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ABSTRACT The fact that event driven systems can be modeled and implemented using unified modeling
language (UML) state chart diagrams has led to the development of code generation tools. These are tremen-
dously helpful in making software system designs and can even generate skeletal source code from these
designs. The implementation of such automatic code generation from state diagrams is not fully supported
by the existing programming languages. The major down side is that there is no one-to-one correspondence
between the elements in the state chart diagram and the programming constructs. The existing programming
elements cannot effectively implement two main components of the state diagram namely, state hierarchy
and concurrency. In this paper, we present a novel design pattern for the implementation of the state
diagramwhich includes hierarchical, concurrent, and history states. The state transitions of parallel states are
delegated to the composite state class. The architecture of the code generator and the step by step process of
code generation from UML state machine are proposed in the paper. The proposed approach is implemented
and compared with similar tools and the results are found to be promising.

INDEX TERMS Code generation, state machine, concurrency, hierarchy, history state, executable UML,
MDD.

I. INTRODUCTION
Automatic code generation from system designs is an
interesting research area in Model Driven Development
(MDD) [34]–[38]. This concept has versatile dimensions in
software industry. It is a part of model-based execution [10].
The idea behind this concept is that, before implementing
a system, we can model it using standard notations, like
UML [7], [8], [45]. Then compile and execute this model to
test the working of the system even before its full implemen-
tation. This idea is quite interesting since the coding and test-
ing phases of software development process are very much
expensive. The concept of model compilation can reduce the
effort we put for coding and testing, and in turn we can
improve the quality of the software. It can reduce the bugs in
the developed products. It helps us to refine the requirement
specification.

Another important aspect of model based execution is the
correlation between design and implementation code after
some software maintenance. Normally, the system designs
are used as a means of communication between the client
and the developer. Those designs will be used for sys-
tem implementation. During maintenance phase, the main-
tenance engineer changes the source code, but not the
designs. So, each maintenance work reduces the correlation

with the design and the source code. Gradually the sys-
tem design becomes obsolete and it may not have any
relation with the actual system. The model based execu-
tion gives a solution for this scenario. During maintenance
the engineer can change the system models instead of the
actual code, and then generate code out of the system
model.

The concept of model execution comes from the idea of
executable UML [10]. It says that a system can be mod-
eled as communicating objects. Each object has its own
state transition diagram. State diagram listen for events and
act accordingly. So the system can be modeled using class
diagrams, state chart diagrams and activity diagrams. The
interesting part is that these diagrams can contribute much
to the automatic code generation. The system modeled using
these three diagrams can be translated to implementation
code using code generation tools. Class diagrams help us to
generate structural codes and the other two diagrams help us
to generate behavioral codes. Out of these three diagrams,
UML state chart diagrams are most popular standard for
embedded system design [46] and event driven systemmodel-
ing [33], [40], [43]. This paper concentrates on statemachines
since it can generate 100% code out of simple state chart
diagrams.
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FIGURE 1. State chart essentials (Source: UML Reference manual, p. 527).

UML state chart diagrams can effectively represent the
behavior of event driven systems aka reactive systems. The
behavior of the event driven systems changes with the inter-
actions (events) by the environment. The state diagrams show
that the behavior of a system depends on the current input
to the system as well as the previous interactions by the
environment. Event driven systems modeled using the state
machines can represent the full life cycle of an object. The
different states of the object and the transition between those
states are all portrayed in this. The challenge is to work out
an efficient method to convert state charts to a program since
there is no programming construct exists to directly represent
elements in the state diagram.

In this paper we present a method to convert hierarchical
states, concurrent and history states to Java code. In our
method, we follow a design pattern based approach. A design
pattern gives the overall implementation outline using a class
diagram [41], [42]. The surveys on code generation from
state machines [26] show that the research outcomes are
not giving an effective method to implement the concurrent
states. We present a design pattern to implement the state
hierarchy, concurrency, and history state.

The main contributions of the paper are as follows:
• It presents an easily understandable and reusable design
pattern for state machine implementation.

• The design pattern is expandable and is able to handle
hierarchical states.

• It gives an effective method to implement compo-site
states with parallel regions in object oriented way.

• It presents a simple method to keep shallow and deep
history in a state machine

The paper is organized as follows. Section 2 gives an
overview of the UML state chart diagrams. Section 3 sur-
veys different approaches to program UML state charts.
Section 4 presents the concept of implementing hierarchy,
concurrency, and history in state machines. Section 5 intro-
duces a design pattern for implementing UML state chart
diagrams. Section 6 presents a case study to demonstrate the

proposed approach. Section 7 describes the code generation
process. Section 8 presents the related works. Section 9 evalu-
ates and compares the proposed approach with related works
and Section 10 concludes the paper.

II. OVERVIEW OF UML STATE CHART DIAGRAMS
A state machine can be defined as a graph of states and transi-
tions [7], [44]. State chart diagrammay be attached to classes,
use cases, and collaborations to describe the dynamics of
an individual object. It models all possible life histories of
an object of a class. Any external influence to the object is
called as an event. The response to the event may include the
execution of an action and transition to a new state. Events
may have parameters that characterize each individual event
instance. Inheritance and concurrency can bemodeled in state
machines. A sample state chart diagram is shown in the Fig.1.

The commonly used features of a state chart diagram are
listed as state, transition, event, guard, entry action(s), exit
action(s), transition action(s), and internal action inside state.

The state of an object is defined as a time period in its
life. During this period, the object may wait for some event,
or it may perform some activity. There can be named states
as well as unnamed (anonymous) states. The transition is the
response of the object to an event occurrence. Transition will
have an event trigger and a target state. It may include a
guard condition, and an action. There can be different types
of transitions like, entry action, exit action, external transi-
tion, and internal transition. A Guard condition is a Boolean
expression which is evaluated when a trigger event occurs.
If the expression evaluates to true, then the transitions occurs.
An action is an atomic computation which can be a simple
assignment or arithmetic evaluation statement. It can also be
a sequence of simple actions. The Entry and Exit actions exist
in composite states which contains nested states. Entering the
target state executes an entry action and when the transition
leaves the original state; its exit action is executed before the
action on the transition and the entry action on the new state.
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The composite state may contain sequential states (OR
type states), or (and) concurrent states (AND type states). The
concurrent states form orthogonal regions in the composite
states. The states in two orthogonal regions are concurrent
states. For example, in figure 1, state C is a composite state
which contains two orthogonal regions. In one region, there
are two sequential states D and E, and in the other region there
are two states F and G. The existence and execution of state
F and G is independent of that of states D and E. In other
words, states F and G are concurrent with states D and E.

In this paper, we discuss how these elements can be rep-
resented in an object oriented program. We assume that the
source code has to be generated automatically from the state
chart diagram with the help of some CASE tool. The follow-
ing section examines different methods to map the state chart
diagram to program constructs.

III. COMMON APPROACHES TO IMPLEMENT
STATE MACHINES
In this section we discuss standard state machine implemen-
tation techniques which we can find in the literature. The
methods include nested switch statement, state table, and
state design patterns. The section ends with a proposal of
new approach which supports hierarchical state machines and
concurrent states.

A. USING SWITCH STATEMENT
The finite state diagram shown above describes the behavior
of a combination lock whose combination is 2-1-8. The Finite
State Machine (FSM) can be in one of four possible states:
NoneRight, OneRight, TwoRight, and Open.

The general structure of the state chart implementation
using switch statement is shown below.

void LockStateMachineCASE( unsigned char NewEvent)
{static unsigned char CurrentState;
unsigned char NextState;
switch(CurrentState)
{
case NoneRight:
switch(NewEvent)
{case ‘2’:NextState = OneRight;
break;
default: break;
}
break;
case OneRight:
switch(NewEvent)
{case ‘1’:NextState = TwoRight;
break;
default: NextState = NoneRight;
break;
}
break;
case TwoRight:
switch(NewEvent)
{case ‘8’:NextState = Open;

OpenLock();
break;
default:NextState = NoneRight;
break;
}
break;
case Open: NextState = NoneRight;

LatchLock();
break;

}
CurrentState = NextState;
return;
}
The system state is implemented as a variable and events

are implemented as methods. The switch statement receives
the current state and the nested switch statement chooses
appropriate action for each event. This is straight forward
method for state chart implementation [5]. The entire system
will be represented in a class called context class and the event
methods are its members.

Even though it’s a simple method of state chart imple-
mentation, it can’t support concurrent states in a state chart
diagram. In addition to that, the composite states cannot be
implemented using this method, since the state hierarchies
cannot be represented in switch case statements.

A different implementation method is proposed by Jakimi
and Elkoutbi [2]. In his approach, the state machine is rep-
resented as a class and the states are the attributes of the
class. The events in the system are represented as the member
functions of the class. An example of this approach is given
in figure 2. It is a state diagram of an engine which has two
states; idle and running. One event in the system is switchON
which causes the state transition. The state diagram is imple-
mented as class Engine. An integer attribute, on, is defined
to represent the system state. When the system in idle state,
on = 0; and when the system is in running state, on = 1.
The event is represented as the member function switchOn()
which changes the value of state variable.

FIGURE 2. State machine for a combination lock.
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FIGURE 3. State table structure for state diagram in figure 2.

B. USING STATE TABLES
Another method for representing state machine is state tables.
It is a two dimensional structure like a matrix. Each row
represents different states of the system and the columns
show the possible events that can happen in the system. Each
element in the table shows which action has to be taken
when an event occurs and the next state of the system as
shown in figure 3. This approach is more convenient for
coding simple state chart diagrams and better than switch
case method. Editing the switch statements will be little bit
confusing when the number of states and events increase.
In nested switch method, we should have n number of cases,
and inside each case we should have m number of nested case
statements, where n andm are the number of states and events
respectively. In the case of state tables, editing the table will
be easier than switches due to its 2D arrangement.

As the number of states and events increases the table
size increases drastically. It is the main drawback of this
approach. Moreover the table size does not depend on the
number of transitions. Hence the table can be large even
though the number of transitions is small. This in turn results
in wastage of memory. Moreover, concurrent states cannot be
implemented in this method.

C. USING STATE DESIGN PATTERNS
In state design pattern approach, there will be a class diagram
pattern that has to be followed for implementing all state chart
diagrams [6], [9]. There will be one class in the pattern which
represents the context (domain) of the state chart diagram.
The states in the state chart diagram are abstracted in a single
abstract class which will act as an interface to the states in the
state chart. The events will be the virtual member functions
of the abstract state class. Each individual state in the state
chart will be represented as the object of the derived class of
abstract state class. If there are ‘m’ states in the state chart,
then there will be ‘m’ different concrete state classes derived
from the abstract state class. A sample state design pattern is
shown in Fig. 4.

The object of the context class represents the domain object
that needs to be represented in the program. The context class
will have a data member (state variable) which represents
the current state of the domain object. All the events are
represented as member functions of the context class which
in turn delegates the function to the corresponding state class
objects.

FIGURE 4. Sample state design pattern.

Using state design patterns we can bring the object ori-
entation in the state machine implementation. The domain
object, whose state chart is drawn, is implemented as the
object of the context class, each state of the domain object is
implemented as the object of the corresponding concrete state
class. Events are represented as the handles of the abstract
state class and the transitions are accomplished by updating
the state variables. This approach supports code reusability
and avoids redundancy in coding.

There can be variable type of patterns that can be used to
represent the state chart diagram. Fig. 5 and Fig. 6 other two
sample patterns. In both the patterns, there is an abstract class
which acts as an interface for the state classes. The interface
will be connected to the context class. The pattern, shown
in Fig. 6, has an additional object called collaboration object
to accomplish the sub states. It is an abstract class which acts
as an interface for the sub states [3].

This object oriented approach creates some inconvenience
too. In order to add a new state, we have to derive one more

FIGURE 5. structure of state chart implementation.
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FIGURE 6. Implementation structure of state charts using collaborator
object.

FIGURE 7. Composite state A with two sub states.

concrete state class from the abstract state class. Similarly,
to add a new event, we need to add one more virtual function
to the abstract state class.

The above mentioned methods failed to represent the
concurrent states. Some literature, based on State Design Pat-
terns, attempted to address this issue but resulted in very com-
plex design patterns [24], [27], and failed to implement the
key features of state machine. For example, in Spinke [24],
it requires 17 classes in the implementation for representing
a state machine with 6 states and 6 events. It makes the
implementation very bulky.

IV. IMPLEMENTING HIERARCHICAL, CONCURRENT
AND HISTORY STATES
In design pattern based approach, each state of the system
(or object) is implemented as a class. If the object has three
states, then there will be 3 classes, representing each state,
in the implementation. Generalization is applied when there
are hierarchical states (composite states). For example in
Fig 7, state A is a composite state. It contains two sub states
B and C. so there will be three classes A, B and C. In the
implementation pattern they appear as in Figure 8. The sub
states B and C share the properties of the super state A. So,
inheritance (generalization) is the best choice to implement
the state hierarchy.

FIGURE 8. Implementation Pattern of the composite state A.

FIGURE 9. Composite state A with two orthogonal regions.

FIGURE 10. Implementation Pattern of the composite state A with
orthogonal regions.

There can be composite states with orthogonal regions.
For example, in Figure 9 we can see, state A contains 2 sub
states B and D. So the implementation contains three state
classes, class A, class B and class D. The super state and
sub states are implemented using generalization as in Fig 10.
This generalization can only show that A is a super state and
B and D are the sub states. Another important property of
the sub states is not addressed here. It is the concurrency
between the sub states. State B belongs to one region and
state D belongs to another region. That means the existence of
state B is independent of that of state D. The state transitions
of the state in the orthogonal regions are independent of each
other, or in other words, they are concurrent.

To implement the concurrent states, we defined a base class
called OrthogonalProperty. According to our new approach,
every composite state class has to inherit the properties of
the OrthogonalProperty class as in Figure 11. The Orthog-
onalProperty class has two important attributes to store the
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FIGURE 11. Implementation Pattern of the composite state A with
orthogonal regions.

number of regions as well as the active sub states. The number
of orthogonal regions in the composite state will be stored
in the attribute no_of_regions. The active sub states will be
registered in the sub state array named as sub_states[]. If there
are two orthogonal regions, then there can be a maximum of
two active sub states. As the number of regions increases,
the entries in the sub state array increases. Now, the sub
state transitions are implemented based on the sub state array.
Whenever there is a transition between sub states, the sub
state array will be updated with the new target sub state.

Next task is to implement history states. There can be two
types of history; shallow and deep. Deep history gives the
inner (nested) states that were active previously, and the shal-
low history gives the outer state which was active previously.
According to the above pattern for orthogonal state, the active
state (outer state) is managed by context class and the nested

states are managed by the composite class. So it is easy to
maintain the shallow history in Context Class and the deep
history in CompositeState class.

V. DESIGN PATTERN FOR HIERARCHICAL,
CONCURRENT AND HISTORY STATES
In this section, we present the design pattern for implement-
ing the UML state chart diagram. In our previous work [39]
we have presented a design pattern for concurrent and hier-
archical states. Another important feature of state diagram,
the state history, is incorporated in the new pattern, named
as ‘‘Template HHCStateMachine’’, as shown in figure 12.
As per Gamma [47] giving name to a design pattern will help
us to refer to the pattern frequently. The pattern gives a simple
and easy to use method for state chart implementation using
object oriented concepts.

The states and events in a system are implemented as
classes in the pattern. Every state machine can have an active
state. There will be events in the system that may or may
not change the state of the system. State changing events
should initiate state transition. All these terms are included
in the StateMachine class which is a blue print of every state
machine.

The ContextClass is the class which represents the actual
system to be implemented. It has an even dispatch function.
This method is used to delegate the events to the correspond-
ing state classes.

State hierarchy is represented using inheritance of state
classes. The pattern defines an abstract class called State
which acts as the base class for deriving the states in the
system. Each state in the system is defined as a derived class
of State class. If there is a composite state, all the sub states
will be implemented as the derived class of the composite
state class. It keeps the semantics of composite state in UML
state chart diagram. According to UML, the sub states have

FIGURE 12. The proposed design pattern, ‘‘Template HHCStateMachine’’.
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the properties of the composite (outer) state. This property
can be satisfied by the use of inheritance to derive the sub
state classes.

Another important feature of the state chart diagram is
parallel regions inside the composite states. The pattern
defines a special class called OrthogonalProperty which cap-
tures the features of parallel regions in the composite state.
It sets the number of regions and the transitions between sub
states using the methods setRegions() and subTransitions()
respectively.

The CompositeState class maintains the properties of the
composite states with or without parallel regions. It has
three main attributes; no_of_regions, sub_states[ ], and
deep_history[ ]. In a composite state there can be one or
more regions. It is stored in the first attribute. If there are
multiple regions in a composite state, there will be paral-
lel states. These states which are active simultaneously are
stored in the second attribute. Before state transition, the old
state is stored in the third attribute. Hence, concurrent states
and history are maintained using the OrthogonalProperty
class. The deep_history[ ] stores the inner states which were
active previously. Shallow history is kept as an attribute of
the StateMachine class. The transition between sub states is
implemented using the method subTransitions().

The mapping of the state machine elements and the Object
Oriented Programming constructs is shown in table 1.

TABLE 1. Mapping State machine elements to program constructs.

The skeletal code structure of the pattern is as follows.
It includes the classes for Events, State, StateMachine, Con-
textClass, OrthogonalProperty, and CompositeState.

public class Events {
public void setSignal(){ }

}
public class State {
public void dispatch(ContextClass cc, Events e){ }

}
public class StateMachine{
public void transition(State target){ }

}
Fig. 13. UML state diagram representing the alarm clock
public class ContextClass extends StateMachine {

State activeState;
State shallowHistory;

public ContextClass () { }
public void init(){ }
public void dispatch(Events e) { }

}
public interface OrthogonalProperty {

public void init();
public void subTransition(int region, State target);
public void setRegions(int no_of_regions );

}
public class HistoryState extends State
{ void restoreHistory(){. . .}

public void updateHistory(){. . . ..}
}
public class CompositeState extends State implements
OrthogonalProperty{ int no_of_regions;

State[] sub_states; State[] deep_history;
public void init(){ }

public void subTransition(int region, State target)
{. . . . . . . . . . . . }

public void dispatch(ConetxtClass context, Events e)
{. . . . . . . . . . . . }

public void setRegions(int no_of_regions) {
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. }

}

VI. CASE STUDY
In this section we present two case studies to show the imple-
mentation of the pattern ‘‘Template HHCStateMachine’’.

FIGURE 13. UML state diagram representing the alarm clock.
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TABLE 2. State transition table of the alarm clock.

First one is an alarm clock and the second one is a microwave
oven.

A. IMPLEMENTING ALARM CLOCK
We consider the case of an alarm clock. The clock can be in
ON state or OFF state. When the clock is ON it can be in two
modes simultaneously, timekeeping mode and alarm mode.
There are six events in the alarm clock; TICK, ALARM_ON,
ALARM_OFF, SWITCH_ON, SWITCH_OFF and SET.
TICK is the advancement of time in seconds. ALARM_ON
is to switch on the alarm, and ALARM_OFF is to switch
off the alarm. SET signal is used to set the alarm time.
SWITCH_ON and SWITCH_OFF signals are used to switch
on and switch off the clock respectively. When clock is off,
the SWITCH_ON event changes the clock state to clockON
state. In the ON state, by default, the clock will be in time-
keeping and alarmOFF state. The state changes are shown
in Table 2. The state diagram of the alarm clock is shown
in Fig.13. The implementation pattern of the Alarm clock is
shown in Figure 14.

The implementation of the AlarmClock has 6 state classes.
The context class here is the AlarmClock. It uses the Events
class and the State class for setting the state of the system
and event dispatching. The initial state is set to TimeKeep-
ingState and AlarmOff. Whenever an event encounters the
corresponding event handling function will be called by using
the run time polymorphism. Whenever the system enters the
composite states, the init() function of the class has to be
invoked. So this function call is included in the transition
function

public class AlarmClock extends StateMachine {
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
public static ClockOnCompoState clockOn = new Clock-

OnCompoState();
public static ClockOff clockOff = new ClockOff();
public AlarmClock(int hr, int min, int sec)
{ curr_time_hr = hr;

FIGURE 14. Implementation Pattern for alarm clock.

curr_time_min=min; curr_time_sec= sec; }
final public void init(){ m_state = clockOff;

tran(m_state);
}
final public void dispatch(ClockEvents e)
{ m_state.dispatch(this, e); }
final public void tran(ClockState target){

shallowHistory = m_state;
m_state = target;
if(m_state == clockOn)
{ flag++;
if(flag == 1) { clockOn.initCompo();}
else {clockOn.restoreHistory();}

}}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

}
The clockOn state is a composite state. It contains two

parallel regions; one for time keeping and the other for alarm.
It is implemented as ClockOnCompoState. It also implements
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the sub transition function and history restoring function
along with the event dispatch function.

public class ClockOnCompoState extends ClockState
implements ClockOrthogonalProperty{

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
public void initCompo()
{

subTransition(1,timing);
subTransition(2,alarmoff);

}
public void subTransition(int region, ClockState target)
{

sub_states[region] = target;
ah.updateHistory(this);

}
public void dispatch(AlarmClock context, Clock-

Events e)
{

int i = 0;
for(i = 1;i <= no_of_regions;i++) {
sub_states[i].dispatch(context, e);

} }
public void restoreHistory()
{ hs.restoreHistory(this); }

}
The clockOff state receives only SWITCH_ON event

which causes state transition to clockOn state. It is imple-
mented in the class ClockOff.

public class ClockOff extends ClockState{
public void dispatch(AlarmClock context, Clock-

Events e){
switch(e.signal){
case SWITCH_ON:

{context.tran(AlarmClock.clockOn);break;}
} } }

During alarmOff state, the clock receives ALARM_SET,
ALARM_ON, and SWITCH_OFF events. It is implemented
as AlarmOffState class. The alarmOn state is implemented
as AlarmOnState class. It accepts TICK, ALARM_SET,
ALARM_OFF, and SWITCH_OFF events.

ALARM_ON causes sub transition to alarmOn state. Dur-
ing TICK event, the current time is matched with alarm time
and if matches it generates alarm sound. ALARM_SET event
prompt the user to enter the alarm time. ALARM_OFF event
causes sub transition from alarmOn state to alarmOff state.

public class AlarmOffState extends ClockOnCompoState{
Scanner sc = new Scanner(System.in);
public void dispatch(AlarmClock context, Clock-

Events e){
switch(e.signal){
case ALARM_SET :

{System.out.println(‘‘ENter Hr: ’’);
context.alarm_time_hr = sc.nextInt();
System.out.println(‘‘ENter Min: ’’);

context.alarm_time_min= sc.nextInt();

System.out.println(‘‘ENter Sec: ’’);
context.alarm_time_sec = sc.nextInt();
System.out.println(‘‘Alarm Set to —>

’’+context.alarm_time_hr+‘‘:’’+context.alarm_time_min+
‘‘:’’+context.alarm_time_sec);

break;}
case ALARM_ON : {

super.subTransition(2, alarmon);
break;}

case SWITCH_OFF: {
context.tran(AlarmClock.clockOff);break;

} } } }
public class AlarmOnState extends ClockOnCompoState{
Scanner sc = new Scanner(System.in);
public void dispatch(AlarmClock context, Clock-

Events e){
switch(e.signal){

case TICK : {
if((context.curr_time_hr == context.alarm_time_hr)&&
(context.curr_time_min == context.alarm_time_min)&&
(context.curr_time_sec == context.alarm_time_sec))

{java.awt.Toolkit.getDefaultToolkit().beep();}
break;}

case ALARM_SET : { System.out.println(‘‘ENter
Hr: ’’);

context.alarm_time_hr = sc.nextInt();
System.out.println(‘‘Enter Min: ’’);

context.alarm_time_min = sc.nextInt();
System.out.println(‘‘Enter Sec: ’’);

context.alarm_time_sec = sc.nextInt();
break;}

case ALARM_OFF : { super.subTransition(2,
alarmoff);break; }

case SWITCH_OFF : {

context.tran(AlarmClock.clockOff);break;
} } } }

The timekeeping state is implemented as TimeKeep-
ingState class. This state is a sub state of the clockOn state.
So, the TimeKeepingState is inherited from ClockOnCom-
poState. This class handles two events; TICK event and
SWITCH_OFF event. TICK event advances the clock time by
one second. SWITCH_OFF event causes the state transition
to clockOff state.

public class TimeKeepingState extends ClockOnCom-
poState{

@Override
public void dispatch(AlarmClock context, Clock-

Events e){
switch(ClockEvents.signal){

case TICK : {AlarmClock.curr_time_sec++;
if(AlarmClock.curr_time_sec == 60)
{AlarmClock.curr_time_min++;

AlarmClock.curr_time_sec = 0;
if(AlarmClock.curr_time_min == 60)
{ AlarmClock.curr_time_hr++;
AlarmClock.curr_time_min = 0;
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if(AlarmClock.curr_time_hr == 13)
{ AlarmClock.curr_time_hr = 0;
} } } break;}

case SWITCH_OFF: {context.tran(AlarmClock.clock
Off);

break; } } } }
The history state is implemented as HistoryState class

includes a restoreHistory() function which restores the pre-
vious state of the Alarm Clock.

public class AlarmHistory extends ClockOnCompoState {
. . . . . . . . . . . . . . . . . . . . . . . ..
public void updateHistory (ClockOnCompoState compo()
{deepHistory = compo.sub_states[2];}
public void restoreHistory(ClockOnCompoState compo)
{ compo.sub_states[2] = deepHistory; }

}

B. IMPLEMENTING MICROWAVE OVEN
In this section we consider another case study, a microwave
oven, figure 15. It includes parallel regions, history states and
composite states. So it is a perfect case study to explore the
proposed pattern ‘‘Template HHCStateMachine’’.

FIGURE 15. UML state diagram representing the microwave oven.

The microwave oven has mainly two states, ‘Off’ and
‘PowerOn’ states. PowerOn is a composite state with two
parallel regions; ‘Main’ and ‘Panel’. In ‘Main’ region we
have two states door Open and Closed states. Again Closed
state is a composite state with two parallel regions; Emitter
and Grill. History states are attached to each region. The
region Emitter includes two OR states; EmitOn and EmitOff.
The Grill region has two OR states GrillOn and GrillOff. The
‘Panel’ region has two OR states; Toaster and Grill.

There are six events that can be occurred in the microwave
oven. Pressing power button, emit button, grill button, and
mode button are the four events. Open and close the oven door
are the rest two events.

Initially the system is in Off state. When the power button
is pressed, the system changes to PowerOn state. If the power

button is again pressed, it will be switched off, that is, resume
to Off state.

In PowerOn state, initially the system is in door open
state as well as in Toaster mode. When the mode button is
pressed, the Toaster mode will change to Grill mode. If the
mode button is again pressed, the system will resume to the
Toaster mode. When the door is closed, the system changes
to the Closed state and the Emitter and the Grill will be
initialized. When we first close the door, the emitter and grill
will be in off state; EmitOff and GrillOff. When we resume
to the Closed state again, then it will retain the previously
active states; EmitOff/EmitOn andGrillOff/GrillOn. Pressing
power button at any state will result in the transition to Off
state.

The total number of states in the system is twelve, includ-
ing the history states. So the implementation of this system,
the microwave oven, will have twelve state classes, each
represents the individual states of the system. In addition to
this, there will be five additional classes. One class to repre-
sent the system itself, the context class MicroWaveOven, and
another one to represent the events in the system,MWEvents.
Other three are the common base classes, StateMachine,
MWStates, and MWOrthogonalProperty. The class diagram
for the implementation of the microwave oven is shown in
figure 16. Some of the implemented classes have been shown
here.

public class MicroWaveOven extends StateMachine {
. . . . . . . . . . . . . . . . . . . . . . . . . . ...
. . . . . . . . . . . . . . . . . . . . . . . . . . ...
final public void init(){m_state = off;tran(m_state);}
final public void dispatch(MWEvents e)

{ m_state.dispatch(this, e); }
final public void tran(MWState target){

shallowHistory = m_state; m_state = target;
if(target == poweron){

System.out.println(‘‘POWER ON’’);
poweron.initCompo();
} }

}
public class MWEvents {
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
public void setSignal(int i){ switch(i){case 1: signal
=MWEvents.events.POWER_BUT;break;
case 2: signal=MWEvents.events.DOOR_CLOSE;break;
case 3: Signal =MWEvents.events.DOOR_OPEN;break;
case 4: signal =MWEvents.events.EMIT_BUT;break;
case 5: signal =MWEvents.events.GRILL_BUT;break;
case 6: signal =MWEvents.events.MODE_BUT;break;
} }}

public class PowerOnCompoState extends MWState
implements MWOrthogonalState{

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
public void initCompo()
{ subTransition(1,open);subTransition(2,toaster); }
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FIGURE 16. Implementation Pattern for the microwave oven.

public void subTransition(int region, MWState target)
{sub_states[region] = target; if(target == closed){

if(flag == 0) {closed.initCompo(); flag++; }
else{closed.restoreHistory();}}
} }

public void dispatch(MicroWaveOven context,
MWEvents e){. . . . . . . . . . . . . . . . . . . . .

for(i = 1;i <= no_of_regions;i++){
sub_states[i].dispatch(context, e);

} }
public void setRegion(int r) {

. . . . . . . . . . . . . . . . . . . . . . . . . . ... }}
public class ClosedCompoState extends PowerOnCom-

poState {
. . . . . . . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . . . . . . ..
public void subTransition(int region, MWState target)
{sub_states[region] = target; eh.updateHistory(this);

gh.updateHistory(this); }
public void dispatch(MicroWaveOven context,

MWEvents e)
{. . . . . . . . . . . . . . . . . .
for(i= 1;i<= no_of_regions;i++){sub_states[i].dispatch

(context, e); } }
public void restoreHistory(){eh.restoreHistory(this); gh.

restoreHistory(this); }
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
}
public class Toaster extends PowerOnCompoState{
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FIGURE 17. Architecture of Code Generator.

public void dispatch(MicroWaveOven context,
MWEvents e){

switch(e.signal){
case MODE_BUT: {this.subTransition(2,grill);break;}
case POWER_BUT: {context.tran(MicroWave.off); break;

}} }
}
public class EmitterHistory extends ClosedCompoState{
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
public void updateHistory(ClosedCompoState compo)
{ deepHistory = compo.sub_states[1]; }
public void restoreHistory(ClosedCompoState compo)
{ compo.sub_states[1] = deepHistory; }

}

VII. THE CODE GENERATION PROCESS
The proposed pattern is saved in the pattern library. This pat-
tern library is used during code generation. The code genera-
tion process includes the systemmodeling in UML state chart
diagram, generation of XML for the model, parsing XML
and then generating code. The process of code generation is
depicted in figure 17.

The representation of the state chart diagram is based on
State Chart extensible Markup Language (SCXML) [50].
Based on SCXML, the tags <state>, <transition>,
<onentry>, <onexit>, <initial>, . . . <final>, <parallel>,
and <history> are used to represent the states, transitions,
entry condition, exit condition, initial state, final state, paral-
lel states, and history states respectively. For example, a state
with two transitions is given below.

<state id = s">
<transition event = ‘‘e’’ cond = ‘‘x == 1’’ target =

‘‘s1’’/>
<transition event = ‘‘e’’ target = ‘‘s2’’/>

</state>

In state ‘s’, if an event ‘e’ occurs and the condition
‘x== 1’ is satisfied the state will take transition to state ‘s1’.
If the condition is not satisfied, the state will take a transition
to the state ‘s2’.

The parallel states are represented as follows.
<parallel id = ‘‘p’’ >

<transition event= ‘‘done.state.p’’ target= ‘‘someOtherState’’/>
<state id = ‘‘S1’’ initial = ‘‘S11’’>

. . . . . . . . . . . . . . . . . . . . ...

. . . . . . . . . . . . . . . . . . . . ...
</state>
<state id = ‘‘S2’’ initial = ‘‘S21’’ >

. . . . . . . . . . . . . . . . . . . . ...

. . . . . . . . . . . . . . . . . . . . ...
</state>

</parallel>
Two parallel regions start with sub states S11 and S21. The

internal transitions are given between <state? And </state>
tags.

During code generation the parsed XML document is given
to the code generator. The code generator has mainly three
modules. One module analyzes the parsed XML and find out
the state nodes. It generates one state class for each state node
based on the design pattern in the pattern library.

The composite states are implemented as the extension of
State abstract class and the OrthogonalProperty class. The
nested states are implemented as the derived classes of the
corresponding composite states.

For the XML document given in the tree view (Figure 18)
contains two states; off and on. So, two state classes will be
generated; offState and onState. The on state contains some
sub states. It shows that onState is a composite state. Since
<parallel> tag is not there, it is understood that the sub states
are not concurrent states. So, the on state will be defined
as OnCompoState class by extending the State class and the
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FIGURE 18. XML representation of Microwave Oven.

OrthogonalProperty class. offState will be defined as offState
class. The inner states idle and cooking will be defined as
derived classes of the OnCompoState class; idleState class
and cookingState class.

Similarly, the parallel states can be identified by the tag
<parallel> as in figure 19. Parallel states are composite states
by default. The number of states inside the <parallel> tag
will help us to set the number of regions. In the example we
have two states inside the<parallel>, that means two parallel
regions.

The second module in the code generator analyzes the
events and transitions. It generates the event class and updates
the event dispatch functions in each state class.

The event is stored as the attribute of the element
<transition>. For example, <transition event = ‘‘e’’ target
= ‘‘s2’’/>. So all <transition> elements have to be checked
and list out all those events in the Event class by eliminating
the duplications.

<state id = ‘‘S2’’ initial = ‘‘S21’’ >

<state id = S21">
<transition event =‘‘e1’’ target = ‘‘S22’’/>

</state>
<state id = ‘‘S22’’ >

<transition event = ‘‘e2’’ target = "S2Final/>
</state>
<final id = ‘‘S2Final’’/>

</state>
In the above XML statements, a composite state with two

sub states is given. Two transitions have been described in
this composite state. In each <transition> we can identify an
event; say e1 and e2. These events will be added to the Events
class. If already existing event (in the Event class) is found,
it will be ignored.

The event dispatch function will be updated with the tran-
sition and the target state. For example, in state S21, there

FIGURE 19. XML representation of Microwave Oven with concurrent
states.

is a transition to state S22 when an event e1 occurs. So,
the dispatch function of the class S21State will be updated
by adding the corresponding ‘case’ statement and the state
transition with a call to transition() function. The activity
inside each state will be converted as the program statements
and added to the dispatch function of the corresponding state
class.

The third module in the code generator analyzes the state
transitions and its flow. It generates the context class for
the system. The context class represents the entire system,
or the system state chart. It receives the events and delegates
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the actions to the corresponding active state. The action to
be done on a particular transition is defined in the dispatch
function of each state class.

VIII. RELATED WORKS
The code generation from UML diagrams is an ever growing
research area. Many authors contributed to this [1], [11], [12],
[14], [16], [23] even from late 90s.

Pais and Oliveira [52] proposes some stereo types for
UML to specialize the boundary, control and entity elements
or classes. The robustness diagram represented using these
stereo types can be converted to UML state chart diagrams,
sequence diagram and class diagram. Kundu et al. [54] pro-
poses code generation method from UML sequence dia-
grams. The sequence diagrams first converted to sequence
interactions graphs. These graphs contain information like
messages, control flow and method scope of interactions.
These graphs will then be transformed to code. Thismethod is
best suited for the controller classes and not for boundary and
entity classes. Sunitha and Samuel [53] presents the formal
association between activity diagram and sequence diagram.
Based on this formal definition, the paper proposes a method
to generate code from UML activity diagram and sequence
diagrams. This method is best suited for boundary and control
classes.

But, in this paper we proposed code generation from UML
state chart diagrams. Since the state chart diagram shows the
state of the entity classes (objects), the method proposed in
this paper is best suited for entity classes and not for boundary
and controller classes.

Pham et al. [55] presented a code generation method from
the UML state chart diagrams based on ‘‘if..else’’ statements.

Niaz et al. [3], Niaz [15] propose a method to implement
composite and concurrent states. In the proposed approach
single event can trigger multiple transitions. This is against
the semantics of the UML state machine. UML specifies that
one event should be consumed for only one transition.

Harrand et al. [48] proposes ThingML to utilize the
benefits of the Model based system engineering (MBSE).
ThingML is a domain specific modeling language (DSML).
It supports automated code generation from system models,
thereby increases the productivity of the software develop-
ment team. Harrand et al. [48] states that they implement
the behavior of a system using code generation from the
state machines of the system. For code generation, they use
existing design patterns in C++ or Java, or else other existing
frameworks such as State.js. They focus on heterogeneous
target platforms.

Schattkowsky and Muller [17] demonstrates how a fully
featured UML 2.0 state machine can be represented using a
small subset of the UML state machine features that enables
efficient execution. They are trying to directly execute the
state machines without converting it to implementation code.
It is an alternative to native code generation approaches since
it significantly increases portability. The paper describes the

necessary model transformations in terms of graph transfor-
mations and discusses the underlying semantics and implica-
tions for execution.

Rudhal and Goldin [18] presents a multi language code
generator named as YAMDAT (Yet Another MDA Tool).
As the name indicates, it’s an MDA tool. It generates C++
and Java code fromUMLdesigns of the system. UMLmodels
will be represented in XML and this XML representation is
the codemodel in the tool. They generate skeleton code for all
methods and attributes in the UML class diagram. Moreover,
unit test framework will be generated for the class. YAMDAT
generates finite state machine class from each state diagram
of the class.

Dominguez et al. [26] presented a review of researchworks
that propose methods to implement UML state chart dia-
grams. Dominguez et al. summarizes their review by saying
that the state transition process in most of the works are based
on switch statement or state table. Another key finding of [26]
is that very few papers support hierarchy and concurrency of
states.

Ali et al. [6] implements state as objects and the state
hierarchy and concurrency are implemented using inheritance
and composition. They introduced a concept of helper object
to handle the state specific requests. it works as the context
class in the state design pattern based methods.

Ali and Tanaka [9] proposed a method to implement the
dynamic behavior of an application. State transition diagrams
and activity diagrams are used for modeling the dynamic
behavior. The state of the system is represented as object
and the state transition is implemented as method. The state
hierarchy and concurrency are implemented using inheritance
and composition.

Ali and Tanaka [20] presents a method to convert the
dynamic model to executable code. State of the system is
represented as object, and the events are the methods in the
state class. They developed a tool called O-Code based on
their proposed method. The input to the tool is state diagram
represented in Design Schema List (DSL). O-Code has two
parts, one is an interpreter and the other one is the code
generator. The interpreter generates a transition table from
the DSL while code generator generates Java code from the
transition table.

Ali [27] presents the implementation of concurrent and
hierarchical state machines by making use of enumerators
in Java language. It proposes a Java implementation pattern
for state machines. The method presented in the paper is
language dependent and so it cannot be extended to other
languages like C++, C# etc.

Aabidi et al. [25] proposed a method to implement
hierarchical-concurrent states using Java Enum. It combines
the methods proposed in [2] and [27] to provide a better
way to implement state machines leveraging the positive
points of both approaches, state machine encapsulated within
a single class, code well structured, clear, compact and easy
to understand for the first approach and a better identification
of the state for the second approach.
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Spinke [24] addresses concurrent and hierarchical state
implementation. The paper proposed a double dispatch based
event handling. The reaction of the state machine depends on
the current state of the system as well as the event occurred.
This is the theory behind double dispatch. The paper presents
a case study to show case the proposed method. The imple-
mentation pattern presented in the paper is very bulky since
it requires 17 classes in the implementation for representing
a state machine with 6 states and 6 events.

Samek [29] hierarchical state machine pattern (HSM) to
implement state hierarchy and transition dynamics. They
presented the methods to convert the state machine to C or
C++ code. The statemachines are defined as a composition
of states. HSM pattern uses state classes for composition not
for inheritance or sub classing. They also presented Quantum
Hierarchical State Machine pattern (QHsm) [30]. It used
Quantum Programming paradigm. They presented the mod-
eling of state charts in C/C++ using HSM and active-object
based framework.

Heinzmann [31] extends the HSM pattern method.
It presents a template based approach to directly convert the
state chart diagrams to the C++ code. This method avoids the
use of separate code generation tools for the state machine to
code conversion. The generated code is optimized using in-
lining.

Breti [4] presented a method to generate C++ code from
the State chart. State chart is modeled in XML and then
using Python the XML document is parsed to Python object.
in the next step a templating engine is used to convert the
parsed XML to C++ code. For this conversion they use a
pattern based approach. The pattern contains state controller,
state chart, state, and events. The implementation details of
the state hierarchy and concurrency are not specified in this
paper.

The Object Management Group (OMG) has specified a
subset of UML 2.0 exclusively for Model Driven Develop-
ment to support executable UML (xUML). This subset is
named as Foundational UML (fUML) [49]. fUML considers
only class diagram and activity diagram for the xUML. It does
not support state diagram and sequence diagram. fUML spec-
ifies semantics for xUML. In order to improve the precision
an action language named Alf [56] is used with fUML. It is
a textual action language. However, it does not have any
advantage over UML and OCL, since fUML requires detailed
modeling and precisions should be added using an action
language like OCL. A sound knowledge in fUML and Alf is
necessary to convert fUML models to code. The same thing
can be done with UML and OCL and with less effort since
most of the developers and designers are familiar with those
standards.

IX. EVALUATION AND COMPARISON WITH
RELATED WORKS
The proposed pattern is implemented using the code gen-
erator called SMConverter. The performance of SMCon-
verter is compared with other tools like Rhapsody [28] and

TABLE 3. Efficiency of SMConverter compared with Rhapsody & OCode.

FIGURE 20. Total time for events without transition.

OCode [9], [20]. We considered the events with and without
transitions. These events have been passed to the AlarmClock
class in the form of sequence of requests. Total time taken
for each type of event is calculated in milliseconds. Total
number of requests for events without transition is 1778 and
for events with transition is 2222. The efficiency of our
tool (SMConverter) over other tools is shown in the table 3.
Figure 20 compares the total time taken for events without
and with transition respectively.

The proposed approach is compared with 10 major
research works in this area [3], [5], [6], [9], [15], [20], [24],
[29]–[31]. For the comparison, we considered the method
of implementation of different elements in the state chart
diagrams like simple state, composite state, history state etc.,
and the support for different features of state machines like,
hierarchy, concurrency etc. The details of comparison are
given in tables 4 and 5.

A. ELEMENT BASED COMPARISON
For element based comparison, we considered the basic ele-
ments like, current state, state transition etc. in state machines
and the components like, orthogonal states, composite states,

VOLUME 7, 2019 8605



E. V. Sunitha, P. Samuel: Automatic Code Generation From UML State Chart Diagrams

TABLE 4. Element based comparison with related works.

TABLE 5. Feature based comparison with related works.

history states etc., that improve the expressive richness of
the state machine. We studied how each of these elements
is implemented in the present literatures and how well they
support object orientation. The current state, simple states
and the context class are represented in a similar way in
all the literatures. In case of state transition all literatures
except [24] uses switch statement. The components like,
composite, orthogonal, and history states are supported by
few research works.

The element based comparison, given in table 4, shows
that our method implements the state chart elements in

object oriented way, but many of the related works do not.
In our method, we implement the concurrent states, compos-
ite states and deep history states as classes and their attributes.
So our method can take the advantages of any object oriented
approach.

B. FEATURE BASED COMPARISON
In feature based comparison, we considered the features like,
expandability, reusability, understandability etc., and the sup-
port for state hierarchy and concurrency in the state chart
diagrams.
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The state hierarchy is supported by almost all works,
except [5], but concurrency is not well supported by the
research works. History of state machine state is also not
supported by many literatures. Many research outcomes pro-
vide methods with good modularity and understandability,
but they failed to provide reusability due to the lack of general
reusable design pattern. Our proposed method gives a design
pattern and which gives good understandability, reusability
and expandability.

Feature based comparison, given in table 5, shows that our
method supports hierarchy and concurrency without spoiling
the understandability, reusability and expandability.

X. CONCLUSION
In this work, we introduced a design pattern based imple-
mentation of state machine with hierarchical, concurrent and
history states. The design pattern proposed in the paper pro-
videsmodularity and understandability.Moreover it keeps the
semantics of state hierarchy and concurrency and history state
as well.

The design pattern is easily expandable due to its modu-
lar structure. The use of design pattern in code generation
improves the quality of the generated code. Most of the
research works do not provide implementation of concurrent
and history states. Many research works do not provide a
general design pattern for the state machine implementation.
Meanwhile, we provide a reusable and understandable design
pattern.

The code generator presented in the paper gives a sys-
tematic way of code generation from the UML state chart
diagrams with the help of the proposed design pattern.

Comparison with related works shows that the proposed
way of state chart diagram implementation supports the
important features like concurrency and history. Moreover,
the qualitative comparison with the related works shows that
our method supports state concurrency and history without
compromising the expandability, reusability and understand-
ability.

Comparisonwith other tools shows that ourmethod ismore
efficient in terms of the time taken for event processing. The
case study and comparison with other tools reveals that the
proposed approach gives less complex code and promising
results.
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