from high dimensional sample features, and the
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TABLE 1. The specific definition of each time domain feature.

dimension reduction result has a smaller information loss
rate. The basic idea is to describe the local geometric structure
of original features using a low dimensional local tangent
space, and then, the dimension reduction of original features
is achieved by using a global array of the low dimensional
local tangent space [17]. Furthermore, the degradation state
recognition of planetary gear can be realized by combin-
ing the dimension reduction result and general recognition
algorithm.

The remainder of this paper is composed as follows:
In section 2, the mathematical model of the proposed method
is built. In section 3, the experiment of different degradation
states of planetary gear is conducted, and the vibration signals
of different degradation states are obtained for the basic of
experiment analysis. In section 4, the original features with
multiple perspectives consist of two parts, one part is the
time domain features, and another part is the detailed features
extracted from each IMF. Then, the dimension reduction of
original features is achieved by LLTSA, and the low dimen-
sional sensitive features can be obtained. Finally, OSVM is
used to recognize different degradation states of planetary
gear. In last section, this paper ends with some conclusions.

II. MODEL BUILDING
A. THE HIGH DIMENSIONAL ORIGINAL FEATURES
The original high dimensional features withmultiple perspec-
tives consist of two parts, one part is the time domain fea-
tures of original vibration signal, and they have the statistical
properties and global significance in the aspect of feature
extraction. Another part is the detailed features extracted
from each IMF. The original vibration signal is decomposed
into a set of IMFs with strict definition by ICEEMDAN,
and the detailed features including permutation entropy, box
dimension, energy and absolute mean of AR parameters are
extracted from each IMF. The detailed features pay more

attention to the detailed information of vibration signal,
which can reflect the local slight differences of various vibra-
tion signals.

1) TIME DOMAIN FEATURES OF ORIGINAL
VIBRATION SIGNAL
The selected time domain features include 12 parameters, and
the specific definition of each time domain feature is shown
in Table 1.

2) THE DETAILED FEATURES EXTRACTED
FROM IMFS
a: ICEEMDAN
i) EMD
EMD was proposed by Huang, and it can decompose the
signal into a series of IMF components with strict defini-
tions [18]. The decomposition process of EMD is as follows:
Step 1: Assuming the original vibration signal is X (t), and

its upper and lower envelopes are u(t) and v(t), respectively,
Their average envelope is expressed as follows:

m(t) = (u(t)+ v(t))
/
2 (1)

Step 2: Subtract m(t) from X (t), and the result is h1(t).

h1(t) = X (t)− m(t) (2)

h1(t) insteads of X (t), and the upper and lower envelopes are
u1(t) and v1(t), respectively. The following process is carried
out: 

m1(t) = {u1(t)− v1(t)}
/
2

h2(t) = h1(t)− m1(t)
. . . . . .

mk−1(t) = {uk−1(t)− vk−1(t)}
/
2

hk (t) = hk−1(t)− mk−1(t)

(3)
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Step 3: The first IMF d1(t) and the residue r1(t) can be
obtained until hk (t) meet the strict definitions of IMF.{

d1(t) = hk (t)
r1(t) = X (t)− hk (t)

(4)

Step 4: r1(t) is regarded as a new signal to repeat the
above process until the residue is lower than a certain value.
Therefore, the original vibration signal can be expressed as a
series of IMFs and a final residue:

x(t) =
K∑
k=1

dj(t)+ rn(t) (5)

However, for the complex non-stationary vibration signal,
the IMFs obtained by EMD have the modal aliasing problem.

ii) EEMD
To solve the modal aliasing problem of EMD, EEMD is
proposed [9], and its decomposition process of EEMD is
expressed as follows:
Step 1: Assuming the original vibration signal is X (t), and

generate X (i)(t) = X (t)+βw(i), where w(i) is the added white
noise with zero mean unit variance, and β is the adjustment
coefficient of the added white noise.
Step 2: The vibration signals X (i)(t), i = 1, 2, . . . , I

obtained by adding a total of I times of white noise are
decomposed by EMD, respectively. The corresponding IMFs
can be obtained, and they are indicated as d (i)k , where i =
1, 2, . . . , I , k = 1, 2, . . . ,K , and it indicates the k-th IMF
obtained by EMD for the vibration signal added the i-th white
noise.
Step 3: The final IMF dk by EEMD can be obtained

by averaging the corresponding d (i)k , and it is expressed as
follows:

dk =
1
I

∑I

i=1
d (i)k , k = 1, 2, . . . ,K (6)

However, the decomposition process of EEMD is not com-
plete, and the different realizations of vibration signal added
white noise may obtain different number of IMFs, making
difficult the final averaging.

iii) CEEMDAN
To solve these drawbacks, CEEMDAN is proposed [10], and
its decomposition process of CEEMDAN is expressed as
follows: Let operator Ek (·) be defined for obtaining the k-th
IMF by EMD, and w(i) is the added white noise with zero
mean unit variance, then:
Step 1: For the signals X (i)(t) = X (t) + βw(i),

i = 1, 2, . . . , I , and they are processed by EMD until the
first IMF is obtained and calculated, and the first IMF of
CEEMDAN is expressed as follows:

d̃1 =
1
I

I∑
i−1

d (i)1 =d1 (7)

Step 2: The first residue can be calculated: r1 = X (t)−d1.

Step 3: Generate the signal r1+β1E1(w(i)), and the second
IMF of CEEMDAN is defined and obtained as follows:

d̃2 =
1
I

I∑
i−1

E1(r1 + β1E1(w(i))) (8)

Step 4: For k = 2, 3, . . . ,K , The k-th residue can be
calculated: rk = rk−1 − d̃k .
Step 5: The (k+1)-th IMF of CEEMDAN can be obtained

on the basis of the above:

d̃(k+1) =
1
I

I∑
i−1

E1(rk + βkEk (w(i))) (9)

Step 6: Let k = k+1, and repeat Step4-Step6 until the final
residue can not be decomposed by EMD. And the original
vibration signal can be expressed as follows:

rK = rK−1 − d̃K

X (t) =
K∑
k=1

d̃j + rK
(10)

The decomposition process of CEEMDAN is complete,
and the accurate reconstruction of original vibration signal
can be realized. The final number of IMFs is determined only
by the vibration signal data.

iv) ICEEMDAN
CEEMDAN is an improvement of EEMD, but it still has two
shortcomings, and they are stated in the Section 1. Therefore,
ICEEMDAN was proposed to overcome those shortcomings,
and it is described as follows.

The operator Ek (·) is defined for obtaining the k-th IMF by
EMD [19], and the operatorM (·) is defined for obtaining the
local average envelope of the signal, and it can be noticed
that E1 (x) = x − M (x). The operator 〈·〉 is defined for
calculating the average value. wi(t) is the i-th added white
noise with zero mean unit variance. βk = εkstd(rk ) is used
to adjust the signal to noise ratio. For the signal X (t) to be
decomposed, the decomposition process of ICEEMDAN is
as follows [11].
Step 1: By adding the white noise to the signal X (t),

X (t)+β0E1(wi(t)) can be obtained. The white noise is added
in each time, and EMD process is performed, and the times of
the added white noise is I . The average of the corresponding
local mean of each EMD result can be calculated. Finally,
the first residue can be obtained.

r1 =
〈
M (X (t)+ β0E1(wi(t)))

〉
(11)

Step 2: Then, the first IMF can be expressed as follows:

d̃1(t) = X (t)− r1 (12)

Step 3: Further, r1(t) + β1E1(wi(t)) is decomposed by
EMD, where i = 1, 2, . . . , I , the average of the local mean
of each EMD result is calculated and defined as the second
residue; then, the second IMF can be obtained:

d̃2 = r1(t)− r2(t) = r1(t)−
〈
M (r1(t)+ β1E2(wi(t)))

〉
(13)
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Step 4: For k = 3, · · · ,K , calculate the k-th residue.

rk (t) =
〈
M (rk−1(t)+ βk−1Ek (wi(t)))

〉
(14)

Step 5: Further, the k-th IMF can be obtained.

d̃k = rk−1(t)− rk (t) (15)

Step 6: Go to Step 4 for the next k .
Step 7: Through the above process, the original vibration

signal of planetary gear can be decomposed into a series of
IMFs, and the original vibration signal can be expressed as
follows:

X (t) =
K∑
k=1

d̃k + rK (t) (16)

where K is the number of the decomposed IMFs, and rK (t) is
the final residue.

ICEEMDAN process reduced the residual noise in the
calculation process of each IMF, and the spurious modes
are reduced by making use of white noise indirectly [20].
Therefore, ICEEMDAN has more advantages in dealing with
the vibration signal with strong nonlinear, non-stationary and
coupling.

b: THE DETAILED FEATURES EXTRACTED FROM IMFS
A series of IMFs can be obtained by ICEEMDAN. In order
to realize the feature extraction of different degradation
states, the first several IMFs, which contain most of the state
information, are selected for feature calculation. The fea-
ture parameters include permutation entropy, box dimension,
energy and absolute mean of auto regression (AR) param-
eters, they pay more attention to the detailed information
of vibration signal, and the local slight differences among
various vibration signals of different degradation states can
be reflected.

i) PERMUTATION ENTROPY
Permutation entropy is a type of entropy feature proposed by
Christoph and Pompe to reflect the stability and complexity
of the vibration signal, and it has the advantages of simple,
fast calculation, good robustness and so on [21].

Assuming that the discrete vibration signal is G(i) =
{g(1), g(2), . . . , g(N )}, then the calculation process of permu-
tation entropy can be expressed as follows.
Step 1: The phase space should be first constructed in the

calculation process of permutation entropy, the phase space
corresponding to the vibration signal G(i) can be constructed
as follows:
g(1) g(1+ τ ) . . . g(1+ (m− 1)τ )
. . . . . . . . . . . .

g(i) g(i+ τ ) . . . g(i+ (m− 1)τ )
. . . . . . . . . . . .

g(K ) g(K + τ ) . . . g(K + (m− 1)τ )


(i = 1, 2, . . .K ) (17)

where K = N − (m − 1)τ , and m and τ are the embedding
dimension and delay time, respectively.
Step 2: Each line of Eq. (17) can be regarded as a recon-

structed component. Then, the j-th reconstructed component
of X will be sorted as shown in Eq. (18):

{g(i+ (j1 − 1)τ ) ≤ g(i+ (j2 − 1)τ ) ≤ . . .

≤ g(i+ (jm − 1)τ )} (18)

where j1, j2, . . . , jm are the indexes of each element of
the reconstructed component. If two or more elements in the
reconstructed component are equal, they are arranged in the
order of original time.
Step 3: A series of symbol sequences can be obtained for

an arbitrary vector in m dimensional space:

S(l) = (j1, j2, . . . , jm) l = 1, 2, . . . , k (19)

Step 4: For the symbol sequence S(l) obtained from
Eq. (19), the number of occurrences in all symbol sequences
can be expressed as f , and the occurrence frequency of each
symbol sequence can be expressed as follows:

Pi =
f

N − (m− 1)τ
(20)

The permutation entropy of different symbol sequences of
the original vibration signalG(i) can be calculated as follows:

Ep(m) = −
m∑
i=1

Pi lnPi (21)

Step 5: Furthermore, the permutation entropy is
normalized:

Ep(m) =
Ep(m)
ln(m!)

(22)

where 0 ≤ Ep ≤ 1, and the value of Ep reflects the stability
and complexity of the vibration signal G(i).

ii) BOX DIMENSION
The fractal dimension is widely used in the extraction and
quantification of fault feature, and the box dimension is a
typical fractal dimension. It can reflect the dynamic changes
of the signal generated by the mechanical system [22].

Suppose that the discrete vibration signal is G(i) ⊂ Y , and
Y is a closed set on Rn. Then, the calculative process of box
dimension can be expressed as follows.
Step 1: Rn is divided by ε, which is a very fine grid. N (ε)

is the minimum number of grids when Y is fully covered.
Step 2:Gradually enlarge the grid until the scale of the grid

is kε, then

a = max{Gk(i−1)+1,Gk(i−1)+2, . . . ,Gk(i−1)+k+1}

b = min{Gk(i−1)+1,Gk(i−1)+2, . . . ,Gk(i−1)+k+1}

P(kε) =
N/k∑
i=1

|a− b| (23)

where i = 1, 2, . . . ,N/k , M < N , k = 1, 2, . . . ,M , and N
is the length of the signal.
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Step 3: The grid count can be calculated according to the
following formula:

N (kε) = P(kε)/kε + 1 (24)

where N (kε) > 1.
Step 4: A good linear scale-free zone in the graph of

lg kε − lgN (kε) is then calculated, and the starting point k1
and the termination point k2 are set. Then,

lgN (kε) = a lg kε + bk1 ≤ k ≤ k2 (25)

Step 5: Finally, the slope of the straight line can be calcu-
lated using the least square method.

â = −
(k2 − k1 + 1)

∑
lg k lgN (kε)−

∑
lg k

∑
lgN (kε)

(k2 − k1 + 1)
∑

lg2 k − (
∑

lg k)2

(26)

Then, the box dimension DB of G(i) can be calculated.

DB = â (27)

iii) ENERGY
The energy of vibration signal can reflect the difference in
its vibration intensity. More importantly, when the original
signal is decomposed, the energy information can be high-
lighted in different components, which is useful for extracting
feature information of different degradation states. For the
various IMFs obtained by ICEEMDAN, the energy contained
in each IMF is important for the processing of non-stationary
and time-varying signals.

For the discrete vibration signal G(i) = {g(1),
g(2), . . . , g(N )}, the calculation formula of energy is
expressed as follows:

E =
N∑
i=1

g(i)2 (28)

iv) ABSOLUTE MEAN OF AR PARAMETERS
AR model is a type of time series analysis method, and
the model parameters have important connection with the
important information about the system state [23]. Therefore,
the AR model parameters can also be used for feature
extraction.

Suppose that the discrete vibration signal G(i) =

{g(1), g(2), . . . , g(N )}, and its AR model can be established
as follows:

G(i) =
n∑

k=1

ϕkG(i− k)+ e(i) (29)

where ϕk (k = 1, 2, . . . , n) is the model parameter, n is the
order number, and e(i) is the model residual. ϕk can express
the inherent characteristics of vibration system, which can be
solved by using the Burg algorithm [24]. Considering to the
state information of the signal is mainly determined by the
first several model parameters, the AR model are constructed
for the selected IMFs, and the absolute mean value of the first
several model parameters is taken as the feature value of the
corresponding IMF.

B. LLTSA
LLTSA is one of the primary methods to reduce the dimen-
sion of nonlinear feature data. The core idea is to represent
the local geometric properties of these points using the neigh-
borhood tangent space formed by the sample points and their
nearest neighbors. Then, the local low dimension coordinates
are determined by the projection of the sample points on the
tangent space. Finally, the global low dimensional coordi-
nates are obtained using the obtained local low dimension
coordinates, and the dimension reduction of original features
can be achieved [25]. Suppose there is a feature set X that is
constituted by m samples as follows:

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .

xm1 xm2 . . . xmn

 (30)

Then, LLTSA is used to process X , and the low dimen-
sional feature set Y can be obtained.

Y =


y11 y12 . . . y1d
y21 y22 . . . y2d
. . . . . . . . . . . .

ym1 ym2 . . . ymd

 (31)

where Y ⊆ Rd (d << n).
The specific process of LLTSA is as follows.
Step 1: The local neighborhood of the sample point xi

(i = 1, 2, . . . ,m) is constructed based on the neighborhood
parameter k .

Xi = [x(1)i , x(2)i , . . . , x(k)i ] (32)

Step 2: The local coordinate of the neighborhood is
determined.

8 = [θ (1)i , θ
(2)
i , . . . , θ

(k)
i ] (33)

where θ (j)i = QTi (x
(j)
i − x̄i) (j = 1, 2, . . . , k), Qi is an

orthogonal basis in the neighborhood, and x̄i is the mean of
the neighborhood of xi.
Step 3: The global arrangement of all local coordinates is

performed, which the key is to ensure that the reconstruction
error of the global alignment is minimized, and it can be
expressed as follows:

min
Li,Yi
=

∑
i

‖Ei‖2 = min
Li,Yi

∑
i

∥∥∥Yi(I − eeT /k)− Li8i

∥∥∥2 (34)

where Yi is the global representation of the local tangent space
coordinate for the first i sample points, and Li is the mapping
matrix. Then, after mathematical deduction, the above for-
mula can be converted into the following form:

min
Y
‖YSW‖ = min

Y
tr(YSWW T STY T ) (35)

where S = [S1, S2, . . . , Sm] is the selection matrix, and
Yi = SiY , W = diag(W1,W2, . . . ,Wm), where Wi can be
calculated as follows:

Wi = (I − eeT /k)(I −8+i 8i) (36)
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By adding a constraint Y TY = I , we can make sure that
Eq. (35) has a unique solution. Then, the eigenvectors corre-
sponding to the non-null eigenvalues of the first d can form a
feature matrix, and it is the global coordinate mapping that is
corresponding to the low dimensional nonlinear manifold of
the original features set X .

III. EXPERIMENT OF DIFFERENT DEGRADATION STATES
OF PLANETARY GEAR
The experiment of different degradation states of plane-
tary gear was conducted in the mechanical fault simulation
bench. The experimental system is shown in Fig.1, and it
includes a planetary gearbox with two stages, a controllable
motor, a fixed-axis gearbox, a brake system and a data acqui-
sition system. The basic parameters of planetary gearboxwith
two stages are shown in Table 2. The vibration signals of
different degradation states can be measured by using accel-
eration sensors, and the specific installation of acceleration
sensors is shown in Fig. 2. The normal state of sun gear and
four degradation states of a tooth root crack are simulated, and
they are normal, 25% crack, 50% crack, 75% crack and 100%
crack. The various gear states are shown in Fig. 3. During
the duration of the experiment, the motor output frequency
is set to 45 Hz, and the load is set to 13.5 Nm. Meanwhile,
the sampling frequency is set to 13017 Hz. Each degradation
state collects 50 groups of samples, and each sample includes
5120 data points.

FIGURE 1. Experiment of degradation states for planetary gear.

TABLE 2. Basic parameters of planetary gearbox with two stages.

IV. EXPERIMENTAL ANALYSIS AND DATA PROCESSING
The analytical flowchart of the proposed method is shown
in Fig. 4. The various degradation states of planetary gear
are simulated, and the obtained vibration signals are shown
in Fig. 5.

It can be found from Fig. 5 that there is a certain difference
in the vibration signals of different degradation states of plan-
etary gear. The vibration signal of normal state is relatively

FIGURE 2. Specific installation of acceleration sensors.

FIGURE 3. Various degradation states of planetary gears: (a) normal.
(b) 25% crack, (c) 50% crack, (d) 75% crack, (e) 100% crack.

FIGURE 4. Experimental analytical flowchart.

stable, and there is no significant impact, and the vibration
signal of 25% crack has obvious impacts. However, the plan-
etary gear states cannot be determined only by analyzing
vibration signal in time domain. Therefore, the vibration
signals require further processing.

According to the proposed method, the original features
with multiple perspectives are extracted. Firstly, 12 time
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FIGURE 5. The vibration signals of various degradation states.

domain features of original vibration signals are extracted.
In order to compare the sensitivity of time domain features
to degradation states, 20 groups of samples of each state are
selected and analyzed, and they are shown in Fig. 6.

FIGURE 6. The calculation results of time domain features.

It can be found from Fig. 6 that the first four features can be
roughly distinguished between the normal and various crack
states. However, the features of 50% crack, 75% crack and
100% crack are partially overlapped. The rest of the time
domain features, compared with the first four features, show
a more chaotic phenomenon. These features can still distin-
guish individual state, but the effect is not ideal. Therefore,
although the time domain features contain a great deal of state
information, but they are not enough to accurately judge the
various degradation states.

Next, the detailed features extraction is conducted. The key
of the detailed features extracted from IMFs is ICEEMDAN.
To show that the decomposition effect of ICEEMDAN is bet-
ter than that of CEEMDAN and EEMD, the vibration signal
of 75% crack is decomposed by using these three methods as

an example. There are two important parameters that must
be defined. One parameter is the amplitude of the added
white noise, and in this paper, it is set to 0.2std, and std is
the standard deviation of vibration signal. Another parameter
is the overall average number, and it is set to 100. The
decomposition results are shown in Fig. 7, Fig. 8 and Fig. 9,
respectively.

FIGURE 7. The decomposition result of EEMD.

FIGURE 8. The decomposition result of CEEMDAN.

By comparison, it can be found that there is a phenomenon
of modal aliasing in the decomposition result of EEMD,
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FIGURE 9. The decomposition result of ICEEMDAN.

such as IMF8 and IMF9 in Fig. 7. The actual physical mean-
ings of IMFs become unclear with the appearance of modal
aliasing phenomenon, and furthermore, the extracted features
will be inaccurate. Meanwhile, there is an obvious spurious
mode (IMF3) in the decomposition result of CEEMDAN. The
appearance of spurious components will lead to the extraction
of useless features, and will increase the difficulties in the
subsequent analysis. However, there are no such problems in
the result of ICEEMDAN. Therefore, through the comparison
and analysis of the above results, ICEEMDAN has a better
decomposition effect.

The first nine IMFs contain almost 95% of the total energy
of original vibration signal. Therefore, for the first nine IMFs
obtained by ICEEMDAN, permutation entropy, box dimen-
sion, energy coefficient and the absolute mean of the first
five AR parameters of each IMF are calculated. There are
two parameters that are required to be set in the calculating
process of permutation entropy: embedding dimensionm and
time delay τ . In general, the range of embedding dimension
should be 3-7. When m is too small, the algorithm will lose
effectiveness and actual meaning. In contrast, the calculation
time will increase, and more importantly, the algorithm will
not be able to effectively respond to subtle changes. The
delay time has little effect on the calculation result. Therefore,
in this paper, m is set to 6 and τ is set to 3. To illustrate
the effectiveness of the selected features, the detailed features
extracted from IMFs for each state are shown in Fig. 10.

Because different degradation states of planetary gear still
belong to the same fault type, so their original vibration
signals are very similar. For Fig. 10, to analyze the detailed
features extracted from IMFs obtained by ICEEMDAN, it can
be found that there are relatively significant differences

FIGURE 10. The detailed features extracted from IMFs. (a) Permutation
entropy. (b) Box dimension. (c) Energy coefficient. (d) The absolute mean
of the AR parameter.
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TABLE 3. The recognition results of various degradation states of planetary gear.

between the detailed features of some IMFs among different
degradation states, such as the permutation entropy of IMF3,
the box dimension of IMF8, the energy coefficient of IMF1,
the absolute mean of the AR parameter of IMF9 and so on.
In addition, it also can be found that the detailed features of
different degradation states of planetary gear are very similar
in some IMFs, which are not easy to be distinguished from
rough analysis. However, after amplification, the detailed
features of different degradation states still have a slightly
difference. Combining the above detailed features can reflect
the operation status of planetary gear from different perspec-
tives, so as to enrich the feature information that can reflect
the degradation state of planetary gear greatly and effectively.

Based on the feature extraction process outlined above,
original features with 48 dimensions are established.
However, the increasing of feature dimension would result
in information redundancy. Although the features with small
differences can provide some differentiated information, but
they still have invalid features. And the correlation between
different features will inevitably lead to the existence of
interference redundant information, which interferes with
classification and recognition. So the dimension reduction
should be conducted, and the sensitive features which can
best reflect the degradation states of planetary gear can be
obtained from original features, and LLTSA algorithm is
used in this paper. Prior to this, two LLTSA parameters
are required to be defined: the target dimension d and the
neighbor parameter k . In this paper, d is set to 3 and k is set
to 8. Then, the dimension of the training samples is reduced
by LLTSA, and the mapping matrix can be obtained. Finally,
the dimension reduction of test samples is carried out accord-
ing to themappingmatrix obtained from the training samples.
The dimension reduction result of all samples by LLTSA is
shown in Fig. 11(a). Meanwhile, In order to illustrate the
effectiveness of LLTSA, other dimension reduction methods:
PCA, KPCA, LPP and neighborhood preserving embedding
(NPE) are used to perform comparative analysis. The dimen-
sion reduction results of all samples by PCA, KPCA, LPP and
NPE are shown in Fig. 11(b)-Fig. 11(e).

It can be found from the comparison among
Fig. 11(a)-Fig. 11(e) that the sensitive features obtained by
PCA can distinguish the states of normal and 50% crack.

However, the sensitive features of 25% crack, 75% crack
and 100% crack have a serious aliasing phenomenon, and
it is difficult to separate those three states. In the dimen-
sion reduction result of KPCA, due to the introduction of
kernel function, the separability of sensitive features among
various degradation states has improvement compared with
the dimension reduction result by PCA. It can be found
that the states of 25% crack and 75% crack can be roughly
separated. But the states of normal, 50% crack and 100%
crack are still hard to distinguish completely. In the dimension
reduction results by LPP and NPE, the separability of sensi-
tive features among various degradation states of planetary
gear has further improvement. But there are still some slight
overlapping among them, such as the states of 25% crack
and 75% crack in the dimension reduction result by LPP,
the states of normal and 50% crack in the dimension reduction
result by NPE. After the treatment by above methods, it can
be seen that the clustering effect of the sensitive features of
different degradation states is not ideal. On the contrary, in the
dimension reduction result by LLTSA, each degradation state
of planetary gear has been well differentiated. It can be
proved that LLTSA can get better result than those dimension
reduction methods for the original features.

To quantitatively describe the dimension reduction result
by LLTSA, the recognition rate of each planetary gear state
is calculated in the following. Support vector machine (SVM)
is a machine learning method developed in the framework
of statistical learning theory, and it is widely used in pattern
recognition [26], [27]. However, the SVM parameters, which
are the penalty factor C and the kernel function parameter σ ,
have a significant influence on the recognition result. Taking
into account the genetic algorithm can be used to achieve
the optimization of complex systems [28], so it is applied to
the parameters optimization of SVM. And OSVM is used to
classify and recognize the sensitive features. Firstly, based
on the samples obtained in the experiment, 20 groups of
samples of each planetary gear state are used for training, and
30 groups of samples are used for testing. Then, the optimal
parameters of SVM are found by genetic algorithm as fol-
lows: C = 16.0244, σ = 4.7739. Finally, the recognition
result based on optimal parameters is shown in Table 3.
In the same way, for the sensitive features obtained by PCA,
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FIGURE 11. The dimension reduction results by LLTSA, PCA, KPCA, LPP and NPE. (a) The dimension reduction result by LLTSA. (b) The
dimension reduction result by PCA. (c) The dimension reduction result by KPCA. (d) The dimension reduction result by LPP. (e) The
dimension reduction result by NPE.

KPCA, LPP and NPE, each method can also obtain the corre-
sponding optimal parameters of OSVM respectively. OSVM
is also used to recognize the sensitive features obtained by
PCA, KPCA, LPP and NPE, respectively, and the recognition
results of various degradation states of planetary gear are also
shown in Table 3.

Table 3 shows that the average recognition rate of different
degradation states based on LLTSA is 98.67%, and there
are only two recognition errors in normal state. The average
recognition rates of different degradation states based on
PCA, KPCA, LPP and NPE are 71.33%, 80%, 96% and 92%,
respectively. Their recognition results are worse than that
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processed by LLTSA. Therefore, it can be further proved that
LLTSA has the advantages in the dimension reduction of the
original features with non-stationary and nonlinear. And the
proposed method of degradation state recognition of plane-
tary gear based on the features with multiple perspectives and
LLTSA is effective.

V. CONCLUSIONS
A method for the degradation state recognition of planetary
gear based on the features with multiple perspectives and
LLTSA is presented. The original features with multiple
perspectives consist of two parts, one part is the time domain
features of original vibration signal. Another part is the
detailed features, and they include permutation entropy, box
dimension, energy coefficient and the absolute mean of the
first five AR parameters of each IMF which is obtained
by ICEEMDAN. Meanwhile, the experiment shows that
ICEEMDAN can achieve a better result than EEMD and
CEEMDAN in adaptive signal decomposition. In this man-
ner, the constructed original features have the problems of
information redundancy and excessive dimension, so LLTSA
is used for dimension reduction. And in order to illustrate the
effectiveness of LLTSA, the processing result of LLSTA is
compared with that of PCA, KPCA, LPP and NPE. The result
shows that LLTSA has better dimension reduction ability
compared with PCA, KPCA, LPP and NPE, and the samples
with different degradation states can be separated effectively.
Finally, OSVM is used to classify and recognize the low
dimensional sensitive features obtained by different dimen-
sion reduction methods. And it can be found that the average
recognition rate of different degradation states processed by
LLTSA reaches 98.67%, and it is superior to the recognition
rates of different degradation states processed by other meth-
ods. Therefore, it can be proved that the proposed method of
degradation state recognition of planetary gear based on the
features with multiple perspectives and LLTSA is effective.
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