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ABSTRACT Biometric recognition is already a big player in how we interact with our phones and access
control systems. This is a result of its comfort of use, speed, and security. For the case of border control,
it eases the task of person identification and black-list checking. Although the performance rates for
verification and identification have dropped in the last decades, protection against vulnerabilities is still
under heavy development. This paper will focus on the detection of presentation attacks in fingerprint
biometrics, i.e., attacks that are performed at the sensor level, and from a hardware perspective.Most research
on presentation attacks has been carried out on software techniques due to its lower price as, in general,
hardware solutions require additional subsystems. For this paper, two low-cost handheld microscopes with
special lighting conditions were used to capture real and fake fingerprints, obtaining a total of 7704 images
from 17 subjects. After several analyses of wavelengths and classification, it was concluded that only one of
the wavelengths is already enough to obtain a very low error rate compared with other solutions: an attack
presentation classification error rate of 1.78% and a bona fide presentation classification error rate (BPCER)
of 1.33%, even including non-conformant fingerprints in the database. On a specific wavelength, a BPCER
of 0% was achieved (having 1926 samples). Thus, the solution can be low cost and efficient. The evaluation
and reporting were done following ISO/IEC 30107-3.

INDEX TERMS Biometrics, fingerprint biometrics, presentation attack detection.

I. INTRODUCTION
Biometrics refers to the automated recognition of individ-
uals based on their physical or behavioral characteristics.
Although its use has been widespread due to its convenience
and it has been broadly tested, there are still vulnerabilities
inherent to the technology. A common type of attack is the
presentation attack, that is, a presentation to the biometric
data capture subsystem with the goal of interfering with the
operation of the biometric system [1]. These vulnerabilities
need to be addressed and solved.

This work will focus on the fingerprint modality,
used widely on critical infrastructures and access and
border controls. Numerous approaches have been studied
and implemented to overcome presentation attacks on fin-
gerprint biometric systems [2], divided into software and
hardware mechanisms. On the software side, there are
static methods (sweat pore detection [3]–[5], ridge and

valley [6]–[8], perspiration [9], [10], etc.) and dynamic
methods (skin distortion [11], [12], perspiration [13]).
For the hardware approach, research has been made on
challenge/response [14], odor [15], pulse oximetry [16],
multispectral imaging [17]–[19] and OCT [20]–[22], among
others.

Based on the standard ISO/IEC 30107-3 - Biometric
presentation attack detection testing and reporting, the
IUT (Item Under Test) shall be categorized into the
Presentation Attack Detection (PAD) subsystem, data capture
subsystem and full system (Fig. 1). For this work, the perti-
nent block is the PAD subsystem, that is, hardware and/or
software that implements a PAD mechanism and makes an
explicit declaration regarding the detection of presentation
attacks.

Themetrics that concern us for this work are the proportion
of incorrect classifications of:
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FIGURE 1. Diagram of categories of the IUT (Item Under Test):
PAD subsystem, data capture subsystem and full system
This work falls on the first category (in green).

TABLE 1. Software PAD performance with independent evaluators.
Results were gathered from [2].

• Bona fide presentations: interaction of the biometric
capture subject and the biometric data capture subsystem
in the fashion intended by the policy of the biometric
system, and

• Attack presentations: presentation to the biometric data
capture subsystem with the goal of interfering with the
operation of the biometric system.

The proportion of bona fide presentations incorrectly clas-
sified as presentation attacks is called BPCER (Bona fide
Presentation Classification Error Rate), and its counterpart
is APCER (Attack Presentation Classification Error Rate),
as stated in the standard. Two tables (Table 1 and Table 2)
were done gathering the state-of-the-art results for APCER
and BPCER, whenever possible, because many studies do
not give results according to the standard, and others do not
report numerical results at all. In Table 1, the reported results
are the outcome of an evaluation performed by independent
entities, using the algorithms the authors detailed. On the
other hand, Table 2 gathers results that are self-declared by

TABLE 2. Software PAD performance with self-declared results and
evaluations. Results were gathered from [2].

the authors, without having any outside evaluators testing the
system. Also, the materials used for creating the fake fingers
are detailed in both tables.

As it can be noticed, results that are self-reported have
much lower error rates than those that went through an
independent evaluation using the same methods. The average
APCER for the independent evaluations of software solutions
is 31.12%, while the BPCER is 25.98%. On the other hand,
the APCER average for self-declared results is 5.74% and the
BPCER is 5.09%.

On the hardware side, there are scarce reports on results,
few databases exist and those that do are very small.
In these cases, the evaluation results have been self-declared.
APCER and BPCER (whenever possible to find) are shown
on Table 3.

Those results that show a zero percent error rate are proba-
bly due to not having done an extensive evaluation, but only a
concept proposal and trial with few users. Studies on Optical
Coherence Tomography (OCT) have been more complete
and, in general, adapted to ISO/IEC 30107-3. Although some
reports show promising results for the said technologies, there
are some drawbacks:

• OCT: expensive (thousands of euros), needs a few
seconds to capture the fingerprint (0.02s for a genuine
finger [45] or up to 56s for another case [41]) and the
finger has to stay very still because it is easy to get
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TABLE 3. Hardware PAD performance.

disturbances. There are two commercial products from
IDEMIA [46] and THORLABS [47], but no evaluation
results are published.

• Challenge-response: in this case, the user is given a
tactile pattern on the sensor surface and he/she needs to
identify the pattern as a response. The problem is that
the system is difficult to use, as the user cannot reliably
perceive the proposed pattern. Also, it is uncomfortable
for the user due to the currents sent to the finger.

• Odor analysis: although it works well with fake fin-
ger materials like silicone, others are difficult to iden-
tify because the sensor’s response is similar to that
obtained in the presence of human skin (for instance,
with gelatin).

• Pulse oximetry: users must hold their finger for up to
four seconds until the pulse sample is obtained and
it does not work with thin materials, as pulse can be
transmitted.

• Multispectral: although it has been claimed that this
solution is very efficient, this present work shows that
only one wavelength may be enough to distinguish fake
from real fingerprints, simplifying the hardware needed.
Also, the solutions noted on Table 3 are commercial and
not academic, so the results are not public.

This work focuses on obtaining a low-cost and efficient
hardware solution for detecting presentation attacks. For that
end, 2 handheld microscopes with special lighting were used
to perform a PAD (Presentation Attack Detection) evalu-
ation by capturing 7,704 images of fake and real finger-
prints of 17 subjects. These images were processed and
classified using Bag of Features algorithms, obtaining an
APCER of 1.78% and a BPCER of 1.33% at 70% train-
ing samples (3.99% and 1.11% for 50% training, respec-
tively). It must be noted that these results were obtained even
including a capture subject with non-conformant fingerprints
(no ridges or valleys) in the database. Moreover, no finger-
print samples were left out, minus those that were the evalu-
ator’s fault – wrong finger, wrong LED wavelength turned
on. All results are given in accordance to the standard on
Presentation Attack Detection ISO/IEC 30107-3.

II. METHODOLOGY AND IMAGE CAPTURE
According to several works on fingerprint and skin
imaging [48]–[51], different features of the skin can be
observed at different wavelengths, depending on the pen-
etration of the light, and thus, on the wavelength used.
For this reason, it was decided to use two special lighting
microscopes: Dino-Lite AD4113T-I2V (UV and IR lights,
395nm and 940nm respectively) and Dino-Lite Edge
AM4115T-GRFBY (fluorescent lighting, excitation at 480nm
and 575nm and emission at 510nm and 610nm). The cost of
these microscopes was less than 500e and less than 1000e
respectively at the time of writing, but after the study it will
be concluded that a cheaper solution is possible, as only one
excitation and one emission wavelength will be needed. As it
is usually the case, the solutions used during research stages
are more expensive than the final commercial solution. Once
the study is made, a simpler, cheaper system can be developed
by a manufacturer, as for the final product less microscope
amplification and less wavelengths will be needed for obtain-
ing the results. An overview of the skin penetration of each
wavelength can be seen on Fig. 2.

A PAD evaluation was carried out with the micro-
scopes, in order to test how well this technique performs
in detecting artefacts, following Common Criteria [52] and
ISO/IEC 30107-3 [1] standards.

The Common Criteria for Information Technology Secu-
rity Evaluation (referred to as Common Criteria or CC) is an
international standard (ISO/IEC 15408) for computer secu-
rity certification. One of its most relevant concepts to be
applied to biometrics is the attack potential measurement.
According to its guidelines, the attack potential can be mea-
sured as the effort to be expended in attacking a TOE (Target
of Evaluation, which in this case is the fingerprint sensor)
with a PAI (Presentation Attack Instrument or fake finger),
expressed in terms of an attacker’s expertise, resources and
motivation. These parameters can be quantified by following
a score system detailed in Common Criteria’s CEM, which
gives the final value for the Attack Potential. This value
can then be mapped to be Basic, Enhanced-Basic, Moderate,
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FIGURE 2. Different skin penetration levels depending on wavelength of
digital microscopes.

FIGURE 3. Molds of capture subjects made of silicone.

High or Beyond high attack potentials. In sum, the attack
potential is a measure of how easy it would be for an attacker
to successfully spoof a system.

Moreover, also according to this standard, the evaluator
is not expected to determine the exploitability for poten-
tial vulnerabilities beyond those for which a Basic attack
potential is required to effect an attack. That is, once a fake
finger material with a Basic attack potential has proven to be
successful, no attacks that would require a higher difficulty
should be made, because the system is already confirmed to
be vulnerable to easier attacks.

Taking this in to account for our study, the easiest attacks
were performed by using readily available and low-cost mate-
rials for building fake fingers. A test was designed following
procedures from the Standard ISO/IEC 30107-3 [1] and its
details can be seen on Table 4.

The fake fingers were built following very well-known
techniques from the literature [24], [53]–[55]. Silicone molds
created for the study are shown on Fig. 3.

A Matlab capture tool was developed to obtain images of
fingerprints in an automatedmanner. It lets the evaluator enter
bona fide and attacker IDs, number of attempts per finger,
visit number, image resolution, whether they are real/artefact
fingers, gender, artefact species, wavelengths and fingers.

TABLE 4. Details of the database following requirements
of ISO/IEC 30107-3.

The app opens a window to visualize the microscope image
output and captures the images in a sequence depending on
the chosen parameters.

As expected, different lighting conditions gave out differ-
ent features when inspecting fingerprint images. Examples of
images in different wavelengths are shown on Fig. 4.

As it can be observed, the outputs can be easily distin-
guished in some cases. Play-Doh, the most common material
used for spoofing, has very different features in every wave-
length, so it can be easily detected (smoother or no edges,
different color). Latex, nail polish and gelatin artefacts have
sharper edges (mostly in UV and IR wavelengths). White
glue has very clear bubbles on the 575/610nm wavelength,
no matter how carefully the artefact is created (they cannot
be seen with a naked eye).

A. FINGERPRINTS WITH SPECIAL CHARACTERISTICS
Commonly, in evaluations found in the literature, fingerprints
with special characteristics are discarded from the test. In this
work, we chose to be inclusive and execute a realistic study,
so a subject with fingerprints with special characteristics was
included. This user presented non-conformant fingerprints
due to a skin disease, meaning that they did not have any
ridges or valleys, so they would be deemed unfit for recog-
nition. On Section IV, we calculate results both including and
excluding this subject with the goal of measuring the impact
of non-conformant fingerprints in realistic situations. As it
can be seen on Fig. 5, ridges and valleys are barely noticeable,
if not at all.

III. PROCESSING AND CLASSIFICATION
For this work, no preprocessing or cropping was necessary
before feeding the images to the chosen model, Bag of
Features.
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FIGURE 4. Examples of real and PAI images captured in different
wavelengths.

This model, initially used for document classification
known as Bag of Words, can also be suitable for fingerprint
image classification. It does a good job distinguishing tex-
tures by creating frequency distributions of image patches,
as it is a vector of occurrence count of a vocabulary of local
image features. Thus, it was thought to be adequate for this
case, as differences in textures could indicate if a finger is
real or fake.

The model uses SIFT feature descriptors, appropriate for
this case because they handle well intensity, rotation and scale
differences. Then, these vector-represented patches are sorted
into ‘‘codewords’’, which in turn convert into a ‘‘codebook’’.
For this, k-means clustering is performed automatically and
the codewords are defined as the centers of these clusters.
This way, each image patch is mapped to a specific codeword
and any image fed to the algorithm can be represented by a
histogram of codewords [56].

The results were calculated 10 times each and averaged
and a cross-comparison was done with training at 10%, 30%,
50%, 70% and 90% of samples (randomized by capture sub-
ject, and never including the same subject both for training
and testing). The vocabulary size of Bag of Features was 850,
80% of the strongest features were used and the grid step was
of 16x16. In order to avoid adjusting parameters for only this
specific database, these parameters were chosen with only the
first few captured samples. Then, once the database capture

FIGURE 5. Examples of non-conformant fingerprints of one user of the
database with a skin disease, in different wavelengths.

FIGURE 6. APCER cross-comparison results for each lighting mode. Every
result was calculated 10 times and then averaged.

was completed, the algorithm was applied without changing
the parameters and they still performed well. In all cases,
the subjects used for training were not used for testing.

Two tests were made for classification: separate wave-
lengths and separate wavelength and channel. This way,
it could be seen which wavelengths and channels behaved
best for performance.

IV. RESULTS
This section gathers the results obtained in different tests,
showing the classification error rates APCER and BPCER,
as explained on the introduction. The tests performed are:
classifying each wavelength separately, classifying each
wavelength and RGB channel separately, using only the
R channel of the 575/610nm wavelength and, lastly, leav-
ing out the non-conformant samples of one capture subject
(as it was explained in previous sections).
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FIGURE 7. BPCER cross-comparison results for each lighting mode. Every
result was calculated 10 times and then averaged.

FIGURE 8. APCER and BPCER results separated by wavelength and
channel. 70% training, 30% testing.

A. CLASSIFYING EACH WAVELENGTH SEPARATELY
Each microscope has two different lighting modes:

• Dino-Lite AD4113T-I2V:
1. UV (395nm)
2. IR (940nm)

• Dino-Lite AM4115T-GRFBY: fluorescent lights.
1. Excitation at 480nm and emission at 510nm
2. Excitation at 575nm and emission at 610nm

Thus, each mode was studied separately. The samples were
fed in RGB to the algorithm, and it converts them to grayscale
before classification. The database includes non-conformant
samples from a subject with a skin disease. Results for
APCER and BPCER cross-comparisons can be seen on Fig. 6
and Fig. 7, respectively.

FIGURE 9. Noticeable variation in R channel.

FIGURE 10. APCER cross-comparison with different artefact species.
PLA = Play-Doh, GLT = gelatin, NPL = nail polish, WGL = white glue,
LTX = latex.

It can be observed that some wavelengths perform better
than others. 395nm and 480/510nm seem to work better for
APCER results but, for the BPCER case, 480/510nm and
940nm yield a lower error rate.

B. SEPARATED BY WAVELENGTH AND CHANNEL
It was decided to break down the tests also by RGB channels,
to check if some perform better than others. Results of this
are detailed on Fig. 8.

This study shows that the best performing conditions are
using the red channel of the 575/610nm mode, one of the
available lightings of the fluorescent microscope. With a
naked eye, it can be observed that there are indeed perceivable
differences (Fig. 9).

Interestingly, using the 480/510nm in the blue channel,
the BPCER is always 0% on this database. It was calculated
30 times. Thus, if wanted, only this channel could be used
for eradicating the BPCER error of classifying real fingers
as attacks. Nevertheless, this channel is the least suitable
for APCER, as the error is very high (76%).
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FIGURE 11. APCER and BPCER calculated by artefact species, wavelength and RGB channel.

TABLE 5. APCER and BPCER cross-comparison of 575/610nm wavelength
samples in the red channel. Results were calculated 10 times and
averaged.

As the 575/610nm wavelength in the red channel seems
to achieve lower error rates, a full cross-comparison was
performed with it and it can be seen on Table 5.

According to ISO/IEC 30107-3, APCER and BPCER shall
be calculated separately by artefact species. Thus, this sub-
section gathers the different results achieved per fake finger
material, using the 575/610nm lighting mode and taking the
red channel. The cross-comparisons for APCER and BPCER
can be seen on Fig. 10 and Fig. 12.

According to the graphs, the lowest APCER is clearly
for the Play-Doh case (0%), followed by gelatin (1.64% at
70% training). For BPCER, latex gives the lowest error rate,
1.36% at 70% training, and Play-Doh, gelatin and white glue
follow it with very similar rates: 2.41%, 2.35% and 2.34%,
respectively.

C. BY ARTEFACT SPECIES, WAVELENGTH AND
RGB CHANNEL
With the goal of having a more thorough study on wavelength
and channel influence on the different materials, errors were
calculated for each category classification. Similarly to sub-
section B, channels R, G and B and wavelengths 575/610nm,
480/510nm, 940nm and 395nm were separated to calculate
the different APCER and BPCER depending on the material
put to the test. Results can be seen on Fig. 11. As it can
be observed, some wavelengths and channels yield better
error rates than others for different materials. For instance,
the blue channel is the most problematic one when detecting

TABLE 6. Lowest error rates for each artefact species. Lower error rate
considers the lowest APCER and BPCER combination.

FIGURE 12. BPCER cross-comparison with different artefact species.
PLA = Play-Doh, GLT = gelatin, NPL = nail polish, WGL = white glue,
LTX = latex.

fake fingers, with error rates as high as 96.54% for white
glue in the 475/510nm wavelength. On the other hand, some
channels andwavelengths produce very promising error rates.
The lowest ones for each material are shown on Table 6
(70% of the samples were used for training)

D. TIME PERFORMANCE AND IMAGE SIZE
The duration of a PAD subsystem classification is important
for time-bound situations. A system that is meant for access
control requires that the process for verification is fast, for
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FIGURE 13. APCER and BPCER results for different image sizes, as well as
time elapsed for classifying 1 image. 70% of the samples were used for
training and the results were calculated 10 times and averaged.

TABLE 7. APCER and BPCER cross-comparison of 575/610nm wavelength
samples in the red channel, leaving out one capture subject’s
non-conformant fingerprints due to a skin disease. Results
were averaged 10 times.

convenience purposes. For other cases, like critical infrastruc-
tures where a high security level is required, taking more time
might be acceptable in exchange for lower error rates.

To study this matter, images from the 575/610nm wave-
length in the red channel were cropped to different sizes,
from 50px to 600px, and then the algorithmwas used again to
check if the performance held at smaller sizes. Then, the time
performance was calculated for each case, for classifying one
image as real or fake. The PC used for the calculations is an
Intel Core x64 i7-6700 CPU at 3.40GHz with 16GB RAM,
using MATLAB. The results can be seen on Fig. 13.

The graph shows an overview of the different trade-
offs between size, error rates and time performance. For
instance, at the 313x250px size, the error rates are quite
low (2.91% APCER and 2.17% BPCER) while the time to
classify one sample as real or fake is also low, 59.8ms, which
could be a balanced trade-off. Both APCER and BPCER
are best performing at the initial size, 750x600px (duration
being 141.7ms); nevertheless, the size of 438x350 leads also
to a low error rate, with an increase of 0.41% for APCER and
0,95% for BPCER (duration being 47.7ms).

E. LEAVING OUT NON-CONFORMANT FINGERPRINTS
As there is a user in the database with non-conformant fin-
gerprints due to a skin disease, another classification was

TABLE 8. Decrease of APCER and BPCER leaving out the capture subject
with a skin disease.

done leaving these samples out (90 fake and 36 real). As it
can be seen on Table 7, APCER and BPCER are still similar
to the values obtained including the user, meaning that the
system can work even with non-conformant fingerprints, as it
is represented on Table 8.

V. LESSONS LEARNED
This paper gathers a thorough evaluation on a presentation
attack detection technique and proposes a novel method to
acquire fingerprints, having carried out the capture (includ-
ing selection of hardware and the design of capture tools)
and processing, classification and results analysis. As an
outcome, a low-cost and good performing PAD subsystem
was obtained. This is meaningful because hardware solutions
have barely been researched and there are scarce reports, and
usually these methods yield a high cost.

It was seen that it is possible to achieve a low APCER and
BPCER values using only one wavelength (575nm) with a
filter (610nm) and taking only the red channel, which makes
it inexpensive and accurate (APCER of 1.78% and BPCER
of 1.33% at 70% training). Moreover, although it has to
be more thoroughly tested and with a bigger database, all
iterations of classifying the 480/510nm wavelength of the
blue channel have shown a BPCER of 0,00%. Furthermore,
it was discovered that Play-Doh artefacts are very easy to
detect with this approach, which is a very commonly used
material.

In addition, the database included one subject whose fin-
gerprints did not have any noticeable ridges and valleys due to
a skin disease, and it was seen that the attack detection error
only improved very slightly when removing these samples.
That means that this approach is also appropriate for these
cases.

As future work, a bigger database will be gathered, and
more approaches will be tried for the processing part, as well
as fusion methods for different wavelengths.
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