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ABSTRACT Optical combustion measurement and analysis systems using multiple sensors have received
considerable attention. In particular, the image-based flame 3D reconstruction approaches using comput-
erized tomography have been widely applied for the flame 3D reconstruction from a set of views by
constructing the optimized linear combinations of the 3D scene and projected images. Previous techniques
were easily computed but were weak against noise and blurring due to the underlying least square-based
loss function. This paper presents a 3D density flame reconstruction method, captured from the sparse
multi-view images, as a constrained optimization problem between the flame and its projected images.
For effective estimation of the flame with a complicated structure in an arbitrary viewpoint, we extract the
3D candidate region of the flame and, then, estimate the density field using the compressive sensing. The
objective function is a linear combination of the photo consistency cost and sparsity regularization terms,
which avoids blurring in the reconstruction. The proposed approach is a powerfulmatrix factorizationmethod
with each voxel represented as a linear combination of a small number of basis vectors. The approach also
effectively simplifies the reconstruction process and provides the whole 3D density field in one step. The
experimental results verify that the proposed 3D density estimation performs favorably from the few flame
images.

INDEX TERMS Combustion, compressive sensing, image-based reconstruction, three-dimensional
reconstruction.

I. INTRODUCTION

Combustion measurement has attracted considerable atten-
tion in diverse areas to analyze pressure, optical signal
control, and data acquisition and visualization by reveal-
ing key control parameters and their effects in the flame’s
region of interest [1]–[5]. In particular, laser based three-
dimensional (3D) flame reconstruction [4], [5] has been
widely applied to effectively represent combustion charac-
teristics, but these techniques are usually based on either
line of sight measurements, or can only provide 2D results,
mismatching the 3D nature of turbulent flame. They also
do not adequately consider human visual perception charac-
teristics. To compensate for laser based the disadvantages,
image based combustion analysis and visualization [1]–[3]
provide better human visual perception characteristics with
lower equipment costs.

Three-dimensional view synthesis and understanding from
sparse multi-view images is an important topic with a wide
range of applications including dynamic image based render-
ing, view interpolation, 3D reconstruction and understanding,
realistic 3D static model reconstruction, etc [6]. Although
numerous 3D view synthesis approaches have been proposed,
most approaches focus on 3D reconstruction of the surface
of an opaque object based on the Lambertian reflectance
assumption. Substantial progress has been made on 3D view
synthesis of opaque objects, but there has been little consid-
eration of 3D view synthesis for semitransparent (e.g. flame
and smoke) and transparent (e.g. glass andwater) objects. The
objects types are distinguished as follows:

• opaque objects fully reflect light at the object surface
according to the objects bidirectional radiance distribu-
tion function (BRDF);
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• semitransparent objects partially reflect, absorb, and
transmit light; and

• transparent objects transmit all incoming light [7].
Since the natural world is composed of opaque, semitrans-
parent, and transparent objects, we consider the less studied
problem of 3D view synthesis of semitransparent objects,
such as flame [8], [9].

The traditional image based modeling and rendering
approach to 3D flame view synthesis and density estima-
tion uses photo consistency as a check condition, but can-
not be blindly applied to semitransparent objects because it
leverages diffuse and scattering reflectance, and light scat-
tering, which are Lambertian reflectance characteristics for
opaque objects. Since semitransparent objects do not have
Lambertian reflectance, the BRDF cannot be used.

In contrast, the relationship between the 3D flame and
refraction-free projected images can be expressed using a
general model of radiative transfer,

I =
∫ L

0
D(t)τ (t)J (t)dt + Ibgτ (L), (1)

where I is the intensity of a pixel of the projected image,
which integrates radiance from the luminous flame along the
ray through the pixel and incorporates background radiance;
D(t) is the density field along that ray; J is the total emission
per unit mass; L defines the interval [0,L] along the raywhere
the field is nonzero; Ibg is the radiance of the background; and
τ is the transparency. Thus, I is the integration of the density
field along the 3D ray in the interval [0,L]. Two steps must be
performed using (1) to effectively reconstruct flame density.
The target object candidate region must be first estimated,
corresponding to estimating L, and then the density field is
recovered from reference image intensities, inferring D(t).
Most previous approaches to estimate the flame den-

sity field, have been focused on representing the rela-
tionship between 3D volumetric data and its projected
images, and iteratively reducing the error using a loss func-
tion. Density sheet decomposition and computed tomog-
raphy (CT) based approaches have provided accurate and
robust results [10]. However, density sheet decomposition
based 3D flame estimation [11] requires considerable com-
putation for decomposition and reconstruction, yet still has
problems with estimating realistic smooth shapes because
a convex combination of polytopes is still a polytope,
hence density sheet decomposition based 3D flame remains
in a polytope. Ihrke and Magnor [10] applied CT based
techniques for flame reconstruction using a least square
method (LSM) based loss function. However, energy based
LSM loss functions exhibit unacceptable blurring for iterative
reconstruction.

In this paper, we propose a 3D density field estimation of
the flame, which formulates the relationship of the image
intensity and voxels on the 3D lays by formulating the
compact linear combination of atoms using an overcom-
plete basis. The main contribution of this paper is the pro-
posed multiple image based 3D flame density estimation

using compressive sensing, which offers the following
advantages.
• The relationship between the 3D flame and its projected
multiple images is formulated using discrete and linear
equations to effectively recover the 3D density field.
This approach simplifies reconstruction, obtains the
whole 3D density field in one step, and enables recon-
structing realistic smooth shapes rather than polytopes.

• The proposed 3D reconstruction technique uses com-
pressive sensing, enabling reconstruction of large but
sparse density fields from a limited number of non-
adaptive linear measurements.

• The estimated 3D density field of the flame using com-
pressive sensing reduces the blurring effect arising from
notably few flame images and the least squares loss
function. In this proposal, we use the loss function bal-
ancing trade-off between the closeness (or the fitting)
to the data and the sparsity constraint. The sparsity
regularization term is added to prevent the blurringwhile
iteration.

The remainder of this paper is organized as follows.
Section 2 reviews related image based 3D reconstruction
studies, and Section 3 explains the proposed method to recon-
struct the flame. Section 4 present experiment results from
multiple flame images, and Section 5 summarize and con-
cludes the paper.

II. RELATED WORK
Image based 3D scene reconstruction has been widely studied
over the past 30 years, with remarkable results in computer
graphics and vision areas. 3D scene reconstruction based
on multiple images commenced with stereo vision based
approaches [12]. Okutomi and Kanade [13] extended stereo
vision based 3D reconstruction to multiple cameras and pro-
vided virtual reality using multiple view video acquisition
and 3D rendering [14]. Kang et al. [15] proposed a multiple
view stereo reconstruction method from images with large
occlusions. However, these methods were designed to recon-
struct depth maps from particular viewpoints, and hence were
not suitable for full 3D scene reconstruction from images
obtained from multiple surrounding cameras. Image based
visual hull reconstruction [16] allowed real-time 3D scene
reconstruction from multiple view images, where the algo-
rithm does need not solve the correspondence problem, but
simply calculates the convex hull of the silhouettes in all view
images.

Although the visual hull method is robust when the cam-
eras surround the object, a concave object cannot be recon-
structed using only silhouettes. This problem was solved
by a voxel coloring method [17]. Subsequently, numerous
multiple image based 3D reconstruction approaches have
been proposed for surface reconstruction and free-viewpoint
rendering from multiple view video acquisition in controlled
indoor studio environments [18]–[21]. The basic principle for
volumetric reconstruction is to find a classification for all
elements in a discretized volume to describe if they belong
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to the surface of the 3D object using spatial appearance and
geometric detail information [22]. The fundamental concept
of photo consistency is that only voxels that intersect the
object’s surface have consistent appearance in the various
input images, whereas other voxels project to incompatible
image patches. Voxel carving by estimating photo consis-
tency simplifies geometric reconstruction, but requires many
input images to achieve photo realistic rendering. It is also
effective to reconstruct opaque object surfaces, but is unsuit-
able to reconstruct flame, because it must reconstruct the
surface and inner volume of the target object.

Thus, 3D reconstruction and adequate rendering of
semitransparent objects, such as fire or smoke, remain
open problems in computer graphics. Some approaches
extended surface reconstruction techniques considering
transparency [23]. Computerized tomography (CT) methods
are specialized for the ill-posed situation of sparse views,
and employ various techniques to regularize the problem,
including favoring local smoothness in a statistical frame-
work, assuming prior shape models, and coarsely discretizing
density levels [24], [25]. Hasinoff and Kutulakos [11] devel-
oped a spatially compact basis to reconstruct the density field
that also enabled convex representation of the density field.
Their method provided an efficient 3D reconstruction of fire
with only few images.

Sparse signal representation has been recently shown as
a powerful tool to acquire, represent, and compress high
dimensional signals, and efficiently reconstruct the signal.
Mathematically, solving a sparse representation and learning
involve seeking the sparsest linear combination of basis func-
tions from an over-complete dictionary. The basic concept
to represent or reconstruct signals with sparse samples has
extremely important application for many practical fields,
such as signal processing, machine learning, computer vision,
and robotics [26].

Compressive sensing is based on the principle that signal
sparsity can be used to recover the original signal from signif-
icantly fewer samples than required by the Shannon-Nyquist
theorem [27]–[29]. Compressive sensing algorithms gener-
ally include three basic components: sparse representation,
encoding measuring, and reconstruction algorithm. In partic-
ular, sparse representation approximately solves a system of
equations with sparse vectors, and has been widely applied
to pattern recognition, because it uses linear combinations
of training samples to represent the test sample and compute
sparse representation coefficients of the linear representation
system.

III. THREE-DIMENSIONAL DENSITY RECONSTRUCTION
USING COMPRESSIVE SENSING
This study proposes a density field reconstruction method
D(x) = (φR(x), φG(x), φB(x)) for a 3D frame object using
its 2D projection images {Ij}Kj=1 captured from K preassigned
cameras. We regard each projected image, Ij, to be defined
on a region Ij(�) in R3, called the silhouette (region) of Ij).
As shown in Fig. 1, the relationship between 3D flame and its

FIGURE 1. Flame in a 3D scene and the projected images. The proposed
approach estimates the density field component φ(x) using the projected
intensity values of multiple images.

projected images are represented using its camera calibration
data within 3D candidate region. We simplify the process by
reconstructing the 3D density component functions φ(x, y, z)
of D(x, y, z) wholly rather than separately computing the
epipolar plane φ(x, y, z0) for each z0. We recover D(x) by
solving compressive sensing (as given in (6), below) to avoid
blurring in reconstruction.

Therefore, flame image based 3D reconstruction is sep-
arated into two steps, explained in detail in subsequent
sections.

1) Search the target object 3D candidate region, � ⊂
R, from silhouette images, Ij(�), of the flame to
reduce computational cost by reducing the number of
unknown variables.

2) Estimate the flame density field using compressive
sensing to recover a relatively sparse density field from
a limited number of intensity measurements.

A. NOTATION AND TERMINOLOGY
For clarity, Table 1 summarizes the mathematical symbols
and notations employed in the reconstruction process. Lower
case letters are employed for real variables or real valued
functions; and upper case letters for multi-dimensional terms,
such as images and domains. Constants are generally pre-
sented as lower case Greek letters, and vectors are assumed to
be columnar, and presented in boldface. However, we denote
dimension related constants as K ,N , and M .

B. THREE-DIMENSIONAL ESTIMATION
OF FLAME CANDIDATE REGIONS
To recover any density function component, φ, of the density
field, D(x), we simply initiate the bounding box R of the
3D flame, as shown in Fig. 1. However, R contains many
points unrelated to frame density, which increases computa-
tion size (i.e., the number of unknowns in (4)). To effectively
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TABLE 1. Symbols and notations for reconstruction.

FIGURE 2. Three-dimensional candidate region estimation from the
intersection of possible cones containing the object.

estimate the 3D density field, we must reduce the computa-
tional domain by estimating the flame distribution candidate
region, �.
The procedure to estimate � starts by finding the 3D

related region from each projected image plane Ij, j =
1, . . . ,K . Let Cj be the perspective projection for the image
plane Ij with corresponding silhouette region Ij(�) ⊂ R3.

Then, consider the inverse region

�j = {x ∈ R : Cjx ∈ Ij(�)} =
⋃

z∈Ij(�)

C−1j z,

where j = 1, . . . ,K ; and C−1j z denotes the line segment in R
such that Cj(x) = z. Then we construct � by intersecting all
subregions �j, as shown in Fig. 2,

� =

K⋂
j=1

�j = {x ∈ R : Cjx ∈ Ij(�), j = 1, . . . ,K }.

In practice, a discrete version of � is commonly obtained by
intersecting the cones generated by back projecting the object
silhouettes [16], [30].

C. THREE DIMENSIONAL DENSITY ESTIMATION
USING COMPRESSIVE SENSING
The 3D density field estimation of the flame within a 3D can-
didate region� is extracted from the information of the pixel
intensities frommultiple projected images Ij around the target
object in �. Inevitably, this method gives rise to the under-
determined system because the number (M ) of the unknown
variables φ(x) for x ∈ � is much greater than that (N ) of
known pixel values. That is, the relationship between the
projected image and the density field of the semitransparent
object in Fig. 1 can be formulated with N << M as in Fig. 3.
Numerous approaches have been proposed to solve the under-
determined system.

FIGURE 3. A semitransparent object in a three-dimensional scene and
corresponding projected images. The proposed approach estimates the
density field, D(x), using the projected intensities for multiple images.

Since the computation domain � was obtained by silhou-
ette back projection, φ(x) has zero density for many points
x ∈ �. Therefore, φ(x) values are sparse in �, which is a
required property for φ. The sparse representation method
for under-determined systems finds the sparsest solution,
uniquely recovered by solving a convex optimization with
the smallest l1 norm when φ is somewhat sparse. Sparse
representation and compressive sensing provide a rigorous
mathematical framework to reconstruct the signal by find-
ing solutions to under-determined linear systems [27]. This
method is based on the principle that signal sparsity can be
exploited through optimization to recover from significantly
fewer samples than required by Shannon-Nyquist sampling.
Thus, we estimate the density field of the semitransparent
object using the pixel intensities of the projected images,
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based on compressive sensing, providing an effective solution
of the under-determined system.

Let us consider the proposed case in detail. We want
to reconstruct the flame 3D density field D(x) =

(φR(x), φG(x), φB(x)) using K simultaneously captured 2D
images Ij(u, v) of size c× d . Since the dynamic object is not
a large, thick target, and is captured at relative close distance,
we may simplify model (1) by assuming that J (x) is constant
self-emission, and transparency τ (x) remains constant, which
are commonly provided in existing literature on combustion
analysis (see [11] and references therein). Background radi-
ance, Ibg, is also preassigned, so we treat this as a zero image
by absorbing it into I . We may assume some transformation
for (1) such that the intensity at pixel p of I related to each
component φ(x) of D(x) becomes ([11])

Ip =
∫ L

0
φ(t) dt, (2)

and we discretize (2) component by component to provide
N = K · c · d linear equations,

pi =
∫
li
φ(x)dx =

∑
x∈li

φ(x), i = 1, . . . ,N , (3)

where, each li is a ray from a camera to a pixel point through
region R = {x = (x, y, z) ∈ R3

: 0 ≤ x, y, z ≤ a}, where φ is
defined. Since the particles of a dynamic object, such as flame
or smoke, stay together and continuously move, we assume
that φ has a compact support {x ∈ R : φ(x) 6= 0} inside a
region � ⊆ {x = (x, y, z) ∈ R : 0 ≤ x < mx , 0 ≤ y <
my, 0 ≤ z < mz}, such that φ(x) is nonnegative at each voxel
x ∈ � and zero outside �.
Thus, we number the points in � as {xk}Mk=1 and represent

(3) using vector notation as

A8 = P (4)

where P = (p1, . . . , pN )T ; 8 = (φ(x1), . . . , φ(xM ))T ; and
A = (aik ) is an N ×M binary matrix,

aik =

{
1, if xk ∈ li ∩�

0, otherwise.
(5)

Since we simultaneously obtain projected images from a
few cameras, the system is under-determined (N < M ),
so there can be infinitely many solutions to (4), called the
photo consistent density field [11]. Before we attempt to
find a solution, we closely examine (4) and related terms.
From (5), all entries of A are either zero or one, i.e., A is a
binary matrix, and the unknown vector8 originates from the
density function φ(x), hence all components are nonnegative.
The support set of φ(x), i.e., the semitransparent objects
shape, is within �, and is relatively small compared to the
� domain; thus, the vector 8 is sparse. We reconstruct the
density function φ by considering all cases, and the nonneg-
ative LARSE-LASSO algorithm ([31]–[33]) to solve the

FIGURE 4. Experimental setup for three-dimensional (3D) reconstruction
of semitransparent objects by capturing multiple images of flame and
smoke. From left to right: captured images, silhouette images, and
camera calibration data. (a) Flame images and corresponding silhouette
images using background subtraction. (b) 3D candidate region using
image based visual hull and 3D camera positions.

nonnegative sparse constrained optimization

argmin
9∈RM

‖A9 − P‖2`2 + λ‖9‖`1 ,

constrained to 9 ≥ 0, (6)

where 9 ≥ 0 indicates that all components of 9 are nonneg-
ative.

We consider the suitability and effectiveness of the pro-
posed nonnegative sparse optimization to reconstruct D(x).
In (6), ‖A9 − P‖`2 is related to the `2-norm and controls
photo consistency to density and global fitness. The second
term enables the reconstructed density to be sparse, because
the `1-norm is a well-known successful alternative of the
`0- pseudo norm ([27], [34] and references therein). Non-
negative sparse optimization and nonnegative matrix fac-
torization have been shown to be empirically successful in
extracting meaningful features from a diverse collection of
real-life data sets [35]. Nonnegative sparse optimization has
also been widely considered in machine learning, pattern
recognition and computer visionmodels ([36]–[39]). Sparsity
reflection by the `1 penalty termwith nonnegative constraints
implies the minimized `0-norm of the histogram of the recon-
structed images, and avoids scattering and blurring of the
reconstructed images.
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FIGURE 5. Visualizatioin of the proposed CS based flame density fields estimation procedure, in successive steps numbered from 1 to 1600. Subimages
represent the estimated density fields from top view in every 200 iteration steps. (a) iteration # 200. (b) iteration # 400. (c) iteration # 600.
(d) iteration # 800. (e) iteration # 1000. (f) iteration # 1200. (g) iteration # 1400. (h) iteration # 1600.

This approach simplifies the reconstruction process by
obtaining the whole 3D density field in a single step rather
than separately computing epipolar planes parallel to an axis,
as required in the density sheet decomposition method [11].
This enables us to reconstruct a realistic smooth shape rather
than a polytope obtained from the density-sheet decomposi-
tion, which is a major advantage because a convex combina-
tion of polytopes remains a polytope.

Updating the semitransparent object density field
using CS, the nonnegative sparse optimization enables recon-
structing the optimal 3D density by reducing blurring com-
pared to previous solutions for under-determined systems,
such as the algebraic reconstruction technique (ART) [40].

IV. EXPERIMENTAL RESULTS
Section IV-A discusses the experimental for the proposed
image based flame 3D reconstruction, and Section IV-B
reports 3D reconstruction using the proposed approach for
multiple captured images.

A. EXPERIMENTAL SETUP
We demonstrate the robustness and effectiveness of the pro-
posed approach using image sequences captured from a nat-
ural environment. The fire image sequences have 320 ×
240 pixel resolution, include camera calibration, and were
captured from eight convex positions around the target
object. Figure 4 shows the captured and silhouette images
used to find the flame 3D candidate region (Fig. 4(a)).
The candidate region was estimated using its input RGB
images, silhouette images, and camera calibration data,
as shown in Fig. 4(c)). The proposed method was imple-
mented in MATLAB and evaluated on a PC with Intel(R)
CoreTM i7-7700 CPU (3.66GHz), 16 GB RAM.

B. THREE-DIMENSIONAL RECONSTRUCTION EVALUATION
The proposed CS based density field estimation was evalu-
ated in various views to validate robustness. Flame 3D den-
sity fields were estimated from flame 3D candidate regions
produced from photo consistency-based voxel carving using
projected images, silhouette images, and camera calibration
data. We estimated and visualized the density fields within
the candidate region in the projected arbitrary view, using (1)
to quantitatively evaluate performance.

First, we demonstrate how the 3D density fields can be
iteratively updated using CS within the candidate region.
Figure 5 represents projected 3D density fields from a top
view according to its iteration. The 3D density fields are
meaningless after only a few iterations, but this is updated
using the relationship between the reference image intensities
and the 3D density fields. Flame boundary and background
are more clearly represented and deblurred with increas-
ing iterations. The loss function for sparse reconstruction is
composed of fitting term and sparse regularization terms,
as shown in (6). Experimentally, the loss function is opti-
mized by iteration 1600. This result stems from the fact that
the sparse recovery generates images with its density sparse
or concentrated in a small subregion [41], [42] (also see [43]
and references therein). That is the reconstructed density φ
has the property that the supporting set {x ∈ � : φ(x) 6= 0}
or its histogram {φ(x) : x ∈ �} is small in its set size and
there exists a small subset K ⊂ � such that∑

x∈�

φ(x)2 =
∑
x∈K

φ(x)2 or
∑
x∈�

φ(x)2 ≈
∑
x∈K

φ(x)2.

As shown in Fig. 5, the reconstruction performance reflect
well this property, gradually generating approximations in
which the blurring disappear and become clear.
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FIGURE 6. Estimated density fields of the flame at the various arbitrary views which are reconstructed from few reference images. The density fields at an
arbitrary views are estimated using camera calilbration data and its 3D density fields.

Secondly, we then represent the density field reconstruc-
tion outcomes in an arbitrary view. Figure 6 shows the density
fields projected into 10 different viewpoints. The 3D density
fields are projected using its camera perspective projection
matrix of the image and the 3D density fields from (3) to
visualize the reconstructed 3D density fields. Our CS based
flame 3D density fields are estimated by constructing opti-
mized linear combination of the 3D scene and projected
images by minimizing the object function. Apart from photo
consistency-based density fields estimation [11], our flame
3D density fields estimation is less dependent on the number
of views and camera geometry, we can effectively reconstruct
the flame density fields at an arbitrary viewpoint.

Lastly, we use only seven images among the eight reference
images to reconstruct the density fields in the viewpoint of the
eighth reference image, to validate the proposed CS based 3D
flame reconstruction, and compare the reconstructed density
fields with the original eighth reference image, to validate
the robustness of the proposed CS based 3D reconstruction
of flame, as shown in Fig. 7. The reconstructed shape and
density are very similar to the original reference flame image.
It is worth noting that the proposed method is less affected by
the initial camera position and reconstructs a realistic smooth
shape because we reconstruct the whole density function
φ(x, y, z) in a single process rather than by generating each
density sheet φ(·, ·, z) for each z and merging them to build
the whole body.

FIGURE 7. Comparison of the projected image and its density fields using
our proposed approach at an arbitrary viewpoint to show the robustness
of the proposed approach.

V. DISCUSSION
This paper proposes a density field estimation of complicated
3D structure of the flame from multiple projected images
captured around the flame. The proposed non-parametric
3D reconstruction using CS shows robustness in recon-
structing the original shape without prior information of the
target object, and requires only a small number of linear
measurements.

We propose that the reconstruction method based on CS
using flame’s images is often represented in terms of only a
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few data pixel values in the spatial domain using the effective
loss function, composed of cost and sparsity regularization
terms. The CS based flame 3D density fields reconstruction
approach is less dependent on the number of projections
collected around the target object, allowing the original shape
to be recovered with only a few measurements by preserving
sparsity. Experimental validation shows the proposed method
is very effective to reduce blurring effects within the flame
and preserve the boundary between flame and background.

This method can be applied to realistically visualize smoke
or fire evolution. In modeling the flame evolution, most
researchers have used the Navier-Stokes (NS) equation.
To effectively solve solutions in accordance with reality,
the initial shape (the domain for the NS equation) is sensitive,
so we are required to initialize the shape as close as possible
to the actual data. Thus, our proposed flame 3D density fields
estimation and reconstruction can be applicable for the data
assimilation in modeling fire or smoke from a few still image
sequences.
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