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ABSTRACT Advanced communications and networks greatly enhance the user experience and have a major
impact on all aspects of people’s lifestyles. Widely deployed sensor nodes provide support for these services.
However, although energy harvesting and transfer technology provides a solution to allow the long-term
survival of wireless sensor nodes for wireless sensor networks, the single collection scheme causes a lot of
energy waste. Thus, efficient energy utilization and fast data collection are still serious challenges for energy
harvesting wireless sensor networks. To overcome these challenges, an adaptive collection scheme based on
matrix completion (ACMC) is proposed to reduce delay and to improve the energy utilization of the network.
In the ACMC scheme, compared with traditional data collection schemes, the data collection schemes vary
with the available energy, collecting large amounts of data when the available energy is sufficient to obtain
high-quality data-based applications. Otherwise, adaptive selecting the collected data based on previously
collected data, the amount of data collected can be effectively reduced based on the application requirements,
thereby improving the energy utilization of the network. The ACMC scheme also proposes a method for
reducing the delay by increasing the duty cycle of the nodes that are far from the CC. At the same time,
the transmission reliability of these nodes increases due to the increase in the transmission frequency. Thus,
the ACMC scheme can also further reduce the delay of the network. The experimental results of the ACMC
scheme in planar networks show better performance than the traditional data collection schemes and can
improve the energy utilization of the network by 4.26%–6.68%while reducing the maximum delay by 9.4%.

INDEX TERMS Energy harvesting, energy utilization, matrix completion technique, data recovery, delay,
adaptive collection.

I. INTRODUCTION
With the rapid development of communication and network
technologies, novel information services and applications are
rapidly growing worldwide [1]–[6]. The ubiquity of wireless
sensor-equipped devices [7]–[9] can used to collect data at
a low cost [10]–[12], establishes the foundation for numer-
ous data-based applications, such as environmental monitor-
ing [13], [14], smart transportation [15], [16], smart health

monitoring [17]–[19], and industrial applications [20]–[22].
With the development of microelectronic technology, wire-
less sensor devices have become increasingly smaller, and
their function has become increasingly powerful, which
has led to extensive application and deployment [23]–[27].
According to [1], sensor-based devices connected to the
Internet of Things (IoTs) have reached 9 billion and will
reach 24 billion by 2020 [28]. Although advanced techniques
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have extensively improved user’s quality of experience [29],
they are not adequate to meet the various requirements of
seamless wide-area coverage, high-capacity hot-spots, low-
power massive-connections, low-latency and high-reliability,
as well as other scenarios [30]. Therefore, it is a great chal-
lenge to develop smart communications and networks that
support adaptive adjustment technique [31]. Wireless sensor
networks (WSNs) are an important part of the Internet of
Things and can collect data at a lower cost [32]–[34]. The
sensor nodes are small, easy to deploy, and can be deployed
in complex environments. However, because the sensor ter-
minal is small, the battery capacity is also limited [35], [36].
Therefore, the durable problem of WSNs has attracted
widespread attention from academia and industry. Wireless
energy harvesting and transfer technology is a way to effec-
tively solve this issue [36]. The energy-harvesting wire-
less sensor network (EHWSN) is a network whose sensor
nodes can absorb and replenish energy from the surround-
ing environment (solar, wind, thermal, etc.) [36]. Therefore,
EHWSN can be applied to scenarios that require long-term
monitoring [36]. There have been many studies that have
reduced costs and improved energy efficiency. However,
there are still two key issues that are not well resolved
in EHWSN.

One of the important issues is how to improve the energy
utilization of the network [37]. In the EHWSN, the energy
provided by the surrounding environment is not stable. For
example, the energy generated by solar radiation during
the daytime is much greater than the energy generated at
night. Therefore, the available energy of the sensor node in
EHWSN is different at each moment. When the energy is
sufficient, if only a small amount of energy is consumed,
considerable energy will remain, and when the energy stored
in the battery is full, it will waste considerable energy. In the
case of insufficient energy, if considerable energy is con-
sumed, the energy stored in the battery will be used. When
this state continues for a long time, there is a possibility that
the energy in the battery will be completely consumed. There-
fore, reasonably allocating available energy by appropriately
increasing or decreasing the energy consumption at different
times is critical to improving the energy utilization of the
network.

The second important issue is the delay in collecting
data [13], [38]. In the data collection network, sufficient data
needs to be collected. Collecting sufficient data will result
in a longer delay. Due to the characteristics of the wireless
transmission link, data packets may be lost. If a data packet
is lost, the data packet needs to be retransmitted, which also
causes a long delay. In some monitoring scenarios, such as
forest fires, a long delay will postpone the timing of obtain-
ing information, thus postponing the timing of firefighting
causing greater losses. Moreover, some sensor nodes will
be burned by the fire, causing the data transmission path
to be cut off. Therefore, it is also important that a system
can make a decision when the data are incomplete, that is,
it can tolerate a portion of missing data. However, tolerating

the lack of data can reduce the amount of data collected,
which reduces the congestion of network transmission and
accelerates network transmission. Therefore, reducing the
transmission delay and tolerating the collection of missing
data has important research significance.

To overcome these challenges, an adaptive collection
scheme-based matrix completion (ACMC) is proposed to
reduce the delay of network transmission and improve the
energy utilization of the network. The main innovations of
our work are as follows:

(1) In the ACMC scheme, only part of the data needs
to be collected, and the remaining data are recovered by
matrix completion technology so that all the data can still be
obtained while reducing the amount of data collected. Since
the collected environmental data have a strong correlation,
the part of the data that is not collected can be recovered by
matrix completion technology. Compared to the traditional
data collection scheme, the amount of data that needs to be
collected is reduced, thus reducing the energy consumption
required to collect the data.

(2) A data collection scheme that varies with available
energy is proposed in this paper, in which more data is
collected under the condition that the available energy is
sufficient and less data is collected when the available
energy is insufficient, thereby improving energy utilization.
In EHWSN, the sensor node can absorb solar radiation and
convert it into usable energy. Therefore, when solar radiation
is sufficient during the daytime, the available energy of the
sensor node is very large, and the battery capacity of the
sensor is limited. When energy can no longer be stored,
considerable energy is wasted. There is no solar radiation
at night so that only the energy stored in the battery can be
used, and how long this situation can last cannot be accurately
predicted. Therefore, the ACMC scheme adjusts the data
collection scheme according to the residual energy and solar
radiation in the battery. When the energy of solar radiation
conversion is sufficient, more data can be collected.When the
energy converted by solar radiation is very low, and there is
insufficient energy in the node battery, an adaptive collection
algorithm is used to collect as little data as possible while
ensuring low recovery error. The scheme of this paper is
different from the previous scheme; in the ACMC scheme,
the data collected each time is dynamically changed, and the
amount of data collected each time may be different so that
the energy in the nodes at different times is fully utilized.
At the same time, because as little data as possible is collected
in the absence of solar radiation, it also ensures that the energy
of the battery in the node is not exhausted.

(3) A way to adjust the duty cycle is proposed. The maxi-
mum delay of the network is reduced, and the energy utiliza-
tion of the network is improved by adjusting the duty cycle
of each node in the network.

(4) The ACMC scheme is applied to common planar net-
works. Experimental research and theoretical evidence show
that compared with traditional scheme-based matrix com-
pletion, the energy utilization of the ACMC is increased
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by 4.26%-6.68%, and the maximum delay of the network is
reduced by 9.2%.

The rest of this paper is organized as follows. Section II
reviews the relatedwork. The problem description and system
model are presented in Section III. In Section IV, we pro-
pose an adaptive collection scheme in detail. The theoretical
analysis and simulation results are presented in Section V.
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK
In the energy-harvesting wireless sensor network, which dif-
fers from traditional sensor networks in that the sensor nodes
in the EHWSN can extract energy from the surrounding
environment, one of the important issues is how to improve
the energy utilization of the network. However, the energy
provided in the environment is unstable, and there is lit-
tle or no available energy at some times. Therefore, reducing
the energy consumption of the network in EHWSN is also
a problem. There have been many studies on how to reduce
the energy consumption of network transmission [10], [39].
In [39], each node transmits a data packet in one transmission
cycle, but the size of the data packet is different. By adjust-
ing the modulation rate to ensure that one data packet is
transmitted in one cycle when the size of the data packet
transmitted by the network is fixed, the duty cycle can be
adjusted to change the modulation rate, thereby reducing the
energy consumption of the transmission.

Closely related to reducing network energy consumption
is reducing the amount of data collected. Matrix comple-
tion technology is one of two classic sparsity representation
techniques that can recover a complete matrix from a partial
low-rank matrix. There has been considerable research on
wireless sensor networks [40], [41] in which matrix comple-
tion technology is used. Recovery error is a very important
issue. A row or column in the matrix without any data will
result in a large number of recovery errors [42]. Themore data
collected, the lower the probability of empty rows or columns
in the matrix. Candès and Tao [42] presented the minimum
amount of data to be collected using the matrix completion
technique in the traditional low-rank matrix and proved that
this number is essentially related to the coherence of the data
in the matrix. Based on this minimum number of required
collections, [42] also demonstrates that in the case of the
Bernoulli distribution (or uniform distribution), the error of
the recovered data is acceptable. However, in the Bernoulli
distribution, too little data collected will rapid increase the
probability of empty rows or columns in the matrix, resulting
in a rapid increase in recovery error. Therefore, in [40],
a sampling method of the cross-sampling model is pro-
posed. By collecting data at intervals in each sensor node
to ensure that there is data collected in each row and col-
umn, the amount of data that needs to be collected can be
greatly reduced, and a low recovery error can be maintained.
However, the recovery error can also be reduced by other
means. Cheng et al. [41] proposed an STCDG data collection
algorithm that recovers the columns of the collected data by

using matrix completion and then inserts the columns that
have not collected data into the recovery matrix. Since the
data matrix has short-term stability, it can be directly obtained
by the method of semidefinite programming, and the error of
recovering data is also maintained.

Because the battery can be recharged, it is meaningless
to simply reduce the energy consumption of the network,
so the main goal in the EHWSN is to improve the energy
utilization of nodes in the network [43]. However, as in
traditional wireless sensor networks, EHWSN also has the
problem of imbalancing energy consumption because the
energy consumption of each node in the network is not
uniform, resulting in low energy utilization of some nodes,
thus reducing the energy utilization of the entire network.
In traditional sensor networks, many schemes [44]–[47] have
been proposed to balance the energy consumption of nodes
in the network. In [44], a LEACH scheme was proposed.
By specifying the selected node as the cluster head (CH),
the CH collects the data in its own cluster for aggregation and
then sends the aggregated data packet directly to the sink or
the next CH node, thereby balancing the energy consumption
of the network. However, this method requires the user to
define the expected probability of each node becoming a CH.
Therefore, there is a LEACH scheme based on a genetic
algorithm (GA) [45], which directly uses the GA to select a
better CH, but the CH is randomly selected, and the remaining
energy of each node is also not considered in the process
of selecting the CH. In [46], according to the distance of
the node from the sink, the nodes are divided into different
gradients. The nodes near the sink have a low gradient, and
the nodes far from the sink have a high gradient. A cluster
with a low gradient has a small cluster, and a node with a high
gradient has a large cluster, so the number of clusters in the
near-sink region will be larger than that in the far sink region.
Therefore, there are more CHs in the near-sink area. Each
CH collects the data of the nodes in the cluster. After aggre-
gation, the data is transmitted to the sink according to the
principle of gradient descent. This scheme has many CHs in
the near-sink area and relatively few CHs in the far-sink area,
so the energy balance of the CHs can be well-maintained,
thereby alleviating the energy imbalance of the entire network
and improving the energy utilization of the network.

Another issue that is closely related to this paper is
delay [48]. The delay of network transmission has always
been one of the research priorities in WSN, and many factors
affect the transmission delay. First, the reliability of the trans-
mission is one of the important factors affecting the delay.
When the reliability of the transmission is high, the number
of required retransmissions requires decreases. Generally,
the method of improving the transmission reliability is to
increase the transmission power of the sensor node, thereby
increasing the signal-to-noise ratio of the transmission chan-
nel so that the received data signal of the receiver is enhanced.
If the transmit power of the node is fixed, the reliability
of the data transmission is fixed. At this time, it is nec-
essary to adopt some mechanisms to ensure the reliability
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of transmission. The commonly used guarantee mechanism is
the retransmission mechanism. In the retransmission mecha-
nism, after the sender sends the data, it waits for the receiver
to return the ACK signal of the received data. When the
sender receives the ACK signal, it starts the transmission of
the next data. Otherwise, when the sender waits for more than
a certain threshold, the packet is resent until the ACK signal is
received or the number of resends exceeds a certain threshold.
This process generates a large number of delays. This paper
uses a method to improve the reliability of the transmission
and reduce the number of retransmissions. Since there is a
surplus of energy away from the sink area, this part of the
residual energy can be used to improve reliability. Therefore,
reducing the delay away from the sink area node, which is
the maximum delay of the network, also improves the energy
utilization of the network.

III. THE SYSTEM MODEL AND PROBLEM STATEMENT
A. THE NETWORK MODEL
The network model used in this paper is a typical data collec-
tion network model, similar to [7] and [13]; its characteristics
are as follows:

There is a total of n sensor nodes of the same type in the
network, which are randomly and uniformly deployed in a
circular area with radius R, and the sink is located at the
center of the circle. The communication radius of each sensor
node is r . The routing algorithm in the network is the shortest
routing algorithm, the number of hops that each node requires
to reach the sink can be obtained. The nodes are layered
according to the number of hops, and the node with hop count
1 belongs to the first layer.

B. THE ENERGY CONSUMPTION MODEL
The energy consumption model used in this paper is similar
to [39]. The sensor nodes transmit a data packet in a trans-
mission cycle. The transmission cycle consists of three parts,
the working time Ton, the sleep time Tstby, and the transition
time (work-sleep transition) Tstart , so the transmission cycle
can be expressed as:

T = Tstart + Ton + Tstby

Correspondingly, its power can also be divided into three
parts: working power Pon, sleep power Pstby, and transition
power Pstart . The power is small in the sleep state, so it can
be considered as 0. The power of the transition state mainly
comes from the frequency synthesizer, so Pstart = Psyn.
The working power Pon is transmitted power PTx , amplifier
power PPA, and circuit power Pcircuit .

The amplifier power can be expressed as:

PPA = βPTx = (
ξ

η
− 1)PTx

where η represents the drain efficiency of the amplifier, ξ is
the peak-to-average ratio, and ξ is related to the modula-
tion technique. The modulation technique used in this paper

is M-QAM, and the constellation size is M , so the peak-to-
average ratio is expressed as ξ = 3

√
M−1
√
M+1

.

Therefore, the energy consumption of transmitting a
packet can be expressed as:

Etotal = PonTon + PstartTstart
= (1+ β)PTxTon + PcircuitTon + 2PsynTstart (1)

The transmit power can be obtained from the receiver
power, according to the equation of the k th path loss
model [39], and the transmit power can be expressed as:

PTx = PrxGd (2)

where Gd = G1dkM1, G1 is the gain factor of 1 m,M1 is the
link margin, d is the communication radius of the node, k is
the exponent order, usually in the range 2-4, and in this paper,
k = 3 is selected.
The receiver power Prx is related to the signal-to-noise

ratio (SNR).

Prx = 2BNf σ 2
· SNR (3)

The signal-to-noise ratio is related to the error probabil-
ity. In the M-QAM modulation technique, the relationship
between the signal-to-noise ratio and the error probability is
as follows:

Pe =
4
b
(1−

1
√
M

)e(−
3

M−1 )
SNR
2 (4)

Therefore, it is necessary to determine the error proba-
bility to obtain the signal-to-noise ratio, obtain the signal-
to-noise ratio to obtain the received power, and obtain the
working power of each node to transmit a data packet. Finally,
the energy consumption of a transmit packet can be obtained.

C. THE MATRIX COMPLETION MODEL
The matrix completion technique used in this paper is similar
to Ref. [49]. Matrix completion technology is an emerging
technology that can recover all the data in the low-rankmatrix
with less data. For a matrix X of size N1 × N2, consid-
ering that the set of known data is �, the data collection
process P�(X ) is defined as:

P� (X) =
{
Xi,j (i, j) ∈ �
0 otherwise

When the known dataset already contains sufficient infor-
mation, there is a specific matrix with rank r that is consistent
with the known data, so data recovery can be performed by
minimizing the rank of the matrix.

min (rank(X ))

s.t. P� (X) = P� (M)

where rank(.) represents the rank of the matrix.
However, the problem of minimizing the rank of a matrix is

an NP-hard problem. Therefore, the problem of minimizing
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rank can be transformed into a nuclear norm optimization
problem as in Ref. [49].

min ‖X‖∗
s.t. P� (X) = P� (M) (5)

However, when the matrix is large, the traditional
method of solving the nuclear norm optimization prob-
lem is difficult, so we use a singular value thresholding
algorithm (SVT) [49] to solve the problem of minimizing the
nuclear norm optimization problem.

The SVT algorithm is one of the algorithms for solving
matrix completion, which solves the equivalence problem
of Eq. (5):

min τ ‖X‖∗ +
1
2
‖X‖2F

s.t. P� (X) = P� (M) (6)

The SVT algorithm is essentially a Lagrange multiplier
method, and the Lagrange function of Eq. (6) is:

L (X ,Y ) = τ ‖X‖∗ +
1
2
‖X‖2F +<Y ,P� (X)− P� (M)>

where<X ,Y> represents the standard inner product between
two matrices.

Reference [49] proved that the original problem of this
Lagrange function is the same as the optimal value of its
Lagrange dual problem; the following iterative formula can
be obtained by using the convex optimization theory and the
subgradient method for the Lagrange dual problem.{

L
(
X k ,Y k−1

)
= min

X
L
(
X ,Y k−1

)
Y k = Y k−1 + δkP�

(
M − X k

) (7)

Finally, according to [46], formula (7) can be converted
into: {

X k = Dτ (Y k−1)
Y k = Y k−1 + δkP�

(
M − X k

)
where Dτ is a singular value contraction operator and τ is the
singular value threshold.

D. PROBLEM STATEMENT
The main purpose of this paper is to design an effi-
cient algorithm for adaptive data collection to improve the
energy utilization of EHWSN. The scheme has the following
characteristics:

(1) Improving the energy utilization of the network.
In EHWSN, since the sensor node is rechargeable, there is
no obvious significance in reducing the energy consumption
of the data transmitted by the node. The energy of the nodes
during the daytime is sufficient, somany data can be collected
during the daytime, but the storage capacity of the battery is
limited, and there is no solar radiation at night; thus, only the
energy stored in the battery can be used, so less energy is
available at. Therefore, to avoidwasting energy, themain goal
is to improve the energy utilization in EHWSN. The energy

TABLE 1. Network parameters.

utilization is the ratio of the available energy to total energy
consumption, as follows:

max(η) = max (
∑n

i=1
Ei/

∑n

i=1
E iava) (8)

where η represents the energy utilization of the network,
Ei represents the actual energy consumed of node i, and
E iava represents the available energy at node i.

(2) Reducing the network transmission delay. In a planar
network, the energy consumption of the nodes in each layer
in the network is uneven, and the energy consumption of
the nodes far away from the sink is much lower than that
of the nodes near the sink, which will seriously affect the
energy utilization of the network. Therefore, the duty cycle
of the nodes far away from the sink can be increased, thereby
increasing the energy utilization of the network and reducing
the delay of network transmission. Considering that the duty
cycle of node i is τi, the second optimization goal is:

min (C) = minmax
∑

i∈S
δ(τi) (9)

where S is the data transmission path and δ is the single-hop
delay of the node.

In summary, our overall optimization goal is as follows:max(η) = max (
∑n

i=1
Ei/

∑n

i=1
E iava)

min (C) = minmax
∑

i∈S
δ(τi)

(10)

IV. THE DESIGN OF ACMC SCHEME
A. RESEARCH MOTIVATION
Matrix completion techniques have evolved for a long time
and can recover all the data from a low-rank matrix with
missing data. In sensor networks, some high-coherence data
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FIGURE 1. The energy consumption at different locations in the planer
network.

are collected, so there have been some studies investigat-
ing the application of matrix completion techniques on
sensor networks [40], [46]. The data collection scheme
proposed in this paper differs from the previous scheme as
follows:

(1) In the previous scheme, because the energy of the nodes
in the network is limited, to extend the network lifetime,
the purpose of the previous scheme was to reduce energy con-
sumption by reducing the amount of data collected. In [46],
due to the large coherence between some data, in each collec-
tion round, some sensor data is randomly collected accord-
ing to a certain ratio. After the collection is completed, all
data can be recovered through matrix completion technol-
ogy. However, in this scheme, the sampling rate is fixed,
that is, the amount of data collected per round is fixed,
so the energy consumption will also fluctuate within a range
(the position of the sensor node also affects the energy con-
sumption). Therefore, in EHWSN, the sampling rate can only
be selected according to the lowest available energy, so that a
large amount of energy is wasted when there is considerable
available energy.

(2) Second, the energy consumption of the planar network
is unbalanced, there also lead to low energy utilization of
the network. Fig. 1 shows the energy consumption of nodes
at different distances from the sink. Obviously, the energy
consumption of the nodes near the sink is much larger than
that of the nodes far from the sink. When the energy of the
nodes near the sink is exhausted, the nodes of the far sink
will have a large of energy remaining.

Thus, designing a suitable scheme to ensure the energy
utilization of the entire network is a challenging issue.
In this paper, we propose an adaptive data collection
scheme to solve this problem. It can effectively improve
the energy utilization of EHWSN and appropriately alle-
viate the energy consumption imbalance in each node of
the network. The following section will elaborate on this
scheme.

B. OVERVIEW OF THE PROPOSED SCHEME
The main idea of this scheme is to use an adaptive sampling
algorithm to adjust the sampling scheme of the current time
slot in EHWSN to improve the performance of the network.
When the energy is sufficient, more data is collected, and
when the energy is insufficient, less data is collected. The
scheme is divided into the following parts:

(1) The available energy. In EHWSN, since solar radi-
ation is sufficient during the daytime, the energy converted
from solar radiation can be directly utilized as available
energy. At night, there is no solar radiation, so the node can
only use the previously stored energy. Since it is not possi-
ble to accurately estimate how long the low solar radiation
will last, a method of instantly allocating available energy
is employed. In planar networks, the energy consumption of
each node is different, and the energy consumption of the
nodes closest to the sink is the largest. When the energy of
these nodes is not exhausted, the energy of the other nodes
in the network will not be exhausted. Therefore, we only
need to consider the available energy of the node with the
most energy consumption. Because only bN/2c data must be
collected at most according to the cross-sampling principle,
the energy consumption of collecting bN/2c data is taken
as the threshold C1. When the energy converted by solar
radiation is higher than the threshold, the available energy is
the energy converted by solar radiation. When it is lower than
the threshold, since the energy of C1 is consumed at most, the
available energy isC1. Second, since the energy consumption
of the adaptive collection algorithm is unknown, to improve
the network energy utilization, an overflow threshold α is also
set to determine whether the energy stored in the battery is
sufficient. If the result of the determination is that the energy
is sufficient, we collect the data of all nodes; otherwise,
the adaptive collection algorithm is adopted.

(2)The adaptive collection algorithm. In the above steps,
we can obtain the available energy of each slot of EHWSN.
Obviously, to improve the energy utilization of the network,
when the energy is sufficient during the daytime, it is possible
to collect more data. At night, there is less available energy,
and only the energy stored in the battery can be used. It is
impossible to accurately determine how long the night lasts,
so as little energy as possible needs to be consumed at night.
Therefore, there is less data collected at night. When there
is no data in a row or a column of the matrix, the data error
recovered by the matrix completion technique is very large.
To avoid this phenomenon, the data is collected according to
the cross-sampling principle [40].

The cross-sampling principle ensures that there is no data
in adjacent rows and columns. As shown in Fig. 2, the column
of the matrix can be divided into two areas. When the sensor
node is in the white area, it is possible to collect data only
when the slot is odd. When it is in the gray area, it is possible
to collect data only when the slot is even so that collecting
adjacent data can be avoided, and when the amount of col-
lected data is small, the probability of the occurrence of empty
lines or columns in the matrix is reduced.
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Algorithm 1 The Scheme for Allocating Available Energy
Initialize:Considering that the battery capacity of each node
is Ecap, a total of Ts slots are collected, the solar panel area
is χ , and the remaining energy in the battery is Eres.
Input: the initial energy Einit for each node and the solar
radiation Fi for each slot.
Output: the available energy Eai
// C1 is the maximum energy consumption for collecting
// bN/2c data according to the principle of cross-sampling
1: Eres = Einit
2: For i = 1 to Ts
3: IF Eres ≥ α · Ecap or χFi ≥ C1
4: IF χFi ≥ C1
5: Eai = χFi
6: Else
7: Eai = C2

// C2 is the maximum energy consumption for
// collecting all data, which can be calculated
// according to Theorem 2

8: End if
9: Else
10: Eai = C1
11: End if
12: Eres = Eres − Eu

// Eu is the actual energy consumed and obtained by
// Algorithm 2

13: IF Eres > Ecap
14: Eres = Ecap
15: End if
16: End for

(a) Learning process of adaptive sampling algorithm:
As increasingly more data is collected as the number of slots
increases, the size of the matrix that needs to be recovered
is also increasingly larger, and it will take longer for each
recovery. To solve this problem, we use matrix completion
technology for a small matrix. This smaller matrix is called a
sliding window (as shown in the blue area in Fig. 2), and the
size of the sliding window is fixed. When a new time slot is
added, the oldest time slot is removed from the window. If the
newly added slot is the current time slot, the sliding window
is called the current sliding window.

The sliding window size used is N × T . Since the learning
process of the adaptive sampling algorithm occurs during the
daytime, the energy of each node is sufficient, and as much
data as possible can be collected. In the learning process,
part of the collected data at the current slot is recovered
using matrix completion technology in the sliding window.
Comparing the recovered data with the collected data can
cause a reconstruction error ε, then the actual reconstruction
error ε is compared with the set error threshold εb. When
ε < εb, the amount of some known data in the sliding window
is reduced, and the sliding window is recovered until the
known amount of data has been reduced to the minimum

FIGURE 2. Cross-sampling model schematic diagram.

required, or the actual reconstruction error just meets ε ≥ εb.
Finally, the amount of data is recorded, and the initial amount
of data collected by the adaptive sampling algorithm at night
can be obtained.

(b) Collection process of the adaptive sampling
algorithm: Since the rank differences of two adjacent matri-
ces do not exceed 1 (see Theorem 1), the current initial
collection of slots can be obtained from the previous window.
Obviously, when the ranks of two adjacent matrices are the
same, the amount of data collected by the current slot is
the same as the first column of the previous window. When
the ranks of two adjacent matrices are different, the amount
of data collected by the current slot is the same as the last
column of the previous window [38]. However, the rank
of the matrix in the current sliding window is difficult to
calculate, and in the data collection process, if the amount
of data collected is insufficient, it continues to collect, so the
minimum value of the first column and the last column of
the previous window is used as the initial number of the
current slot. Therefore, data is collected according to the
initial amount, and the current sliding window is recovered by
matrix completion to obtain the current reconstruction error ε.
The current reconstruction error is compared with the error
threshold εb.
When ε ≤ εb, the data collection of the current slot ends.

Otherwise, the amount of collected data is increased, and the
comparison error is recovered again until the reconstruction
error satisfies the requirement.

In Fig. 3(a), the entire process of the adaptive collec-
tion algorithm is shown. In the upper part of Fig. 3(a),
since the collected data matrix has not reached the size of
the sliding window at the beginning of data collection, the
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FIGURE 3. (a) The adaptive collection algorithm schematic diagram. (b) The data collection schematic diagram.

network cannot implement the collection process of the adap-
tive collection algorithm before the data collection matrix
reaches the size of the sliding window. In Fig. 3(a), the size
of the selected sliding window is 10× 7, so the size of the
sliding window does not meet the requirement and cannot be
learned before T7.When the current time slot is T7, the sliding
window is completely filled, so the learning process can
be started. Reducing the amount of data at the current slot
in the sliding window, the matrix completion technology is
used to recover data, and the number is adjusted accord-
ing to its reconstruction error. This process continues until
the reconstruction error meets the requirements. Finally, the
amount of data at the current slot in the window is stored
in the record matrix. Thus, the entire learning process is
completed, and a record matrix that records the minimum

amount of data that needs to be collected in each slot can be
obtained.

The learning process takes place when the available energy
is sufficient, and the data must be collected before learning
begins. When the available energy to each node is reduced,
and it is unable to support the collection of large amounts of
data, the adaptive collection process can begin. The adaptive
collection process is shown in the lower half of Fig. 3(a). The
initial number of adaptive sampled data is obtained from the
first and last columns of the previous window. For example,
when the current time slot is T15, the previous window is T8
to T14, so the first column is T8, the number to be collected
is 4, the last column is T14, and the number to be collected is 5.
Because the data is not retrievable once collected, the initial
number takes the smallest of the two columns, that is, 4,
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and then broadcasts the corresponding node to send data to
the sink, as shown in 3(b). Put the collected data into the
current window for data recovery and continue to compare
the reconstruction error; if the error is too large, increase the
amount of data collected, looping to the reconstruction error
to meet the requirements, and finally store the collection of
this slot in the record matrix for later data collection. This
method ensures that as little data is collected as possible with
less available energy.

(3) Adjusting the node duty cycle. In the process of
adaptive sampling, if all nodes adopt the same duty cycle,
the data sent by the node of the far sink must pass through
the node of the near sink, so the energy consumption of the
nodes near the sink is still much higher than the nodes of
the far sink. In EHWSN, the deployment positions of the
nodes are not far apart, so that the solar radiation received
by the nodes in the same network is considered the same,
so the available energy is the same. Therefore, the energy
consumption of the nodes in the far sink is small, which
results in low energy utilization of the network. Therefore,
to alleviate this phenomenon, different duty cycles can be
used for nodes in different regions, thereby improving the
energy utilization of the far sink node and simultaneously
reducing the maximum delay of network transmission.

C. EMPIRICAL RESEARCH ON ACTUAL DATA
The data studied was from Intel Berkeley Research Lab [50],
and they arranged 54 sensor nodes, each of which transmits
the collected temperature, humidity, light intensity and other
data to the sink at intervals of 30 seconds. Due to some data
loss during the collection of this dataset, we extracted a round
of data energy hours from April 28, 2004, and requested that
these data be collected with at least one in the same slot.
A total of 10 days of data was used. Since the No. 5 sensor and
the No. 8 sensor had almost no data collected, we removed
the data collected by these two sensors. Therefore, the final
collection matrix size was 52× 240, with a total of 52 sensor
nodes, collecting 240 time slot data.

1) LOW-RANK FEATURE
The collected temperature and humidity data in different loca-
tions have strong coherence with different time slots. First,
the singular value decomposition (SVD) method will be used
to determine whether the matrix composed of temperature
and humidity data has a low rank. Matrix XN×T can be
represented as follows:

X = U6V T

where U , V , 6 are the three matrices after the matrix X is
decomposed, U is a matrix of size N × N , V is a matrix of
size T×T , and6 is a diagonal matrix of sizeN×T . The value
on the diagonal of the diagonal matrix is the singular value,
and the singular value decreases as the number increases
(6 = diag(σ1, σ2, · · · σr , 0, · · · , 0)). The rank of the matrix
is r , and the number of nonzero singular values is equal to r .
A matrix with low rank needs to be satisfied r � min(N ,T ).

FIGURE 4. The low-rank feature of the matrix.

The value of the singular value σi can represent the propor-
tion of the ith part in the entire matrix. When the proportion
of the first k singular values is close to the total weight of
the matrix (

∑k
i=1 σ

2
i ≈

∑r
i=1 σ

2
i ), the matrix is considered to

have low rank. Therefore, the proportion of the first k singular
values in the total singular value can be obtained according to
the following formula.

g (k) =

∑k
i=1 σ

2
i∑r

i=1 σ
2
i

(11)

Fig. 4 is the top k singular value ratio graph. The proportion
of the first singular value is already close to 1. This result
indicates that the collected data matrix has a good low-rank
feature. The matrix of the property can also be recovered by
matrix completion technology.

2) STABLE FEATURE
Temperature and humidity data usually change little over
time. The data matrix can be determined to be stable accord-
ing to the difference between the adjacent time slots. The
difference between two consecutive time slots is expressed
by:

gap (i, j) =
∣∣xi,j − xi,j−1∣∣

where i represents the number of sensor nodes, j represents
the time slot, and the smaller the gap (i, j), the better the
stability of the data around the time slot j.

We normalize the difference of consecutive time slots as
follows:

1gap (i, j) =
gap(i, j)

max
1≤i≤,2≤j<T

gap (i, j)
(12)

Fig. 5 is the difference between adjacent slots according
to Eq. (12), the x-axis represents the difference between two
normalized time slots, and the y-axis represents the cumu-
lative distribution function (CDF). It can be seen that more
than 90% of the temperature data1gap (i, j) is less than 0.05,
but the difference between the humidity data is larger when
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FIGURE 5. The stable feature of the matrix.

the difference after normalization is less than 0.8 and only
covers 90% of the humidity data. Therefore, the stability of
the temperature data is better than the stability of the humidity
data.

3) RANK STABLE FEATURE
Theorem 1: Considering A is a matrix of size m× n, B is a

matrix of size m × k . Then, the ranks of the matrices (A,B)
where A and B are connected satisfy the following:{

rank (A,B) ≥ max (rank (A) , rank (B))
rank (A,B) ≤ rank (A)+ rank(B)

Proof: Obviously, after the matrices A and B are
connected, the maximal linearly independent group of
matrices A and B does not change. Considering the rank
of matrix A is less than the rank of matrix B, the maximal
linearly independent group of matrix A has rank (A) vectors,
and that of matrix B is rank (B). Since rank (B) vectors in
matrix B are linearly independent, there are rank (B) vectors
in matrix A are required to represent these vectors. Therefore,
the minimum rank of the matrix [A,B] is

rank([A,B]) ≥ max(rank (A) , rank(B))

Considering the maximum value of the rank after the
connection, the worst case after the connection is that
the vector originally belonging to matrix A is obtained
by the maximally linearly independent group of matrix A,
and the vector originally belonging to matrix B is obtained by
the maximally linearly independent group of matrix B, so the
maximum value of rank is rank (A)+ rank(B).
Theorem 2:Considering that the data collectionmatrix isX

and the size of the sliding window is N × T , the difference
between the ranks of two adjacent sliding windows will not
exceed 1.

|rank(XN×T (t − 1))− rank(XN×T (t))| ≤ 1

where XN×T (t) represents a sliding window in which the last
column of the slot is t .

Proof: It is easy to see that the matrix XN×T (t − 1)
and the matrix XN×T (t) have a common part of size
N × (T − 1), and the matrix formed by this part is recorded
as Xpub. The matrix XN×T (t − 1) has one more column
than the matrix Xpub, which is equivalent to the matrix
Xpub connected to a matrix with only one column to form
XN×T (t − 1), so according to Theorem 1

rank
(
Xpub

)
≤ rank(XN×T (t − 1)) ≤ rank(Xpub + 1) (13)

Similarly, the relationship between the matrix XN×T (t)
and Xpub can also be obtained as follows:

rank
(
Xpub

)
≤ rank(XN×T (t)) ≤ rank(Xpub + 1) (14)

Combined with (13) (14), can obtain

|rank(XN×T (t − 1))− rank(XN×T (t))| ≤ 1

FromTheorem 1 and Theorem 2, the rank difference of two
adjacent sliding windows does not exceed 1, that is, the rank
of adjacent matrices does not change too much, so using the
data from the previous slot is meaningful.

D. THE CALCULATION OF ENERGY CONSUMPTION
In the previous section, the principle of adaptive sampling
was briefly described, and it was also verified that the tem-
perature data is low-rank and stable. In the ACMC scheme,
the available energy in the current slot needs to be obtained
first, and before the available energy is obtained, the two
threshold values of C1 and C2 in Algorithm 1 need to be
obtained.

In a planar network, a node deployed in a far-sink areamust
pass through a node near the sink area; that is, a node in the
near-sink area must forward more data. Therefore, the energy
consumption of the nodes in the near sink area is the fastest,
and the available energy to each node in the same slot is equal;
thus, it is only necessary to consider the amount of forwarding
data of the near-sink node, and the amount of data forwarded
by each node can be obtained by Theorem 3.
Theorem 3: In a planar network, the nodes are randomly

and evenly distributed in a circular area of radius R, and the
communication radius of each node is the same as r . In a
slot, the amount of data forwarded by the node at a distance
of l meters from the sink is:

Dl = λl +
(
1+

r
l

)
λl+r + · · · + (1+

zr
l
)λl+zr (15)

where z is a positive integer such that l + zr is less than R,
and λ represents the amount of data sent by each area of the
network.

Proof: As shown in Fig. 6, considering that the node is
located at area2l,k that is a distance of l meters from the sink,
the area2l,k is an area surrounded by a circle of length d and
two lines of angle θ . When the angle θ is small, the enclosed
area 2l,k can be approximated as a rectangle, and the width
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FIGURE 6. An illustration of node forwarding data quantity.

of the rectangle can be considered as αlθ , and α is a constant.
Therefore, the area of 2l,k is

Sl,k = αlθ · d

Therefore, the number of nodes in this area is as follows:

Nl,k = αlθd · ρ

where ρ is the node density.
Obviously, the nodes in the 2l,k region will forward the

data generated by the 2l+r,k ,2l+2r,k , · · · ,2l+cr,k region
nodes, so that the total amount of data forwarded by the
region 2l,k is

Bl,k = αlθdρλl + α (l + r) θdρλl+r + · · ·

+α(l + zr)θdρλl+zr

Thus, the amount of forwarding data of each node in the
region 2l,k can be obtained as:

Dl =
αlθdρλl+α(l+r)θdρλl+r+ · · · + α(l+zr)θdρλl+zr

αlθdρ

= λl +
(
1+

r
l

)
λl+r + · · · + (1+

zr
l
)λl+zr

Theorem 3 gives the amount of data forwarded by
each node in the network. According to Eqs. (1)(2)(3)(4),
the energy consumption of a packet transmitted by the net-
work can be obtained as:

Eb =
4
3
(1+ β)Nf σ 2 (M − 1) ln

4
(
1− 1

√
M

)
bPe

GdBTon

+PcircuitTon + 2PsynTstart (16)

Therefore, the energy consumption of the network can be
obtained, so the maximum energy consumption C1 of bN/2c
data collected according to the cross-sampling principle in
Algorithm 1 can be obtained. Thus, the available energy of
each slot can be obtained. When the available energy of a
node can collect more than bN/2c data, the available energy
of the bN/2c data collected according to the cross-sampling
principle still has remaining energy. Therefore, the data that

Algorithm 2 The scheme for ACMC

Initialize: Considering the current ith slot, the available
energy for the current slot is Eai, the maximum storage
capacity of the battery is Ecap, and the energy consumption
of transmitting a packet is Eb.
Input: the previous data collection matrix is B =

[EBT1 , EB
T
2 , · · · ,

EBTi−1], and the recording matrix is R =

[ERT1 , ER
T
2 , · · · ,

ERTi−1].
Output: the data collection vector EBi, the record vector ERi,
and the actual consumed energy is Eu.
1: the nodes sorted by the distance from the sink, the

farthest node number is 1.
2: IF Eai > C1
3: The bN/2c data is collected according to the cross-

sampling principle, and the collected result is
assigned to the vector EBi

4: x = C1 // x is the maximum energy
// consumption in network

5: For j = 1 to N
6: IF EBi(j) 6= 0 // The jth node has been collected
7: continue;
8: End if
9: IF ( djdN + 1)Eb + x ≤ Eai // Eq. (15)

10: x = x + ( djdN + 1)Eb
11: EBi(j) = 1 // Representing the data at node j

// can be collected
12: End if
13: End for
14: Broadcasting according to EBi to collect data.
15: ERi = learning(B)
16: Eu = x
17: Else
18: [Eu, EBi, ERi] = adapt(Eai)
19: Broadcasting according to EBi to collect data.
20: End if

has not been collected can continue to be collected. To bal-
ance the energy consumption of the network, the data of
high-level nodes is preferentially collected until the available
energy of the node is exhausted. When the available energy
of the node cannot collect bN/2c data, the node has no
energy supplement at this time, and the remaining energy
is also determined to be insufficient, so the adaptive col-
lection algorithm is used to collect as little data as possible
to reduce the energy consumption. For the detailed process,
see Algorithm 2.

The collected data of the current slot can be obtained
by Algorithm 2, but in Algorithm 2, the adaptive sampling
algorithm is not specifically given. Next, the specific form of
the adaptive sampling algorithm will be given.

In the adaptive sampling algorithm, a sliding window must
be defined; considering that the size of the sliding window
is N × T , this window is recovered by the SVT algorithm,
and the number of data to be collected by the current slot is
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adjusted according to the reconstruction error of the collected
data so that as little data as possible is collected when the
reconstruction error satisfies the requirement, and the recon-
struction error can be calculated by:

σ =

∑
i,j,Wi,j==1 (Xi,j −Wi,j)2∑

i,j,Wi,j==1W
2
i,j

(17)

where matrix X is the matrix after recovery, and matrix W is
the collection matrix.

However, due to the large amount of available energy
during the daytime, a large amount of data is collected, which
causes the slot that just entered the night to collect only a
small amount of data. When the slots in the sliding window
are all at night, it may cause an empty line in the sliding win-
dow, which will seriously affect the accuracy of the recovery.
Therefore, it is necessary to avoid this phenomenon.

Candès and Tao [42] prove that when the collected data
obey the Bernoulli distribution (or uniform distribution),
the probability that the matrix has an empty row or column
is very low and can be ignored, so the minimum number of
collections required is given as Theorem 4.
Theorem 4: In anN×T sliding window, when the probabil-

ity of an empty row is less than that of a Bernoulli distribution,
the minimum amount of data that needs to be collected per
slot is

x ≥
(N + 2)(2α − α2)
2+ 4α − 2α2

(18)

where α is the sampling rate of the Bernoulli distribution, and
N is the number of sensor nodes, that is, the number of matrix
rows.

Proof: Considering event F is an event with an empty
row in the matrix. When the sampling rate is α, the number
of samples that can be obtained is m = αNT . Under the
Bernoulli distribution, the probability that each data in the
matrix is collected is equal, so the probability that each data
is collected is m

NT . Correspondingly, the probability of the data
not being collected is 1− m

NT , so the probability of an empty
row is

PBernoulli (F) = (1−
m
NT

)
T

Under the principle of cross-sampling, each slot will have
maximum dN/2e data collected. Considering that x pack-
ets are collected, the total collection scheme has a total of
Cx
dN/2e species (C represents the combination). When one

of the datum must be collected, the total collection scheme
has Cx−1

dN/2e species, so the probability that this data must be

collected is
Cx−1
dN/2e

Cx
dN/2e

. Therefore, the probability that this data

will not be collected is 1 −
Cx−1
dN/2e

Cx
dN/2e

. In the cross-sampling
principle, the slots that collect these sensors have T/2, so the
probability of occurrence of event F is:

Pc (F) = (1−
Cx−1
dN/2e

Cx
dN/2e

)T/2

FIGURE 7. The minimum amount of data to be collected.

Therefore, it is necessary that the probability of an empty
row is not greater than the Bernoulli distribution; that is,
it needs to be satisfied.

Pc (F) ≤ PBernoulli (F)

And that is:

(1−
Cx−1
dN/2e

Cx
dN/2e

)

T/2

≤ (1−
m
NT

)
T

Reorganizing the above formula can obtain

x ≥
(N + 2)(2NTm− m2)

2(NT )2 + 4NTm− 2m2

Substituting m = αNT into the above formula can obtain:

x ≥
(N + 2)(2α − α2)
2+ 4α − 2α2

From Theorem 4, the minimum amount of data that each
slot needs to collect can be obtained. From (18), it is easy to
see that when the probability of an empty row in the matrix
is lower than that of the Bernoulli distribution, the minimum
amount of data to be collected is only related to the sampling
rate of the Bernoulli distribution and the number of sensor
nodes (number of rows).

Fig. 7 shows the minimum amount of data to be collected
when T = 60. It can be seen that the data to be collected
increases with the increase of the Bernoulli distribution sam-
pling rate, and as the number of nodes increases, the amount
of data that needs to be collected will also increase. However,
as shown in Fig. 8, the increase in the number of nodes does
not affect the sampling rate under the principle of cross-
sampling. The sampling rate of the cross-sampling principle
is much lower than that of the Bernoulli distribution, where
the probability of an empty row in the matrix is not greater
than the Bernoulli distribution.

Therefore, the minimum amount of data that needs to
be collected for adaptive sampling of each slot is obtained.
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FIGURE 8. The sampling rate under the ACMC scheme.

Since the rank difference of the matrices in the adjacent two
sliding windows does not exceed 1, the initial number of
collections can be obtained from the previously collected
slots. In the daytime, the energy is sufficient, there is no need
to adopt the adaptive sampling algorithm, and the number of
samples recordedwill be large. Therefore, this number cannot
be directly used for adaptive sampling, so after the current slot
meets the size of the sliding window, an algorithm should be
used to obtain the data that may be useful in the future. This
process is called the learning process.

The learning process is the same as the idea of adaptive
sampling. The amount of data that needs to be collected is
adjusted based on the reconstruction error within the win-
dow. Obviously, increasing the amount of data collected
will reduce the reconstruction error after recovery [36], and
decreasing the amount of data collected will increase the
reconstruction error after recovery. Therefore, the learning
process of the ACMC scheme is Algorithm 3, and the col-
lection process of the ACMC scheme is Algorithm 4.

Through the above adaptive collection algorithm, a com-
plete data collection matrix is obtained, but the energy
consumption of each node in the network is still unbal-
anced, resulting in considerable wasted energy. Therefore,
the wasted energy is reduced by adjusting the duty cycle of
each layer node. The duty cycle of each layer of the network
is given Theorem 5.
Theorem 5: In planar networks, when the energy utilization

of each node is the largest, the duty cycle of each node is as
follows: {

max(τi)
s.t E(τi) ≤ E(τopt )

(19)

where E(τi) is obtained from Eq. (16), τi is the duty cycle of
node i, and τopt is the duty cycle of the node that is closest to
sink.

Proof: The node with the most energy consumption in
the network must be located in the near sink area. In the adap-
tive collection algorithm, the node with the largest energy

Algorithm 3 The ACMC Scheme for Learning

Initialize: Considering the current ith slot, the sampling rate
is α, the size of the sliding window isN×T ,B is the collected
data matrix, and R is the record matrix.
Input:The data collection matrix B and the reconstruction
error σb.
Output: The record vector ERi.

1: num = (N+2)(2α−α2)
2+4α−2α2

// The minimum amount of data
// to collect

2: WN×T = [EBTi−T+1, EB
T
i−T+2, · · · ,

EBTi ]
3: While c ≥ num
4: X = SVT(WN×T ) //Recovery using the SVT

//algorithm

5: σ =

∑
i,j,Wi,j==1

(Xi,j−Wi,j)2∑
i,j,Wi,j==1

W 2
i,j

//The reconstruction errors

6: IF σ ≤ σb
7: n = C(σb − σ ) // Reduced amount of data
8: c = c− n
9: IF current slot i is odd
10: Randomly assigned n known data in EBi to 0,

and priority node number is even.
11: Else
12: Randomly assigned n known data in EBi to 0,

and priority node number is odd.
13: End if
14: Else
15: break;
16: End if
17: End while
18: For j = 1:N
19: IF EBi (j) 6= 0
20: ERi (j)= 1
21: Else
22: ERi (j)= 0
23: End for

consumption in the network is not exhausted. Therefore,
the nodes in other areas can increase the duty cycle. It is only
necessary to ensure that the adjusted energy consumption
does not exceed the near sink area to ensure that no energy
nodes are present in the network.
By Theorem 5, the duty cycle of each layer of the network

can be obtained so that the total energy consumption of the
network can be obtained, and the total energy utilization of
the network can be obtained. The duty cycle of the node is
increased, and the delay of the network is also reduced. The
delay of each layer node in the network is given in Theorem 6.
Theorem 6: In a planar network with a k layer, the trans-

mission delay of the node of the ith layer to the next layer
is

δ (τi) =
1

1− (1− (1− Pe)L)
τiTBb/L

(20)

Proof: The bit error rate that needs to be guaranteed
for transmission is known, and the reliability of transmitting
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Algorithm 4 The ACMC Scheme for Adapted Collection

Initialize: Considering the current ith slot, the sliding win-
dow is N × T , B is the data collection matrix.
Input: The data collection matrix B and the record matrix R.
Output: The data collection vector EBi, the record vector ERi.
1: IF the current slot is odd
2: Randomly arrange the odd numbers in 1− N and

store in S.
3: Else
4: Randomly arrange the even numbers in 1− N and

store in S.
5: End if
6: num = min(sum

(
ERi−1

)
, sum(ERi−T+1))

// sum is the summation function, and the vector ER is
// summed with the amount of data that needs to be
// collected

7: WN×T= [EBTi−T+1, EB
T
i−T+2, · · · ,

EBTi ].
8: k=1
9: While 1

10: While k ≤ num
11: Inform the S(k) node to transfer data to the sink

and assign the value to EBi(S(k))
12: End while
13: X = SVT(WN×T )

14: σ =

∑
i,j,Wi,j=1

|Xi,j−Wi,j|∑
i,j,Wi,j=1

Wi,j
//The reconstruction error

15: IF σ > σb
16: num = num+ C(σ − σb)
17: Else
18: break;
19: End if
20: End while
21: For j = 1:N
22: IF EBi (j) 6= 0
23: ERi (j) = 1
24: Else
25: ERi (j) = 0
26: End for
27: Calculate the energy consumption Eu according to

Theorem 3 and EBi

a data packet can be obtained as (1− Pe)L , so the packet loss
rate can be obtained is 1− (1− Pe)L .
The time required to transfer a packet is

Tp =
L
bB

where b is the modulation size and B is the channel
bandwidth.

In a transmission cycle, the time of the node runs is τiT ,
so the data packet can be sent, at most, τTbBL times in one
cycle. Therefore, when the node duty cycle is τi, the proba-
bility of unsuccessful transmission is (1− (1− Pe)L)

τiTBb/L ,
and the reliability of the transmission can be obtained; thus,

FIGURE 9. The delay under different duty cycles.

the delay of a single hop can be obtained as

δ (τi) =
1

1− (1− (1− Pe)L)
τiTBb/L

Theorem 6 gives the single-hop delay of the node at dif-
ferent duty cycles. Fig. 9 shows the delay of different duty
cycles. It can be seen that the delay of the node decreases as
the duty cycle increases, which indicates that it is effective to
reduce the delay of node transmission and increase the energy
utilization by increasing the duty cycle.

V. THE EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS
In the simulation experiment, the illumination data of
the National Solar Radiation Data Base at DENVER/
CENTENNIAL, CO in 2010 was used [51], considering that
the solar panel size of each node is 20 cm× 10 cm, the initial
energy of each node is 70 Wh, and the maximum stored
energy of the battery is 110 Wh. The network collects data
every hour and collects 10 days of data, that is, a total
of 240 time slots, and the sliding window size is 52× 60.
In the ACMC scheme, the sampling rate of 0.5 represents that
the probability of a row in the sliding window without any
data is no more than the uniform distribution scheme (UDS)
with a sampling rate of 0.5.

Fig. 10 shows the available energy and the actualmaximum
energy consumed of each node when the sampling rate of
the network is 0.9. The actual maximum energy consumed
does not exceed the available energy, and the network col-
lects all the data directly when the available energy is much
higher than the actual energy consumed; thus, during this
time, there is no change in the actual maximum energy con-
sumption. When the solar radiation begins to decrease, the
energy converted by solar radiation is preferentially used in
Algorithm 1, so the available energy during this time will
gradually decrease. When the energy converted by solar
radiation is no longer able to collect half of the data,
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FIGURE 10. The available energy and actual energy consumed.

FIGURE 11. The remaining energy in the battery under different schemes.

the ACMC scheme will continue to collect all the data if the
residual energy in the battery is still sufficient (the residual
energy in the battery is considered to be sufficient if the
residual energy in the battery is greater than the overflow
threshold), so that the actual energy consumption has reached
the maximum and there is still high available energy after the
solar radiation is reduced.

Fig. 11 shows the residual energy in the battery under
the ACMC scheme and UDS scheme. It can be seen that in
the UDS scheme, when the sampling rate is 0.9, the energy
consumed by the node at night has exceeded the energy
stored in the battery, so the UDS scheme with a sam-
pling rate of 0.9 does not meet the requirements. In the
ACMC scheme, when the sampling rate is 0.9, the residual
energy in the battery is still sufficient, so the ACMC scheme
can collect data. Therefore, the main comparison scheme is
the UDS scheme with a sampling rate of 0.7.

Fig. 12 is the residual energy of the ACMC scheme after
adjusting the overflow threshold. Since the overflow thresh-
old is 0.8, there will be a large amount of energy remain-
ing in the battery. Therefore, the overflow threshold can be

FIGURE 12. The residual energy at different overflow thresholds.

FIGURE 13. The minimum residual energy at different overflow threshold.

appropriately lowered so that the number of slots for col-
lecting all the sensor node data is increased, so the residual
energy in the battery decreases. When the overflow threshold
is at 0.5, the residual energy in the battery decreases compared
with the overflow threshold at 0.8.

Fig. 13 is the minimum residual energy in the battery at
different overflow thresholds; the lower the overflow thresh-
old, the lower the minimum residual energy in the battery.
This is because the lower the overflow threshold, the more
slots that are determined to have sufficient energy. Therefore,
the overflow threshold affects the residual energy in the bat-
tery. To improve energy utilization, in the next experiment,
the overflow threshold is 0.5.

Fig. 14 shows the reconstruction error of theACMC scheme
and the UDS scheme. The sampling rate of the ACMC
scheme is 0.9, and the sampling rate of the UDS scheme
is 0.7. Since the sliding window size is 52× 60, the first
60 time slots cannot calculate the reconstruction error.
Fig. 14 shows that the reconstruction error of the ACMC
scheme is significantly lower than the reconstruction error of
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FIGURE 14. The reconstruction errors.

FIGURE 15. The duty cycle of each layer node.

the UDS scheme. In theUDS scheme, the reconstruction error
has significant growth because the rank of the adjacent matrix
is always changing, and in the ACMC scheme, the amount
of collected data will be adaptively adjusted to avoid this
problem.

Fig. 15 shows the duty cycle of each node in the
ACMC scheme; the higher the layer, the higher the duty cycle
selected by the nodes in this layer. Fig. 16 shows the energy
consumption of each layer of the network. After increasing
the duty cycle of the node, the energy consumption of the
nodes in the second and third layers is almost the same
as the energy consumption of the nodes in the first layer.
However, since the duty cycle can only be increased to 1, the
energy consumption of the nodes in the later layers cannot
be increased to the same level as the nodes of the first layer,
so this scheme can alleviate the problem of imbalance in
energy consumption.

Fig. 17 shows the remaining energy of the nodes in differ-
ent layers. It can be seen that the battery of the first layer has a
minimum energy of approximately 40Wh, and the remaining

FIGURE 16. The energy consumption of each node under the ACMC and
UDS schemes.

FIGURE 17. The remaining energy in the battery under different layers.

energy of the nodes in the other layers is more than that of the
first layer, thus making the entire scheme feasible.

B. PERFORMANCE COMPARISON IN ACMC and UDS
In this section, we will compare the performance differences
between the ACMC scheme and the UDS scheme.

Fig. 18 is the cumulative energy consumption of the node
with the most energy consumption in the network. It can be
seen that the final energy consumption of the ACMC scheme
is higher than the UDS scheme with a sampling rate of 0.7,
and the UDS scheme has already exceeded the available
energy when it starts collecting data. As shown in Fig. 19,
when the UDS scheme starts collecting data, the energy
utilization exceeds 1; that is, its energy consumption exceeds
the available energy. However, the energy utilization rate of
the UDS scheme after long-term operation is not as good as
that of the ACMC scheme. The energy utilization rate of the
UDS scheme is maintained at approximately 0.67, while the
energy utilization rate of the ACMC scheme is maintained
at approximately 0.7. The single node energy utilization of
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FIGURE 18. The cumulative maximum energy consumption.

FIGURE 19. The maximum energy utilization of a single node.

the ACMC scheme is increased by 0.03 compared to the
UDS scheme.

Fig. 20 shows the energy consumption of a single node in
the network. It can be seen that if two schemes require the
same sampling rate, the energy consumption of the ACMC
scheme is much higher than that of the UDS scheme at low
sampling rates, but at high sampling rates, the energy con-
sumption of the ACMC scheme is lower than that of the UDS
scheme. Fig. 21 shows the energy utilization of the network.
The energy utilization rate of the ACMC scheme is relatively
stable and does not change significantly. The energy utiliza-
tion rate of the UDS scheme increases approximately linearly.
The energy utilization of the ACMC scheme is between
0.68 and 0.7, and the energy utilization of the UDS scheme
is between 0.1 and 0.85. In Fig. 20, it can also be seen that
when the required sampling rate is increased from 0.7 to 0.9,
the energy utilization rate of the ACMC scheme is reduced.
This is because the required sampling rate is high, and the
minimum amount of data that needs to be collected increases
so that the energy consumption correspondingly increases,

FIGURE 20. The maximum energy consumption of the network at
different sampling rates.

FIGURE 21. The energy utilization at different sampling rates.

resulting in insufficient energy supplementation during the
daytime. Therefore, the slot exceeding the overflow threshold
will be smaller, so the slot for collecting all the data will be
reduced, which will result in final energy consumption lower
than the required sampling rate of 0.7.

Fig. 22 shows the cumulative total energy consump-
tion of the network. The total energy consumption of the
ACMC scheme is larger than that of the UDS scheme.
As shown in Fig. 23, the energy utilization of the UDS
scheme is also much lower than the energy utilization of the
ACMC scheme. However, because the energy consumption
of the network is still unbalanced, the overall energy utiliza-
tion is also low. The final energy utilization of the ACMC
scheme is maintained at approximately 0.073, and the final
energy utilization of the UDs scheme is maintained at approx-
imately 0.023. The energy utilization of the ACMC scheme
increases by approximately 5%.

Fig. 24 shows the energy consumption of the two schemes
at the same sampling rate. Even at high sampling rates,
the total energy consumption of the UDS scheme is much
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FIGURE 22. The cumulative total energy consumption.

FIGURE 23. The energy utilization of the network.

FIGURE 24. The total energy consumption at different sampling rates.

lower than that of the ACMC scheme. As shown in Fig. 25,
the energy utilization of the ACMC scheme is maintained
at approximately 0.08. Compared with the UDS scheme,

FIGURE 25. The energy utilization of the network at different sampling
rates.

FIGURE 26. The delay of each layer node.

the energy utilization rate of the ACMC scheme is increased
by 4.26%-6.68%.

Fig. 26 is the delay of each layer in the network. Because
theACMC scheme adjusts the duty cycle, themaximumdelay
of the ACMC scheme is better than that of the UDS scheme.
The maximum delay of the ACMC scheme is reduced by
approximately 9.4% compared with the UDS scheme.

VI. CONCLUSION
In this paper, we propose a data collection scheme based on
matrix completion technology to optimize the performance
of EHWSN. Different from the previous schemes, the scheme
proposed in this paper can dynamically change the amount
of data collected at each moment, collecting as little data as
possible when the energy in the EHWSN is not sufficient.
At the same time, it also guarantees the reconstruction error
of recovered data. When the energy of the network is suf-
ficient, more data is collected, and possibly all the data is
collected. Therefore, this scheme can effectively improve the
energy utilization of nodes. However, due to a large amount
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of residual energy in the nodes far from the sink, reducing
the amount of data collected cannot effectively improve the
energy utilization of the network. Therefore, in the ACMC
scheme, different duty cycles are also set according to the hop
count of the node, which reduces the transmission delay and
improves the energy utilization of the nodes away from the
sink, thereby improving the energy utilization of the entire
network. Therefore, the ACMC scheme is significant for
research in the field of energy harvesting networks.
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