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ABSTRACT Process variables can be separated into quality strongly related variables (QSRVs) and quality
weakly related variables (QWRVs) based on the difference of correlation between process variables and
quality. When the fault occurs on different types of process variables, the degree of impact on quality is
different. The fault which occurs on QWRV is defined as the quality weakly related fault. This paper presents
a weighted dual-step feature extraction (WDSFE) method for quality weakly related fault detection. In the
first step, a QSRV block and a QWRV block are separated from original process variables. In the second step,
the two variable blocks are further decomposed into a quality-direct-related subspace (QDRS), a quality-
potential-related subspace (QPRS), and two quality unrelated subspaces (QUSs). Subsequently, the weighted
T 2 statistic is established based on the statistics in both QDRS and QPRS to detect the quality-related fault.
The BIC statistic is established based on the statistics in two QUSs to detect the quality unrelated fault.
Finally, a numerical example and a simulated industrial process are used to illustrate the effectiveness of
WDSFE.

INDEX TERMS Process monitoring, fault detection, feature extraction, quality, statistical analysis.

I. INTRODUCTION
Some process variables are strongly related to quality vari-
ables and are defined as quality strongly related vari-
ables (QSRVs). The remaining process variables which are
weakly related to quality variables are defined as quality
weakly related variables (QWRVs). When the fault occurs
on QSRV, the effect on quality is significant. However, when
the fault occurs on QWRV, the impact on quality may be
inconspicuous. Such fault is defined as quality weakly related
fault (QWRF). If the amplitude of the QWRF is small and the
impact on quality is acceptable, then the QWRF is regarded
as quality unrelated fault. On the contrary, if the amplitude
of the QWRF is large enough to cause significant anomalies
of quality, then the QWRF is considered as quality related
fault. Therefore, QWRF detection is a challenge due to the
insensitivity of QWRF and the diversity of results.

In order to monitor the abnormality of the process state
in time, the process monitoring method based on multivari-
ate statistical analysis has been extensively studied [1]–[6].
Rapidly, research on process monitoring methods has made
remarkable achievements [7]–[10].With further research,

some scholars have found that not all faults can affect product
quality [11]–[15]. If only the quality abnormality need to
be monitored, some process monitoring methods like prin-
cipal component analysis (PCA) would raise massive false
alarms, which leads to unnecessary downtime and mainte-
nance [10], [16], [17]. Therefore, quality monitoring method
has become one of the research hotspots [18]–[23].

Given that product quality can not be measured online, it is
necessary to establish models between process variables and
quality [24]–[26]. Some recent methods merely focus on sev-
eral postprocessing techniques under supervision [27]–[29].
Typically, partial least squares (PLS) is considered as an
oblique projection technique. Li et al. [30] first proposed
a geometric interpretation of PLS. The contribution of Li
provides a theoretical basis for some PLS-based methods.
Zhou et al. [31] argued that the changes in the score matrix
and the residual matrix of the standard PLS could make
influence on the output. Hence, Zhou proposed the total PLS
(TPLS) to furtherly decompose the score matrix and the
residual matrix of the standard PLS. Inspired by TPLS, Qin
and Zheng [32] gave a concurrent method called concurrent
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PLS (CPLS) for the decomposition of process variable matrix
and quality matrix. Based on PLS and singular value decom-
position (SVD), Yin et al. [33] established a quality monitor-
ing method. In addition, Wang et al. [34] and Peng et al. [35]
proposed principal component regression (PCR)-based qual-
ity monitoring methods in the past few years. These methods
mainly focused on the subsequent decomposition process, but
ignored the effect of different process variables on the quality.
It may cause the information of the quality weakly related
variables to be submerged by the quality strongly related vari-
ables. Some other methods only consider the classification of
process variables, and then the classified process variables
are monitored based on an unsupervised process monitor-
ing methods. A typical example is the mutual information-
kernel principal component analysis (MI-KPCA) proposed
by Huang and Yan [36]. However, some quality weakly
related process variables may be classified into the quality
unrelated variable block. In this case, when the fault occurs
in these variables, MI-KPCA may obtain the wrong moni-
toring results. Thus, an effective quality monitoring method
should consider both the classification of process variables
and orthogonal decomposition under supervision.

In addition, compared to the linear process, the study
of nonlinear quality related process monitoring methods
is still limited. By extending TPLS to nonlinear pro-
cesses, Peng et al. [37] first provided total KPLS (TKPLS)
for nonlinear quality monitoring. Shortly afterwards,
Zhang et al. [38] extended CPLS to nonlinear situations and
proposed KCPLS for nonlinear quality monitoring. Recently,
Jia and Zhang [39] proposed a new nonlinear monitoring
method based onKPLS and SVD. Subsequently, kernel direct
decomposition (KDD) and kernel least square (KLS)were put
forward by Wang et al. [40], [41].
However, in multi-subspace process monitoring, excessive

statistics can lead to difficulties in the interpretation of mon-
itoring results. An easy way is to integrate the statistics.
The commonly adopted methods for integration are: direct
summation (DS) and Bayesian integration (BI). Different
quality related subspaces have different degrees of influence
on quality, and this difference should be expressed in order to
obtain better monitoring performance. However, direct sum-
mation cannot reflect the importance of different subspaces.
Although the Bayesian integration is based on the sum of
probability weights, it cannot reflect the degree of corre-
lation between different subspaces and quality. In order to
achieve the integration of quality related subspace statistics,
the weight T 2 statistics based on the degree of correlation
with quality are established. Quality unrelated subspace do
not need to reflect the impact on quality, thus Bayesian inte-
gration can achieve satisfactory results in the quality unre-
lated subspaces.

Thus, this paper proposes a weighted dual-step feature
extraction (WDSFE) method for quality weakly related fault
detection. The dual-step feature extraction can explain the
effect of the weakly related variables on the quality well.
In the first step, the process variables are divided into two

variable blocks based on maximum information coefficient
(MIC), which can avoid the information on the quality weakly
related variables being submerged. This is because the quality
weakly related variables have a lower impact on quality than
quality strongly related variables. In the second step, a super-
vised orthogonal decomposition method based on KLS is
adopted to furtherly extract the quality feature in the two
variable blocks. If and only if the supervised orthogonal
decomposition method is employed in the second step, two
mutually orthogonal subspaces can be obtained. As a result,
one subspace is related to quality and the other subspace
is orthogonal to quality. The dual-step feature extraction
method improves the monitoring sensitivity of the quality
weakly related variables. However, sometimes the amplitude
of the fault occurring on the quality weakly related variables
is small, and it is difficult to cause a significant anomaly of
the quality. In this case, the fault is quality unrelated, but the
false alarm rate will increase as the monitoring sensitivity
of the quality weakly related variable is raised. Therefore,
the correlation between the subspaces and quality should be
considered for the statistic integration of quality related sub-
spaces. Moreover, because of the increase in the numbers of
subspaces, it may have trouble in obtaining direct monitoring
results. Thus, a weight T 2 statistic is proposed for the statistic
integration of quality related subspaces. Given that there is no
need to consider the correlation between the quality unrelated
subspaces and quality, the BIC statistic based on Bayesian
integration is applied to integrate the statistics of two quality
unrelated subspaces. Compared with the methods that only
consider the classification of process variables or the super-
vised postprocessing techniques, the advantages of the pro-
posed method are shown by diagrammatic sketch in section
III. Meanwhile, the merits of the weight T 2 statistic based
on the quality correlation are verified in section IV. Finally,
the proposed nonlinear quality monitoring method can obtain
better monitoring performance in a numerical example and
the TE process.

The contributions of this paper are listed as follows:
1. A weighted dual-step feature extraction method is pro-

posed for quality weakly related fault detection.
2. The dual-step feature extraction method improves the

monitoring sensitivity of the quality weakly related feature.
3. The weighted T 2 statistic is proposed to improve the

accuracy of quality weakly related fault detection.

II. PRELIMINARIES
Quality monitoring based on KLS is briefly introduced in this
section. The process variables matrix and quality variables
matrix is recorded as follows:

X = [x1, x2, . . . , xm] ∈ Rn×m (1)

Y = [y1, y2, . . . , yl] ∈ Rn×l (2)

where n is the number of samples,m is the number of process
variables and l is the number of quality variables.
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Given a nonlinear projection function, the samples ofX are
projected into a high-dimensional feature space.

xk ∈ RA→ 8 (xk) ∈ R� (3)

Then X is turned into feature matrix 8.

8 = [8 (x1) ,8 (x2) , · · · ,8 (xn)]T ∈ Rn×� (4)

Establishing a least square model, it induces:

Y = 8M + E (5)

whereM is regression coefficient matrix. Then it holds that

1
n
YT8 =

1
n
MT8T8+

1
n
ET8 ≈

1
n
MT8T8 (6)

ThereafterM can be calculated as follows.

M =
(
8T8

)†
8TY (7)

where
(
8T8

)†
is the pseudoinverse of

(
8T8

)
.

The value cannot be calculated directly due to the dimen-
sion � of 8 is arbitrarily large or even infinite. The detailed
calculation process is introduced in [40]. Thereafter 8 can
be divided into a quality related subspace 8̂ and a quality
unrelated subspace 8̃. It can be expressed as:

Y = 8M =
(
8̂+ 8̃

)
M = ˆ8M (8)

The above aim can be implemented by the following steps.
Eigenvalue decomposition ofMMT is given as:

MMT
=
[
V1 V2

] [3 0
0 0

] [
VT

1
V2

]
= V13VT

1 (9)

whereV1 = [v1, v2, . . . , vpc] , V2 = [vpc+1, vpc+2, . . . , vn] ,
3 = diag

(
λ1, λ2, . . . , λpc

)
, and pc is the number of nonzero

eigenvalues. Projecting 8 onto V1VT
1 and V2VT

2 ,

8̂ = 8V1VT
1 (10)

8̃ = 8V2VT
2 (11)

According to the nature of the eigenvalue decomposition,
it holds that

V1VT
1 + V2VT

2 = I (12)

VT
1V2 = 0 (13)

VT
2M = 0 (14)

It is obvious that

8̂+ 8̃ = 8
(
V1VT

1 + V2VT
2

)
= 8 (15)

8̂8̃
T
= 8V1VT

1V2VT
2 8T

= 0 (16)

Y =
(
8̂+ ˜s8

)
M = 8

(
V1VT

1 + V2VT
2

)
M = ˆ8M

(17)

Obviously, 8̂ is orthogonal to 8̃ and Y is only related
to 8̂.

FIGURE 1. The schematic diagram of monitoring result with supervised
orthogonal decomposition methods.

III. WEIGHTED DUAL-STEP FEATURE EXTRACTION
A. THE CHALLENGE OF QUALITY WEAKLY RELATED FAULT
Process variables are separated into quality strongly related
variables, quality weakly related variables and quality unre-
lated variables based on correlation with quality, where qual-
ity weakly related variables have the low impact on the
quality. When the amplitude of the fault occurring on qual-
ity weakly related variables is very large, the quality can
fluctuate significantly. Some latest methods merely focus on
postprocessing techniques on all process variables. It may
result in the information in quality weakly related variables
being submerged by quality strongly related variables, as the
quality weakly related variables have a lower impact on qual-
ity than the quality strongly related variables. The geometric
interpretation of monitoring result with supervised orthogo-
nal decomposition methods for quality weakly fault detection
can be shown in Fig. 1.

In Fig.1,
−→
X represents the process variables, and

−→
Y repre-

sents the quality variables.
−→
X are decomposed into two parts

by a supervised orthogonal decomposition method like KLS.
One part is in the same direction as

−→
Y , and the other is orthog-

onal to
−→
Y . The fault in Fig. 1 occurs on quality weakly related

variables (the direction of
−→
f is the same as

−→
Xw in Fig. 2). The

effect of the fault on the quality can be reflected as the pro-
jection on the quality direction, that is, |

−→
f | cosα. The quality

related part of the process variable is the projection of
−→
X on

−→
Y , that is, |

−→
X | cos θ . Due to the influence of the fault, the

change rate of the quality related part is |
−→
f | cosα/|

−→
X | cos θ .

As shown in Fig. 1, |
−→
f | cosα/|

−→
X | cos θ is a small value.

Obviously, it gives rise to the information in quality weakly
related variables being submerged by quality strongly related
variables, which presents a challenge for quality monitoring
based on multivariate statistical analysis. Therefore, it is
necessary to separate quality strongly and weakly related
variables.

Furthermore, some latest methods only consider the clas-
sification of process variables. Thereafter an unsupervised
monitoring method is performed on the classified process
variables, such as KPCA. Since the quality weakly related
variables may be misclassified, which can cause that the

7862 VOLUME 7, 2019



B. Zhao et al.: Quality Weakly Related Fault Detection Based on WDSFE

FIGURE 2. The geometric interpretation of monitoring result with
variables classification methods.

quality weakly related variables are simply considered to
have no effect on quality. The geometric interpretation of
monitoring result with variables classification methods for
quality weakly fault detection is shown in Fig. 2.

In Fig. 2,
−→
X represents the process variables, and

−→
Y

represents the quality variables.
−→
X is decomposed into

−→
Xs

and
−→
Xw. Based on variables classification methods,

−→
Xs is

simply considered as a quality related variable block, and
−→
Xw is considered as a quality unrelated variable block. The
direction and the amplitude of the fault in Fig. 2 are the
same as the fault in Fig.1 (the direction of

−→
f is the same

as
−→
Xw in Fig. 2). From Fig. 2, it can be obtained that the

fault
−→
f can only be reflected on the variable block

−→
Xw.

Thus, it can conclude that the fault is a quality unrelated fault.
However, as shown in Fig. 2, the effect of the fault on quality
is
∣∣∣−→f ∣∣∣ cosα. Obviously, it is a wrong conclusion. There-

fore, it is necessary to use a supervised process monitoring
method to achieve further quality related feature extraction.
The performance of some supervised monitoring methods is
significantly affected by the number of primary components,
such as KPLS and TKPLS. In addition, subspaces based
on KPLS are not orthogonal to each other which inevitably
lead to incomplete information decomposition. Inspired by
this, a KLS-based quality related feature extraction method
is provided for modeling.

B. DUAL-STEP FEATURE EXTRACTION AND MODELING
In order to separate quality strongly and weakly related
variables, a maximum information coefficient (MIC) -based
quality related feature extraction method is provided in the
first step. The MIC is briefly introduced as follows.

The MIC is an indicator of the correlation between two-
dimensional variables. On the basis of mutual information,
MIC is optimized and corrected by unequal interval. TheMIC
can effectively reflect any functional relationship (including
linear or nonlinear relationship) between variables [42].

The process variable x and quality y constitute a two-
dimensional variable data set D. Thereafter, The x value in
D is divided into x units, and the y values in D is divided into
y units, each of which is allowed to be empty. As a result, the

data set D is separated into the grid of x × y. Given a grille
G, let D |G be the distribution of the unit of Gin the set D.
For a fixed set, different grille G forms a distribution D |G of
different points. The MIC can be defined as [43]:

I∗ (D, x, y) = max I (D |G )

= max
(∫

p (x, y) log2
p(x,y)
p(x)p(y)dxdy

)
(18)

where D ∈ R2 is a finite set, (x, y) is a set of elements in
the setD. I (D |G ) represents the mutual information ofD |G ,
p (x, y) is the joint probability density distribution function of
x and y. Thereafter, M (D) is given as:

M (D)x,y =
I∗ (D, x, y)
logmin {x, y}

(19)

M (D) can be implemented in all x×y grilles with the high-
est normalized mutual information, andMIC is the maximum
in the matrix. The MIC of D is defined as:

MIC (D) = max
xy<B(n)

{
M (D)x,y

}
(20)

where n is the number of samples.
Based on the normalized process variables X and quality

variables Y , the MIC matrix can be built as

MIC=


MIC11 MIC12 · · · MIC1m
MIC21 MIC22 · · · MIC2m
...

...
. . .

...

MICl1 MICl2 · · · MIClm

∈ Rl×m (21)

where MICij is the MIC between xi and yj. The correlation
between each process variables xi and quality is calculated as

ci = MIC1i +MIC2i + · · · +MICli (22)

A classification criterion is given in Eq. (23) for each
process variable

No.variable =

{
strongly related variable ci ≥ Th
weakly related variable ci < Th

(23)

If ci is greater than the threshold Th, the ith variable xi is
assigned to the strongly related variable block. The thresh-
old Th is a preset constant, which can be set by the MIC
gradient descent rate. After all ci (i ∈ 1, 2, · · · ,m)is sorted
in descending order. Referring to the PCs selection method
of PCA, the threshold calculation method is given. The MIC
gradient descent rate is defined as follows:

rate =
ci − ci+1

ci
(24)

where ci represents the MIC of the ith sorted process variable
and quality. The largest MIC gradient descent rate means that
ci and ci+1 have a cliff-like fall. Therefore,MICi can be used
as a segmentation threshold (Th) for quality strongly related
variables and quality weakly related variables.

Process variables are divided into two blocks: the quality
strongly related variable block X s ∈ Rn×A and the quality
weakly related variable block Xw ∈ Rn×(m−A). Thereafter,
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FIGURE 3. The geometric interpretation of the advantages of DSFE.

two KLS models are separately set up on X s and Xw in
the second step. The strongly related variable block X s is
decomposed into the quality-direct-related subspace (QDRS)
8̂s and the quality unrelated subspace (QUS) 8̃s . Sim-
ilarly, the quality weakly related variables variable block
Xw is decomposed into the quality-potential-related subspace
(QPRS) 8̂w and the quality unrelated subspace (QUS) 8̃w .

C. THE GEOMETRIC INTERPRETATION OF THE
ADVANTAGES OF DUAL-STEP FEATURE EXTRACTION
In this paper, the dual-step feature extraction (DSFE) method
is proposed for quality weakly related fault detection. One
obvious advantage of DSFE is that it can improve the moni-
toring sensitivity of qualityweakly related variables. The geo-
metric interpretation of the advantages of DSFE is analyzed
in this section.

In Fig. 3(a),
−→
X represents the process variables, and

−→
Y

represents the quality variables.
−→
X is decomposed into

−→
Xs

and
−→
Xw based on MIC, where

−→
Xs is considered as a quality

strongly related variable block, and
−→
Xw is considered as a

quality weakly related variable block. Then, the orthogonal
decomposition under supervision is performed on two vari-
able blocks as shown in Fig. 3(b). In Fig. 3(c), the same
fault as Fig.1 and Fig.2 occurs on quality weakly related
variables. As shown in Fig.3(c), the variable block

−→
Xs can

not be affected by the fault. In other words, 8̂s and 8̃s are
in the normal state. Thereafter, the impact of the fault on the
variable block

−→
Xw is analyzed in detail in Fig.3(d). Because

−→
f occurs on

−→
Xw, the projection change of

−→
Xw on

−→
Y is the

effect of the fault
−→
f on

−→
Y . Therefore, with the influence

of
−→
f , the change rate of quality related part in

−→
Xw can be

calculated as

rate =

∣∣∣∣−→f̂ ∣∣∣∣/∣∣∣8̂w

∣∣∣ = ∣∣∣−→f ∣∣∣ cosα/∣∣∣−→Xw∣∣∣ cosϕ (25)

Obviously,
∣∣∣−→f ∣∣∣ cosα/∣∣∣−→Xw∣∣∣ cosϕ >

∣∣∣−→f ∣∣∣ cosα/∣∣∣−→X ∣∣∣ cos θ
(Fig.1). Compared with the orthogonal decomposition
method under supervision, DSFE method improves the sen-
sitivity of quality weakly related fault detection. Meanwhile,
owning to the twice decomposition, the method proposed
does not result in the wrong monitoring because of the mis-
classification of the quality weakly related variables.

D. STATISTICS INTEGRATION
Four subspaces are obtained in section III(B). If the statis-
tics are established in the four subspaces directly, it may
be hard to directly get explicit monitoring results. Hence,
a strategy is given to reduce the monitoring statistics with
the integration of similar subspace statistics. The amplitude
of some faults occurring on quality weakly related variables
is small, which may not cause the anomaly of quality. In this
case, the DSFE method will raise the alarm by error. If direct
summation (DS) or Bayesian integration (BI) is adopted, this
problem can not be solved. In this paper, a weighted T 2

statistic based on quality correlation is proposed to integrate
the statistics of quality related subspace.
The traditional T 2 statistics in the subspaces corresponding

to 8̂s and 8̂w are calculated as follows:

T 2
rs = tTsk6

−1

s tsk (26)

T 2
rw = tTwk6

−1
w twk (27)

Let

T s =


tTs1
tTs2
...

tTsn

 = [T s1,T s2, · · · ,T sl] (28)

Tw =


tTw1
tTw2
...

tTwn

 = [Tw1,Tw2, · · · ,Twl] (29)

The correlation matrix can be built as

MICs =


MICs11 MICs12 · · · MICs1l
MICs21 MICs22 · · · MICs2l
...

...
. . .

...

MICsl1 MICsl2 · · · MICsll

 ∈ Rl×l (30)

MICw =


MICw11 MICw12 · · · MICw1l
MICw21 MICw22 · · · MICw2l

...
...

. . .
...

MICwl1 MICwl2 · · · MICwll

 ∈ Rl×l (31)
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whereMICsij is the correlation betweenT sj and yi, andMICwij
is the correlation between Twj and yi. The weight matrix can
be calculated as

W s = [ws1,ws2, · · · ,wsl]

=


MICs11 +MICs21 + · · · +MICsl1
MICs12 +MICs22 + · · · +MICsl2

...

MICs1l +MICs2l + · · · +MICsll

 (32)

Ww = [ww1,ww2, · · · ,wwl]

=


MICw11 +MICw21 + · · · +MICwl1
MICw12 +MICw22 + · · · +MICwl2

...

MICw1l +MICw2l + · · · +MICwll

 (33)

Based on the new matrix T r = [T s,Tw] =[
tTr1, t

T
r2, · · · t

T
rn
]T and the weight matrix W r = [W s,Ww],

the weighted T 2 (WT 2) statistic can be established as:

WT 2
= tTrkdiag (W r )

(
TTr T r
n− 1

)−1
diag (W r ) trk (34)

The threshold ThWT 2 of WT 2 can be estimated by the
kernel density estimation (KDE) [44]. To avoid the numerical
problem in the inverse process, Qunrs and Qunrw statistics are
established in the two quality unrelated subspace 8̃s and 8̃w.

A comprehensive monitoring index BIC is established
based on the Bayesian inference as

BIC =
p (Qunrs|F) p (F |Qunrs)
p (Qunrs|F)+ p(Qunrw|F)

+
p(Qunrw|F)p(F |Qunrw)
p[Qunrs|F]+ p(Qunrw|F)

(35)

where

p (Qunrs) = p (Qunrs|N ) p(N )+ p (Qunrs|F) p(F) (36)

p (Qunrw) = p (Qunrw|N ) p(N )+ p (Qunrw|F) p(F) (37)

p (Qunrs|N ) = exp
[
−

Qunrs
(Qunrs)lim

]
(38)

p (Qunrs|F) = exp
[
−
(Qunrs)lim
Qunrs

]
(39)

p (Qunrw|N ) = exp
[
−

Qunrw
(Qunrw)lim

]
(40)

p (Qunrw|F) = exp
[
−
(Qunrw)lim
Qunrw

]
(41)

where N and F represent normal and fault, respectively. In
addition, p(N ) is equal to the confidence level α and p(F) is
equal to 1− α.

E. MONITORING LOGIC
The monitoring logics are listed as follows:{

WT 2 < ThWT 2

BIC < 1− α
⇒ faultfree (42)

FIGURE 4. The flowchart of fault detection.

{
WT 2 < ThWT 2

BIC > 1− α
⇒ quality− unrelated fault (43)

WT 2 > ThWT 2 ⇒ quality− related fault (44)

The flowchart of fault detection can be shown in Fig. 4.

IV. EXAMPLES AND APPLICATIONS
A. NUMERICAL EXAMPLE
A numerical example is introduced as follows:

x1, x4, x7, x8 ∼ U (1, 2)
x2 = x21 + 3x1 + 4
x3 = x22 + 3x2 + 4
x5 = x24 + 3x4 + 4
x6 = x25 + 3x5 + 4
y = 10x22 + 10x2x3 + 10x1 + x25 + x5x6 + x4

(45)

TheMIC between xi and y is shown in Fig. 5. Obviously, x1,
x2 and x3 should be divided into the quality strongly related
variable block, and x4, x5, x6, x7 and x8 should be divided
into the quality weakly related variable block. 1000 normal
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FIGURE 5. The MIC between xi and y .

TABLE 1. The fault scenarios.

samples are generated as the training dataset, and 500 nor-
mal samples and 500 fault samples are generated as the
testing dataset. The fault scenarios are shown in Table 1.
The monitoring results of mutual information-kernel prin-
cipal component analysis (MI-KPCA), kernel partial least
squares (KPLS), kernel Least Squares (KLS), Dual-Step fea-
ture extraction (DSFE), direct summation DSFE (DSDSFE),
Bayesian integration DSFE (BIDSFE) and weighted DSFE
(WDSFE) can be shown in Table 2.

As can be seen in Table 1, fault 1 occurs on the vari-
able x1, and it is a quality related fault. It is worth not-
ing that x1 is strongly related to y, which causes the
fault have a significant effect on y. From the monitoring
result in Table 2, MI-KPCA, KPLS, KLS, DSFE, DSDSFE,
BIDSFE and WDSFE can obtain the satisfactory monitor-
ing performance for fault 1. However, both MI-KPCA and
DSFE have two statistics for quality related fault detec-
tion, which makes it difficult to obtain direct monitoring
results.

For fault 2, it occurs on the variable x7. Since x7 is unrelated
to y, fault 2 is a quality unrelated fault. In other words, fault
2 does not affect the quality. The seven methods can keep
low fault detection rates in the quality related subspaces.
In the quality unrelated subspaces, all methods can keep
alarm all the time. Therefore, all of them can be concluded

FIGURE 6. The effects of fault 3 and fault 4 on y .

that fault 2 is a quality unrelated fault. However, MI-KPCA
and DSFE cannot be directly concluded as the other four
methods.

From Table 1, both fault 3 and fault 4 occur on the variable
x4. Different from fault 1, x4 is weakly related to y. It means
that when the magnitude of the fault is large, it is a quality
related fault. However, when the magnitude of the fault is
small, the effect of the fault on the quality can be negligible.
In other words, fault 3 is a quality related fault and fault 4 is a
quality unrelated fault. In order to further explain, the effects
of fault 3 and fault 4 on y are shown in Fig. 6.
Fig. 7 shows the monitoring results of the fault 3 with

the six methods. Fig. 7 (a) is the monitoring result of MI-
KPCA, which is a method that only takes the classification
of process variables into account. Since the x4 is classified
into a quality unrelated variable block by error, the fault
3 can only be reflected in the quality unrelated subspace.
As a result of this, MI-KPCA got the wrong result. Fig. 7(b)
and Fig. 7(c) are the monitoring result of KPLS and KLS,
which only focuses on postprocessing technology. Because
the quality weakly related information is covered by quality
strongly related information, the fault detection rates of KPLS
and KLS in the quality related subspace are not very high.
Hence, it is difficult to obtain satisfactory results. Fig. 7(d)
presents the monitoring result of DSFE, which considers
both the classification of process variables and the supervised
orthogonal decomposition. It not only overcomes difficulties
on classification of the quality weakly related variables, but
also enhances the sensitivity of the quality weakly related
information. Compared with MI-KPCA and KLS, the mon-
itoring results of DSFE are the most satisfactory. However,
DSFE has four subspaces, and it is not easy to get direct
results. Fig. 7(e) shows the monitoring results of the three
statistics integrationmethod. It can be seen that when the fault
occurred in the quality weakly related variables causes signif-
icant quality anomalies, the threemethods can get satisfactory
monitoring results.

TABLE 2. The fault detection rates of MI-KPCA, KLS, DSFE, DSDSFE, BIDSFE and DWDEFE.
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TABLE 3. Notes for statistic names.

Fig. 8 shows the monitoring results of fault 4 with the
six methods. In Fig. 8(a), it is fluky that x4 is classified
into an unrelated variable block, so that MI-KPCA gets
the correct results. The false alarm rates in the quality
related subspace of the KPLS in Fig. 8(b) and the KLS
in Fig. 8(c) are not very high, thus obtain the available
monitoring results. Nevertheless, for DSFE in Fig. 8(d),
it improves the monitoring sensitivity of the quality weakly
related variables. When the amplitude of the fault on the
quality weakly related variable has no effect on the quality,
DSFE still has a high fault detection rate in the quality
related subspace. This may cause unnecessary downtime and
maintenance. The monitoring results of the three statistics
integration methods are displayed in Fig. 8(e). DSDSFE and
BIDSFE cannot change the high false alarm rates in the
quality related subspace. On the contrary, WDSFE takes the
correlation between each latent variable in the quality related
subspace and y into account. Accordingly, the embodiment
of the fault in the statistic can be eliminated by the weight.
Obviously, WDSFE can get the most satisfactory monitoring
results.

In a word, the advantage of WDSFE is to explain the fault
on the quality weakly related variables. It not only overcomes
the difficulties on classification of the quality weakly related

FIGURE 7. The monitoring results of MI-KPCA, KLS, DSFE, DSDSFE, BIDSFE
and WDSFE for fault 3. (a) MI -KPCA. (b) KPLS. (c) KLS. (d) DSFE.
(e) DSDSFE, BIDSFE and WDSFE.

variable, but also solves the problem that the information of
the quality weakly related variable is easily concealed by the
quality strongly related variable. Then theWT 2 statistics can
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FIGURE 8. The monitoring results of MI-KPCA, KLS, DSFE, DSDSFE, BIDSFE
and WDSFE for fault 4. (a) MI –KPCA. (b) KPLS. (c) KLS. (d) DSFE.
(e) DSDSFE, BIDSFE and WDSFE.

further improve the accuracy of monitoring results for quality
weakly related fault. Finally, the integration of two statistics
has settled the deficiency of several statistics.

B. INDUSTRIAL EXAMPLE
Penicillin’s fermentation process has serious nonlineari-
ties and uncertainties. In this simulation, 10 readily avail-
able measurement variables are used as process variables,
and biomass concentration is used as the quality variable.
Thereafter, three normal batches are considered in the offline
modeling. From the above numerical examples and a large
number of scholars’ researches, there is no doubt that most of
the methods can achieve satisfactory monitoring performance
for the faults occurring on quality strongly related variables
and quality unrelated variables. Therefore, the quality weakly
related faults are analyzed in detail in this section.

1) FAULT SCENARIO 1
The fault occurs on the aeration rate and the fault amplitude
is −15%. The influence degree for biomass concentration of
the fault can be described as

rate =
yf − yn
yn

= 0.255% (46)

In this simulation, the influence degree below 0.5% is
considered normal. Obviously, the fluctuation of biomass
concentration is acceptable. Thus the fault is a quality unre-
lated fault. Themonitoring results ofMI-KPCA, KPLS, KLS,
DSFE, DSDSFE, BIDSFE andWDSFE for the fault scenario
are shown in Fig. 9.

It can be seen from the monitoring results that MI-KPCA,
KPLS,KLS andWDSFE can get correct results. However, the
performances of the other four methods are unsatisfactory.
It is noteworthy that MI-KPCA does not always obtain a
satisfyingmonitoring result for the fault on the quality weakly
related variables. It is because the aeration rate is properly
classified into the quality unrelated variable block. Analo-
gously, since the information on the quality weakly related
variables is covered by quality strongly related variables,
KPLS and KLS lose the ability to detect the quality weakly
related fault. Therefore, they get the correct monitoring
results. Given that DSFE has improved the monitoring sensi-
tivity of the quality weakly related fault, the quality-potential-
related subspace of the DSFE continues to be alerting when
the fault occurs. It is an undesirable situation. For the three
statistics integration methods, DSDSFE and BIDSFE cannot
distinguish the effect of the quality-directly-related subspace
and quality-potential-related subspace on quality. As a result,
they will still give the alarm in the quality related subspace.
WDSFE takes the correlation between the latent variable and
the quality as the weight. When the fault amplitude is small,
the influence on the statistics can be eliminated by a smaller
weight.

2) FAULT SCENARIO 2
The fault occurs on the aeration rate and the fault amplitude is
−30%.As the amplitude of the fault becomes larger, the influ-
ence of the fault on the biomass concentration is stronger. The
influence degree for biomass concentration of the fault can be
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FIGURE 9. The monitoring results of MI-KPCA, KLS, DSFE, DSDSFE, BIDSFE
and WDSFE. (a)MI –KPCA. (b) KPLS. (c) KLS. (d) DSFE. (e) DSDSFE, BIDSFE
and WDSFE.

described as

rate =
yf − yn
yn

= 0.81% (47)

FIGURE 10. The monitoring results of MI-KPCA, KLS, DSFE, DSDSFE,
BIDSFE and WDSFE. (a) MI –KPCA. (b) KPLS. (c) KLS. (d) DSFE. (e) DSDSFE,
BIDSFE and WDSFE.

Other than the fault scenario 1, the fault is a quality related
fault. The monitoring results of MI-KPCA, KPLS, KLS,
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DSFE, DSDSFE, BIDSFE andWDSFE for the fault scenario
are shown in Fig. 10.

In Fig. 10, DSFE, DSDSFE, BIDSFE and WDSFE can
all get satisfactory monitoring results. For MI-KPCA, the
aeration rate is partitioned into the quality unrelated vari-
able block. Thus, MI-KPCA considers that the changes in
the aeration rate have no effect on the quality. Although
the amplitude of the fault has increased, the information
of the quality weakly related variables is still obscured by
the information of quality strongly related variable. Hence,
the results of KPLS and KLS are still wrong. DSFE takes
into account both the process variables classification and post
processing technology, which can overcome the difficulties
on classification of quality weakly related variables and avoid
the information of quality weakly related variables being
submerged. In this case, the three integration methods can all
obtain the correct monitoring results directly.

To sum up, WDSFE can give reasonable explanation for
the faults on the quality weakly related variables. No matter
whether the faults on the quality weakly related variables
affect the significant fluctuation of the quality, the results of
WDSFE are always trustworthy.

V. CONCLUSION
In this paper, WDSFE is presented for quality weakly related
fault detection. Firstly, DSFE is used to improve the sensitiv-
ity of quality weakly related information and overcome the
impact on the wrong classification of quality weakly related
variables. In the first step, process variables are divided into
the quality strongly related variable block and the quality
weakly related variable block based on MIC. In the second
step, KLS is performed on the two variable blocks, respec-
tively. Both the process variables classification and post pro-
cessing technology are considered by DSFE. In addition,
a weighted T 2 statistic based on the correlation is proposed
for integrating the statistics of two quality related subspaces,
which is an effective way to improve monitoring accuracy
for quality weakly related fault detection. The BIC statistic is
proposed for integrating the statistics of two quality unrelated
subspaces. Two integrated statistics can provide satisfactory
monitoring results directly. The simulation results of the
literature example and industry example show that WDSFE
can achieve the most satisfied monitoring results for quality
weakly related fault detection.
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