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ABSTRACT Both road users and administrators are keen to know the traffic volume at the arbitrary point on
the road network. In China, charging systems have been fully established in closed large-regional freeway
networks. They have accumulated massive amounts of toll collection data and provided a possible method to
forecast unknown traffic volume at any designated cross-section located on a freeway. A systematic method
is proposed to derive the traffic volume step-by-step. First, the average traveling speed is obtained for each
vehicle on its shortest path. Then, the traveling time is estimated in each road segment. Finally, the historical
traffic volume is derived at the designated cross-section. To make the obtained traffic volume data more
practical, a deep learning-based autoencoder is used for forecasting the traffic volume and evaluating its
prediction accuracy. All these proposed methods are evaluated with a collection of toll data for one month
covering more than 5000 km of freeway under a centralized regional charging system. One location is
randomly selected as the designated cross section at 2 km from the upstream toll gate on a road segment
of the Xi’an ring. The experimental results show the effectiveness and satisfactory accuracy of predicting
the traffic volume in the designated cross-section compared with the data captured by the traffic video
detection equipment. Rapid and successful prediction from available toll collection data may provide a
practical method for deriving the traffic information without installing any additional regularly maintained
detectors and equipment on the freeway.

INDEX TERMS Closed regional charging system, cross-section on freeway, toll collection data, traffic
volume prediction.

I. INTRODUCTION
To efficiently use a common transportation infrastructure
with limited capacity, it is important to forecast the traffic
volume to avoid traffic congestion and queueing phenom-
ena [1], [2]. With the rapidly increasing number of vehi-
cles, these problems are even more prominent, leading to
the rapid degradation of partial infrastructure and increased
environmental pollution. One of the most commonly used
methods to obtain traffic volume in practice is manually
counting the number of vehicles from onsite observations or

surveillance video systems, which are extremely labor-
intensive and time-consuming [3]. Deducing traffic informa-
tion obtained from floating cars is another way to forecast
the overall traffic volume [4]. Considering the vast region
of freeways, there are few floating cars report traffic condi-
tions while traveling on the freeways. Furthermore, vehicle
detectors (VDs)/inductive loop detectors, radars and other
equipment are usually installed on the freeway to detect
traffic conditions [5]–[7]. Taking VDs as an example, it could
capture the traffic volume, traveling speed and occupancy
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FIGURE 1. Detection of traffic conditions in a road segment: traffic
conditions can be captured when a vehicle detector (VD) is installed on a
traffic cross-sectional position. Traffic conditions at other positions
without VDs or with broken VDs are unknown.

of the fixed location. Several problems have emerged with
the years of accumulated data. First, the time required for
frequent maintenance and regular updating of broken VDs is
always insufficient considering the large number of devices
installed on the freeways [8], [9]. Second, the accuracy of
VDs is sometimes not high enough, especially in the case
of high vehicle density. Moreover, VDs are placed at fixed
locations to report traffic volume on those specific locations,
not arbitrary locations, as indicated in [10, Fig. 1]. That is,
the traffic condition can be captured only with VDs installed
on a specific cross-sectional position. It is difficult to rec-
ognize traffic conditions in other positions without installed
VDs and where VDs is broken. However, it is important to
know those traffic conditions for both road administrators and
road users to avoid unexpected queuing that randomly occurs
in arbitrary locations. Many researchers have attempted to
derive traffic volume to reduce the congestion and eventually
contribute to the development of the intelligent transport
system (ITS).

To estimate traffic information on an arbitrary cross-
section on a freeway without installed VDs, other related data
sources are employed, including data obtained from radars,
cameras, traffic video detection equipment (TVDE), mobile
GPS, crowdsourcing, and social media [11], [12]. In China,
the charging system fully covers all operating freeways. The
charging system provides an alternative way to derive the
traffic conditions as the charging data contains time and loca-
tion of each vehicle [13]. Within the charging system, both
electronic toll collection (ETC) and manual toll collection
(MTC) [14]–[16] are available to reflect traffic conditions
with massive data accumulated every day. With the rapid
development of big data analysis, the underlying correlation
between toll collection data and traffic flow might possibly
be extracted. However, this is not easy to achieve. To esti-
mate traffic volume on a specific point on any cross-section,
considerably more specified information is needed. One of
the unsolved problems is that toll collection data link to the

overall traveling speed for individual vehicles. The overall
traveling speed cannot represent a specified speed passing
through a designated point. Therefore, the specific time for
a vehicle to arrive at a designated position remains unknown.
Neither does the traffic volume at a designated point.

In this paper, we propose a historical traffic volume deriv-
ing method. Herein, the overall traveling speed for every
individual vehicle is utilized to estimate the traveling time in
each road segment of each vehicle. Then the specific time
for each vehicle to arrive at a designated position can be
acquired, which could be used to estimate the traffic volume
of the designated position. This method considers the spatial
and temporal correlations of the historical traffic flow data.
In order to build up plans to avoid unexpected road congestion
timely for road administrators and road uses. This research
extracts the inherent features hidden in the massive histor-
ical traffic volume data with the stacked autoencoder (SAE)
model, which is a deep-learning-based method to forecast the
traffic volume at a designated cross-section.

The contributions of this work are listed as:
Firstly, we proposed a systematic method to derive the

traffic volume on a designated cross-sectional position from
toll collection data. It provides a possible way to obtain the
traffic flow based on computation. The high-cost spending on
measuring equipment might be saved in the future.

Secondly, database is established from the freeway current
on service in China. The spatial and temporal correlation
between traffic volume and large regional toll collection data
are explored via successful estimation of traveling speed,
traveling time and other traffic information. Successfully
using daily operating data is one of the contributions in
consideration the variety and huge amount of data.

Finally, we show the effectiveness of our deducing and
prediction method could be used with fast processing time
and high accuracy to meet the standard for the practical
application. This algorithm has potential values to be extent.

The rest of the paper is organized as follows: in Section II,
we review the related work on traffic volume acquiring
method and traffic volume prediction. Section III introduces
the models and methods proposed in this paper. Section IV
provides details of the experimental results and the perfor-
mance evaluation of the proposed model. Section V presents
the conclusions of the paper.

II. RELATED WORK
With the accumulation of the traffic data, many researchers
worked on estimation of traffic volume with high accuracy.
It is possible that expensive detection equipment might be
replaced by a low-cost economic computational model. The
costs, time and manpower can be saved, including installa-
tion, repair and regular maintenance for the detection equip-
ment.

From toll collection records, massive useful information
can be obtained, including traveling time, traveling speed,
travel distance, and the origin and destination (OD) of each
vehicle [17]. Few studies have established deducing models
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to obtain the traffic volume from toll collection records in a
closed regional charging system. Zhang et al. [18] proposed
and proved an assumption that the traffic volume of the
current road segment has close correlations with the traffic
volume of its upstream toll gates. Wu et al. [19] generated
and forecasted road status based on valid information from
toll collection data. Large-scale traffic datasets play an impor-
tant role to improve traffic conditions or analyze the travel-
ing [20], [21]. In freeway scenarios considering the very large
amount of related big data, successful modeling between toll
collection data and cross-section traffic flow can be studied
based on analysis of their underlying correlations.

To solve this problem, many researchers have investigated
the origin/destination (OD) pair and identified more infor-
mation. Although an exact and perfect deducing model may
not exist, a practice assumption is proposed because vehicles
passing through similar geographical features, including vari-
ous road curvatures and road alignments, these vehiclesmight
share similar driving behavior. In addition to spatial informa-
tion, temporal and weather changes also affect vehicle speed.
Under this assumption, common driving behavior in divided
road segments sharing similar behavior of individual vehicles
might be derived from the stream traveling speed [22]. For
example, it is assumed that all vehicles slow down when they
take turns on an uphill road. These potential correlations con-
tribute to the prediction of the traveling speed in a designated
cross-section, which is an interesting topic deserving further
investigation.

To further improve the intelligence of traffic control, pre-
dictions for designated cross-section traffic flow are explored.
Classic models such as the time series model, the Kalman
filtering model, the Markov model, and the support vec-
tor machines (SVM) model have been utilized in this area.
Among these models, the time series model, such as the
autoregressive integrated moving average (ARIMA), focuses
on extracting the time patterns of the historical data. By sum-
marizing the rules between the relevant data, the Markov
model can determine the state of the road at a future time.
Combining linear state equations, the Kalman filtering model
can obtain an optimal estimate of the road state [23]–[25].
Based on the SVM method, Su et al. [26] found that the
analysis model is superior to forecast approaches in accuracy
and much more effective. Most of these traditional methods
depend on inducing the characteristics of historical data to
assume future traffic volume.

As a group of deep nonlinear topology models, deep learn-
ing methods can be used as a substitute for the classic linear
method. Researchers concluded that by extracting the fea-
tures hidden in the data, vital information could be obtained.
Successful modeling of the irregular data of the real world
could improve the prediction accuracy [11], [27]. For exam-
ple, Kong et al. [28] analyzed human travel behavior with
SubBus approach, extracted four features of travel behaviors
to forecast travel requirements. Yi et al. [29] used a deep neu-
ral network (DNN) model to forecast real-time traffic volume
in 5-minute intervals, the accuracy rate reached 99%, but the

scale of the data was small. The recurrent neural network
(RNN) [30] is another method widely used in traffic volume
prediction. It can save the features hidden in the data to pre-
dict temporal-spatial traffic volumewithmemory cells. Based
on the RNN model, the long short-term memory network
(LSTM) has an improved structure. There are input gates,
output gates, and forget gates [31], these gates and memory
cells comprise the model so that it can learn the relationship
of long-term dependencies among the input data [32]. The
gated recurrent unit (GRU) model, which is a variant of the
LSTM model, is considered to perform better than LSTM in
the fields of traffic volume prediction [33]. All these deep
structures and multiple layers of neural networks have shown
successful performance in extracting the internal features of
data. The potential features and patterns of historical data can
be found, which can greatly improve the accuracy of predic-
tion. One of the successful applications of the deep learning
model is the stacked autoencoder (SAE) model, which has a
deep structure for prediction and has been presented for good
prediction of traffic flow [14], [34].

III. METHODOLOGY
The methodology section mainly includes two parts. 1.
Present the algorithm to derive the historical local traffic
volume from large regional toll collection data. 2. Introduce
the SAE model to forecast the traffic volume.

A. DERIVING LOCAL TRAFFIC VOLUME FROM LARGE
REGIONAL TOLL COLLECTION DATA
With the useful fields of the existing freeway toll collection
data and considering the speed requirements of different
road segments for the traveling vehicles, the algorithm pro-
cesses the toll collection data in the time and spatial domains
simultaneously to acquire the historical traffic volume at the
arbitrarily designated cross-section. In our study, the traffic
volume finally obtained is counted in 5-minute intervals.

1) AVERAGE THE TRAVELING SPEED IN THE SHORTEST
PATH FOR INDIVIDUAL VEHICLES FROM THE TOLL
COLLECTION DATA
From the toll collection data, the entry time, exit time, entry
toll gate and exit toll gate of each individual vehicle can
be obtained. Based on the entry toll gate and the exit toll
gate information, the Dijkstra shortest path algorithm can be
employed to calculate the shortest path and the corresponding
travel distance of each record. The traveling time of each
vehicle can also be obtained from the entry time and the exit
time. Then, the average traveling speed in the shortest path of
an individual vehicle can be calculated as:

V̄ (j) = L (j)/(T ′′ − T ′) (1)

where T ′′ is the exit time of vehicle j. T ′ is the entry
time of vehicle j. L (j) is the travel distance on the shortest
path of vehicle j. V̄ (j) is the average traveling speed of
vehicle j.
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FIGURE 2. The sketch map showing the process of acquiring the estimated traveling time in every road segment. (a). Freeway structure; (b). The average
traveling speed of each vehicle and traveling speed with vehicle stream of each road segment; (c). Traveling time with the stream of each road segment;
(d). Estimated traveling time in each road segment of each vehicle.

2) ESTIMATE THE TRAVELING TIME IN EVERY ROAD
SEGMENT CLOSE TO THE REAL SITUATION
With the overall traveling time for each vehicle, we try to esti-
mate the traveling time on each road segment for each vehicle
on its shortest path. Assuming that each vehicle travels along
the shortest path with the overall average speed, the traveling
time in each road segment is roughly obtained, which may
deviate from the real situation. For an individual vehicle, the
average traveling speed remains unchanged across its entire
shortest travel path. However, due to the different circum-
stances of different road segments (e.g., road curvature and
road alignment, weather changes, different types of vehicles,
etc.), each segment has a certain stream traveling speed for
different types of vehicles. Therefore, we introduce the trav-
eling speed with the stream and the traveling time with the
stream of each road segment as reference values. This part
introduces the method to compensate for the traveling time in
every road segment approach to the real situation of the indi-
vidual vehicle. According to standard (JTG B01-2014) [35],
the vehicle type of each toll collection record is classified
based on the axles. Passenger cars and two-axle trucks are
classified as small-sized vehicles. Buses and three or four axle

trucks are medium-sized vehicles. Five or more axle vehicles
are large-sized vehicles.

The overall idea for the procedure is presented in Figure 2.
For each road segment in the network, we select all the

k-type vehicles whose shortest travel path includes the i-th
road segment, and statistically calculate the average traveling
speed of these vehicles, and then obtain the traveling speed
with the stream of the i-th road segment for k-type vehicles.
Then, with the length of the road segment, the traveling
time with the stream of the i-th road segment can also be
calculated. The relationship between the traveling speed with
the stream and the traveling time with the stream can be
calculated as:

V̄i,k =
∑mk

j=1
V̄ (j)/mk (2)

t̄i,k = Li/V̄i,k (3)

where V̄ (j) is the average traveling speed of vehicle j, mk is
the number of the toll collection data records in which vehicle
type is k and the travel path includes the i-th road segment,
Li, V̄i,k , t̄i,k represents the length, the traveling speed with the
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stream and the traveling time with the stream of the i-th road
segment obtained from the k-type vehicle, separately.
From the shortest travel path of the individual vehicle,

it can be determined which road segment the vehicle passes
through, and the traveling time with the stream of these
segments can also be acquired. Based on the actual traveling
time from the entry gate to the exit gate of each vehicle,
we can estimate the traveling time in every road segment that
closes to the real situation, which can be denoted as:

ti,k = T ∗ (t̄i,k/
∑n

i=1
t̄i,k ) (4)

where ti,k is the estimated traveling time in the i-th road
segment of each vehicle, k represents the type of vehicle, and
T is the traveling time from the entry toll gate to the exit toll
gate of each vehicle. n is the number of road segments from
the entry toll gate to the exit toll gate of each vehicle. The
calculated variables V̄i,k and ti,k are updated once a month
based on the toll collection data acquired each month.

3) DERIVE LOCAL TRAFFIC VOLUME AT DESIGNATED
CROSS-SECTION
Due to the road alignment of the freeways, the toll gates are
connected in sequence across the freeways. Once a vehicle
passes the upstream toll gate and the downstream toll gate
of the designated cross-section, it will pass the designated
cross-section unavoidably and can be counted in the traffic
volume of the designated cross-section. For each vehicle,
the estimated traveling time in each road segment on the
shortest travel path is already known; therefore, the specific
time when the vehicle arrives at the designated cross-section
can be obtained.

Assuming that vehicle j enters the freeway at time T ′ and
exits the freeway at time T ′′, the distance between the cross-
section A and its upstream toll gate is also known; then,
we can acquire the time that vehicle j spent from the entry
toll gate to the designated cross-section A:

1tA =
∑x−1

i=1
ti,k + tx ∗ (LDis/Lx) (5)

where1tA is the traveling time from the entry toll gate to the
designated cross-section A. x is the number of road segments
from the entry toll gate to the designated cross-section. ti is
the estimated traveling time in the x-th road segment. LDis and
Lx is the distance between the upstream toll gate at the x-th
road segment and the designated cross-section, the length of
the x-th road segment, respectively.

The estimated time for each vehicle arriving at the desig-
nated cross-section can be obtained as:

TA = T ′ +1tA (6)

where TA is the estimated time when a single vehicle arrives
at the designated cross-section, and T

′

is the entry time of
each vehicle.

Then, all the records can be aggregated in the required
time interval. In this paper, the volume of the cross-section
is counted in 5-minute interval, and it can be integrated into

15-minute or more if needed. The procedure for deriving the
local traffic volume from large regional toll collection data is
summarized as follows:

1) For each record of the original toll collection data,
calculate the shortest path, e.g., (Seg1 − Seg2 − . . . −
Segn), the travel distance l, the traveling time T and the
average traveling speed V̄ (j).

2) For each road segment in the network, select the toll
collection records for which travel path includes this
segment and the vehicle type is k , calculate the number
of these records denoted as m. Calculate the basic
information of the road segment, V̄i,k , t̄i,k .

3) Select the toll collection records for which the travel
path includes the designated cross-section. For each
record, determine the vehicle type, and sum the travel-
ing time with the stream of each segment in the entire
travel path

∑n
i=1 t̄i,k . Calculate the estimated traveling

time the vehicle spent on the i-th section ti,k , the travel-
ing time from the entry toll gate to the designated cross-
section of each record 1tA, then the estimated arrival
time of each record TA.

4) Obtain the arrival time of each individual vehicle.
Aggregate the number of these vehicles at 5-minute
intervals and obtain the traffic volume.

B. FORECASTING TRAFFIC VOLUME AT THE DESIGNATED
CROSS-SECTION
In this section, the proposed SAE model, which consists of
layers of autoencoders with deep learning-based structures,
is presented.

1) AUTOENCODER
The SAE utilizes each autoencoder as a single unit and stacks
them together to create a deep network. For the autoencoders,
each autoencoder has a three-layer structure, and the input
layer needs to be reconstructed. The first layer is the input
layer, and the last layer is the reconstruction layer. Both
have K units. The hidden layer is used to extract the data
features by inputting a set of data {x(l)1 , x

(l)
2 , . . . , x

(l)
n )}, where

x(l)i ∈ R
D represents the unit i of layer l. After the nonlinear

operation of an autoencoder, the features among the input
data can be obtained in the hidden layers and represented
as a

(
x(l)i
)
, which can be denoted as the encoding process.

In the nonlinear operations, the autoencoder will decode
a
(
x(l)i
)
and output the reconstruction x(l)i

′, which refers to
the decoding process. The formulas are as follows:

a (x) = f (W1x + b1) (7)

x ′ = g(W2a(x)+ b2) (8)

whereW1 andW2 are the encoding matrix and the decoding
matrix, respectively, which are the weight matrixes of each
autoencoder; b1 and b2 are the encoding and decoding bias
vectors; f (x) and g(x) are the activation functions used in the
neural network. In this paper, both the encoding process and
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FIGURE 3. The principle and structure of an autoencoder. (a). The principle of an autoencoder; (b). The structure of an autoencoder.

the decoding process adopts a rectified linear unit function
max (0, x).

Additionally, the reconstruction error is the main param-
eter for evaluating performance. Here, we define the model
variable, denoted as θ , as follows:

θ = argθminL (x, z) = argθmin1/2
∑n

i=1

∥∥x ′i − xi∥∥ (9)

Usually, nonlinear autoencoders may have a larger number
of hidden layer units than the input layer units, which leads
to a serious problem that the autoencoder may potentially
learn the identity function or simply copy the input data as
output, causing the features extracted from the model to be
useless. We adopt the ‘‘dropout’’ method after the encoding
procedure. By randomly removing a unit, along with the
units it linked with temporarily, we can obtain a ‘‘thinned’’
network [36]. Different dropout values may also affect the
function of the model. Figure 3 shows the principle and
structure of a single autoencoder.

2) SAE MODEL AND ITS FINE-TUNING PROCESSING
A model with a deep learning method usually has more than
3 layers. The number of layers and the number of nodes
in each layer influence the predictive results of the model.
The SAE model is a structure that stacks autoencoders layer
by layer. Each layer is an autoencoder that encodes and
decodes data. The input layer passes the data to the 1st hidden
layer, then the hidden layer extracts the features through the
encoding operation and passes them to the 2nd hidden layer,
while the reconstructed output is removed from the network.
The following hidden layers perform the same operation until
the last hidden layer is reached. Meanwhile, each layer is
pre-trained with the greedy layerwise unsupervised learning
algorithm [37] to optimize the weights of the layer. When the
pretraining process is completed, the output of the last hidden
layer is taken as input, and the parameters of the model are
fine-tuned via the back propagation (BP) algorithm.

3) INDEX OF PERFORMANCE
To evaluate the prediction error of the SAE model and to
compare other prediction models at the end of the research,
the commonly used performance indexes are the mean abso-
lute error (MAE), the mean relative error (MRE), and the
root-mean-square error (RMSE) to evaluate the error between
the predicted and actual values of the model.

MAE =
1
n

∑n

i=1
|xi − x ′i | (10)

where xi is the observed data, and xi′ is the predicted data.
Because the MAE value can reflect the actual situation of
prediction error, this paper chooses theMAEvalue to evaluate
the results of different models.

The overall proposed method is illustrated in Figure 4.
We first collect the historical toll collection records from
every toll gate in a large regional scale around the designated
road cross-section. Most of the passing vehicle through the
cross-sectional position are reflected in the toll collection data
in a large-scaled region around. The traffic volume deriving
model are then used to estimate the traffic information on the
road and traffic volume on the cross section within the road.
Then, we obtain the forecasted traffic volume at different time
intervals by using the advantages of the SAE model based on
the historical data.

IV. RESULT AND DISCUSSION
A. DATA DESCRIPTION
In this study, the original toll collection data were col-
lected from all the freeway toll gates in Shaanxi province,
China. The total mileage of the freeway in Shaanxi province
reached 5386 kilometers as of 2018. This paper selects the
Shaanxi Freeway network as a closed regional charging sys-
tem. The collection time of the toll collection data is from
January 2018 to April 2018. The cross-section in the mid-
dle of the road segment from the Xigaoxin toll gate to
the Chang’an toll gate, which belongs to the city ring
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FIGURE 4. The process of obtaining the historical designated cross-section traffic volume and forecasting the designated cross-section volume. (a).
Obtain cross-section traffic volume from toll collection data; (b). Forecast cross-section volume data with SAE model.

way in Xi’an, Shaanxi, China, is chosen as the desig-
nated cross-section because the traffic volume of this cross-
section is large enough to meet the requirements of the basic
research. In addition, the designated cross-section has rela-
tively large traffic flow and tidal characteristics of the traffic
volume as a city ring. The distance from the designated cross-
section to the upstream toll gate is 2 km.

The time intervals of the traffic volume data obtained from
the deriving algorithm is 5 minutes, 15 minutes, 30 minutes
and 60 minutes. The traffic volume data of the first three
months are selected as the training set, while the data of the
last month are selected as the test set used in the proposed
SAE method. Figure 5 shows the description of the data.

B. EXPERIMENTAL SETUP
The experiments are carried out using an Intel i5-3210 MB
2∗2.5 GHz CPU, and 4 GB memory. The next part mainly

includes two parts. The first part exhibits and analyzes the
results obtained from the procedure of deriving the historical
local traffic volume from the toll collection data. The second
part analyzes the forecast results of the designated cross-
section at different time intervals. Based on the historical
traffic volume, we compared the SAEmodel presented in this
paper with the DNN model, LSTM model, DBN model, and
SVM model to evaluate the prediction performance.

C. ESTIMATING TRAVELING TIME IN THE ROAD
SEGMENTS AND TRAFFIC VOLUME IN ANY DESIGNATED
CROSS-SECTION
In this section, to demonstrate the traveling speed with the
stream and the traveling time with the stream of each road
segment, as well as the estimated traveling time in each road
randomly selected three vehicles that entered the city ringway
from the Sanqiao toll gate and exited from the Chang’an
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FIGURE 5. Data description (a). Toll collection data from the whole province; (b). Basic attributes of some cross-sections on the city ringway in Xi’an; (c).
Obtained traffic volume at the designated cross-section.

toll gate as samples from the toll collection data. The size
of the three vehicles are representative of small, medium
and large vehicles. Their driving times on the freeways are
between 7:30 am and 8:00 am, and the driving path also
includes the designated cross-section, which is in the road
segment from the Xigaoxin toll gate to the Chang’an toll gate.
As shown in Figure 6(a), the length of each road segment on
the entire travel path varies from 2.4 km to 7.0 km. Figure 6(b)
shows the average traveling speed of the three samples on
the entire travel path, the small-sized vehicle has the highest
value up to 99.69 km/h, the value of themedium-sized vehicle
is 77.95 km/h, and the large-sized vehicle has the smallest
value, 59.41 km/h. This is consistent with the conclusion that
the speed of the small-sized vehicle is faster than that of
the large-sized vehicle on the freeway. Using the traveling
speed with the stream in each road segment proposed in
this paper instead of the overall average traveling speed can
be a better approach in real situations. By processing the
small-sized vehicle data, the values of the traveling speed
with the stream in each road segment are distributed in the
interval of 70-80 km/h, and the average traveling speed of the
small-sized vehicle sample is much larger than the traveling
speed with the stream in each road segment. In terms of the
medium-sized vehicles, the deviation between the traveling
speed with the stream and the average traveling speed is
small in road segment G0-G3, the deviation is larger in road
segment G3-G6, and the traveling speed with the stream is
less than the average speed. The average traveling speed of
the large-sized vehicle is less than the traveling speed with
the stream in segment G0-G1, and in the remaining segments,
the average speed is higher. Comparing the absolute value
of the deviation between the average speed and the traveling

speed with the stream, it can be found that the average trav-
eling speed values of the selected medium-sized and large-
sized samples are larger than the corresponding traveling
speed with the stream in each segment, but the deviation is
smaller than the small-sized vehicle. Furthermore, the overall
average traveling speed of the three samples is larger than
the traveling speed with the stream in every segment. We can
infer that the traffic volume on the entire path during this time
period may be relatively smaller, resulting in a high average
traveling speed, the results on the G5-G6 segment are the
most prominent. However, in each road segment, the speed
of the small-sized vehicle is similar to that of the medium-
sized vehicle.

Figure 6(c) shows the traveling time with the stream of
each road segment. The traveling time with the stream of the
large-sized vehicle is longer than that of the other two types,
the traveling time with the stream of the medium-sized and
small-sized vehicles is quite close, and the deviation between
these two is up to 12 s, while the minimum value is 2 s. This
reflects that the traveling speed of these two types of vehicles
might be similar in the real world.

Figure 6(d) shows the estimated traveling time on each
road segment from the entry toll gate to the exit toll gate.
We can infer that the estimated traveling time is positively
correlated with the length of the road segment. Taking the
small-sized vehicle sample as an example, the estimated time
is 89 s on the shortest segment G4-G5, and the estimated
time is 243 s on the longest road segment G2-G3. The results
are consistent with the actual conditions without consider-
ing abnormal traffic conditions, such as congestion. Similar
conclusions can be drawn from Table 3, 4, 5 and 6 in the
appendix.
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FIGURE 6. Procedures for acquiring the estimated traveling time in each road segment. (a) Freeway structure from Sanqiao toll gate to Chang’an toll gate;
(b) Average traveling speed of each vehicle on the path and traveling speed with the stream of each road segment; (c) Traveling time with the stream of
each road segment; (d) Estimated traveling time in each road segment of each vehicle.

The accuracy of VDs on the city ringway is not reliable
because many of them are either broken or cannot collect
complete traffic volume data. This paper verifies the accu-
racy of the derived historical traffic volume via TVDE. The
selected TVDE is located on the road segment from the
XigaoXin toll gate to the Chang’an toll gate, 2.085 km from
the XigaoXin toll gate. The collection time of the verified
data is from March 12 to March 18, 2018, including five
weekdays and two weekend days. Figure 7 shows the results
of the derived traffic volume and the corresponding traffic
volume obtained from the TVDE in 15-minute interval. The
MAE value of the derived data is 66.98 vehicles per 15 min-
utes. Both the derived data and TVDE data reflect a similar
tendency. For example, more traffic volume is obtained on

weekdays than on weekend days. There are two peak peri-
ods for each weekday, which are concentrated at 8:00 am
and 6:00 pm, on weekend days, there are more vehicles at
6:00 pm, which is clearly shown on the derived data and
TVDE data.

Compared to the deviation between the derived data and
TVDE data, a higher volume is observed on the derived data
than that of TVDE. This may be due to the inconsistency of
the vehicle type classification during the deriving process,
and the small-sized vehicles may include other vehicles of
which average traveling speed is smaller than the small-sized
vehicle, resulting in a smaller traveling speed with the stream
of the small-sized vehicle on each road segment, and the
corresponding traveling timewith the stream becomes longer.
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TABLE 1. MRE value, MAE value and RMSE value of different structures of the SAE model.

FIGURE 7. Deriving the results of the traffic volume and that of the TVDE
volume in one week (March 12-March 19).

Because the ratio of the traveling time with the stream on
each road segment to the sum of the traveling time with the
stream on the entire traveling path decreases, the estimated
traveling time in each road segment decreases, which means
the derived time of the vehicle arriving at the target cross-
section is ahead of the actual time. Therefore, when the
vehicle has not reached the target cross-section, the vehicle
has been included in the derived results. The length of the
vehicle’s traveling path obtained from the Dijkstra algorithm
may be shorter than the real traveling path, and some vehicles
may stay in the service area. These are also the reasons why
the vehicle has been included in the derived results while it
has not reached the target cross-section, which leads to an
increase in the derived traffic volume. It can also be seen
from Figure 7 that the trend of the derived data is roughly
the same as the TVDE results. However, in the TVDE results,
the traffic volume is 0 at most time from 0:00 am to 7:00 am
on March 13th, and this might be a factor that causes a
deviation between the derived traffic volume and the TVDE
results. We infer that the malfunction of the TVDE might
cause the result.

D. TUNING PARAMETERS OF THE SAE MODEL
When inputting the collected traffic volume data to the net-
work, the SAE model can find the correlation between the
traffic volume at different time intervals and may take advan-
tage of the results to predict the traffic volume. However,
if the structure of the model is different, the prediction accu-
racy will also change. To acquire the optimized prediction

TABLE 2. Performance comparison of the MAE for SAE, the DNN,
the GRU, the RNN and the LSTM.

results, the influencing factors considered in this paper are
listed as follows:
• With the same structure, various training samples could
lead to different results. Therefore, we aggregate the data
into 5-minute intervals, 15-minute intervals, 30-minute
intervals, and 60-minute intervals.

• The dropout value can be chosen by using a validation
set, or it can be set to 0.5, which is optimal for many
networks. After many experiments, we chose 0.2 as the
dropout value.

• The number of hidden layers and the number of units
in each layer are significant design factors. They deter-
mine the predictive performance of the models to some
extent. For 15-minute interval traffic volume prediction,
Table 1 shows the MRE values, the MAE values and the
RMSE values of different structures of the SAE model.
The exhibited value of each structure is the average value
acquired after six experiments. A series of experiments
demonstrate that 2 layers can be the best structure in
a 15-minute interval, and the distribution of the units
is [300, 300]. For the 5-minute interval, the 30-minute
interval and the 60-minute interval traffic volume pre-
diction, the distribution of the units are [300, 400, 300],
[400,400,400], [400,400,400,400], respectively.

E. FORECAST TRAFFIC VOLUME AT THE DESIGNATED
CROSS-SECTION
After comparing the forecast results of the SAE model with
the estimated traffic volume of the designated cross-section
in January 2018, the results indicate that the forecast results
of the SAE model have similar fluctuation tendencies as the
input data. The predicted results reflect that the proposed SAE
model can perform well in forecasting the designated cross-
section traffic volume in the real world.
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FIGURE 8. Performance comparison of SAE model with some existing methods for traffic volume predictions. (a) 5-minute interval; (b) 15-minute
interval; (c) 30-minute interval; (d) 60-minute interval.

The performance of the proposed model is compared with
other deep learning methods, including the LSTM, DNN,
GRU, and RNN model. After a series of tests, we acquired
a list of MAE values for each model to evaluate the perfor-
mance based on the forecast results. As shown in Table 2,
the proposed SAE network displayed better performance than
some networks in 30-minute interval and 60-minute interval,
but the forecast accuracy of SAE in 5-minute and 15-minute
intervals is slightly worse than the other models. LSTM and
GRU, as classic models widely used in forecasting time-
series data, also show good performance in 30-minute and
60-minute intervals. In terms of the 5-minute and 15-minute
intervals, the accuracy of RNN, DNN,GRU, SAE, and LSTM
is quite close and RNN, GRU shows satisfactory perfor-
mance, but as the forecast time increases, the accuracy of the
RNN model decreases rapidly when compared with the SAE
model, which has the same result that the RNNmodel is diffi-
cult to predict the traffic volume under long-term conditions
because the vanishing gradient. Due to the continuous change
of the traffic flow, the SAE model, by encoding and decoding
procedures to reconstruct the input traffic flow data, can
perform well in long-term traffic flow forecasts. Above all,
the SAE model is practical compared with the other models.

To obtain a better understanding of the MAE values of the
different approaches, the boxplots are used to show the MAE
values of the different models in a visual approach, includ-
ing the LSTM, DNN, GRU, and RNN models. Statistical

results are added to present the different performances of each
approach and display the discrete distribution of the MAE
values. As shown in Figure 8, taking the 30-minute interval
boxplot as an example, we can infer that the mean value of the
MAE in the SAEmodel set is 65.63, one-quarter of the values
are less than 64.5, and one-quarter of the values exceed 67.
In other words, half of the value is between 64.5∼67. Because
the mean value of MAE is slightly higher than the median
value, the MAE value in the SAE model is slightly larger.
From the boxplots, we can draw the same conclusion from
Table 2. Generally, the proposed SAE model is appropriate
for the real-world situation to forecast arbitrarily designated
cross-section traffic volume.

V. CONCLUSION
In this paper, we propose a systematic method to derive the
traffic volume at arbitrary designated cross-section. Unlike
the previous methods that only consider the limited data,
the proposed method can successfully discover the latent
attributes of the road segments on the freeways from large
regional toll collection data and other traffic information
including the traveling time/speed and so on. In addition,
the nonlinear spatial and temporal correlations between the
forecasted traffic volume and the massive toll collection data
also explored via the basic attributes of road segments and
other information, these findings could be contributions to the
ITS.
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TABLE 3. Average traveling speed (km/h) of each vehicle on the entire
path.

TABLE 4. Traveling speed with the stream (km/h) of each road segment.

In the proposed traffic volume deriving model, first,
the average traveling speed for an individual vehicle on the
shortest path can be derived from the toll collection data.
Then, we obtain the traveling speed with the stream and the
traveling time with the stream of each road segment from
the large sampling data with similar vehicle types, which is
more appropriate in practice than its overall average travel-
ing speed. The estimated traveling time cost in every road
segment is obtained from this specified traveling speed and
traveling time. The arrival time of each vehicle and the traffic
volume at any designated cross-section can also be derived.
In addition, we use the deep learning-based autoencoder to
forecast the traffic volume and evaluate the prediction accu-
racy.

The experimental results show the effectiveness and sat-
isfactory accuracy of predicting the traffic volume in the
cross-section from a quick analysis of massive toll collection
data. This may provide a practical method to derive traffic
information without requiring the installation and regular
maintenance of any additional equipment on the freeway and
may prevent from unnecessary derivative congestion. The
estimation and prediction of the traffic volume of a designated
point have shown the effectiveness of the proposed method
based on deducing from a toll collection data in a large-scale
region. Although the data size is large, the computation speed
is satisfactory with the similar high accuracy captured from
measurement.

Although we have test the traffic volume deriving model
and the prediction method, the accuracy of the estimation are
affected by many other factors including weather changes,
different types of cars, occasionally traffic congestions, etc.
The improvement of prediction in the occasional situations
is going to be further investigate in the future. More pre-
cisely estimation need to be further explored on the traveling
speed, traveling time and traffic volume for individual vehi-
cle. More situation and scenario could be used this proposed
method to estimate the traffic flow from the toll collection
data.

TABLE 5. Traveling time with the stream (s) of each road segment.

TABLE 6. Estimate traveling time (s) in each road segment of each
vehicle.

APPENDIX
A list of results obtained in the procedure of estimating the
traveling time is given in Table 3, 4, 5 and 6.
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