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ABSTRACT In the traditional non-local similar patch-based denoising algorithms, the image patches are
firstly flatted into a vector. The structure informationwithin the image patches is ignored; however, the spatial
layout information can be used for improving the denoising performance. To solve this problem, this paper
treats the image patches as matrices and proposes a low-rank tensor recovery model for image denoising, and
thus it makes full use of spatial information within the image. Meanwhile, the proposed model can realize
joint weighted tensor Schatten p-norm and tensor lp-norm minimization, which has two advantages: 1) it
can deal with zero mean Gaussian noise, impulse noise, and any other noise that can be approximated by
mixing these two kinds of noise and 2) the employed norms require relatively weak incoherence conditions
than l1 norm and nuclear norm, and thus they are more robust against outliers and noise. The experimental
results show that the proposed algorithm outperforms other state-of-the-art denoising algorithms in both
visual perception quality and quantitative measures.

INDEX TERMS Image denoising, low-rank tensor recovery, tensor Schatten p-norm.

I. INTRODUCTION
Image denoising is a basic problem in the field of image
processing, and a lot of related algorithms have been pro-
posed in the past few decades. The existing image denoising
methods are mainly divided into two types: local methods
and nonlocal methods. Local methods [1], [2] usually use
certain filter to do convolution operation for the whole image,
which ignores the global structure information of image and
makes the denoised image lose detail. To deal with this issue,
a pioneering work, the Nonlocal Means (NLM) algorithm,
has been proposed that applies the non-local strategy to image
denoising and makes full use of self-similarity of images
to remove noise. Because of good performance of NLM,
a large number of image denoising methods based on non-
local method appeared [3]–[8].

Besides, low rank matrix approximation (LRMA) appeals
to significant research interest, and it devotes to recovering
the underlying low rank matrix from its degraded version.

Low rank matrix approximation can be divided into two
categories: the low rank matrix factorization (LRMF) meth-
ods [10], [11] and the rank minimization methods [12]–[16].
In this paper, we focus on the latter. The rank of a matrix
X ∈ Rm×n is defined as the number of its nonzero singu-
lar values. Since the original rank minimization problem is
NP-hard, Candes and Recht [17] and Cai et al. [18] put
forward the nuclear norm minimization (NNM) problem to
approximate the original problem, and have proven the equiv-
alence of two problems in some cases. SinceNNM is a convex
problem, it can be solved easily.

The singular values have explicit physical sense, and thus
should be treated in different ways. However, the nuclear
norm minimization regularizes each singular value equally
which greatly restricts its capability and exibility in image
denoising. To address this issue, Dong et al. [3] propose a
spatially adaptive iterative singular-value thresholding image
denoisingmethod (SAIST)which utilizes variance estimation
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for the denoised image and deals with different singular
values in different ways. Later, Gu et al. [4] propose an image
denoising algorithm via weighted nuclear norm minimiza-
tion, in which the larger singular values have smaller weight
to ensure that the less they should be shrunk. Hosono et al. [9]
give a color image denoising method via Weighted Tensor
Nuclear Norm Minimization (WTNN) which stacks the non-
local similar patches into a matrix in each color channel and
processes all color channels jointly. Since the solution of
NNM can seriously deviate from the original solution of rank
minimization problem in practice [19], the weighted Schatten
p-norm minimization method [21] has been proposed to get
a more accurate recovery of signal [20].

Although the above image denoising algorithms have
achieved great success, they have two major limitations:
(1) All the above denoising algorithms are proposed to deal
with zero mean Gaussian noise and thus their models are very
sensitive to outliers, and large errors may arise even for a
single pixel. In fact, except for the rather academic excercise
‘‘add noise and then remove it’’, this assumption cannot be
satisfied in most real-world image denoising applications.
(2) In contrast to the local methods, nonlocal image denoising
methods completely ignore the spatial layout information
within the image which contributes to promote the denoising
performance.

In order to solve the mentioned problems, we propose a
joint weighted tensor schatten p-norm and tensor lp-norm
minimization (WTSTP) model for image denoising. The fea-
tures of the proposed algorithm are two-fold: (1) the proposed
algorithm treats the image patches as tensor (or matrix for
grayscale image) to preserve the structure information and
the relation of different channels within the image patches.
(2) WTSTP guarantees a more accurate low-rank recovery
and thus is robust against noise and outliers.

The rest of this paper is organized as follows. We bring
up WTSTP from traditional low-rank recovery model, and
analyze its optimization scheme in Section II. In Section III,
we give image denoising algorithm based on WTSTP to
remove noise in grayscale image and color image. The exper-
imental results are presented in Section IV, and Section V
concludes the paper.

II. JOINT WEIGHTED TENSOR SCHATTEN P-NORM AND
TENSOR LP -NORM MINIMIZATION
A. TRADITIONAL LOW-RANK RECOVERY MODEL
Given an observed matrix Y ∈ Rm×n, the aim of the original
rank minimization is to find a low rank matrix X̂ which
satisfies the following objective function:

X̂ = argmin
X

1
2
‖Y − X‖2F + αrank(X ), (1)

where X ∈ Rm×n, rank(X ) is defined as the number of its
nonzero singular values, and α is a tradeoff parameter to
balance the data fidelity and regularization.

As stated in Section I, the mixed noise of zero mean
Gaussian noise and impulse noise is more reasonable and

commonly encountered in the real image denoising appli-
cations. While the above model is unable to handle the
complicated situation, therefore the following model is
considered [12]:

(L̂, Ê) = argmin
L,E

1
2
‖P− L − E‖2F + αrank(L)+ β‖E‖0,

(2)

where ‖E‖0 counts the number of nonzero entries of E ,
α and β are tradeoff parameters to balance the data fidelity
and regularization. In (2), a given matrix P ∈ Rm×n can be
regarded as a noised image matrix, P−L−E and E represent
zero mean Gaussian noise and impulse noise respectively.

However, most of the visual data, such as color image and
video, have the form of tensor. The traditional image and
video processing method prefer to transform the data into 2D
matrix for processing. But, as [22] points out, the important
structures will be lost when a higher-order tensor is treated
as a 2D matrix. Therefore, it is desirable to extend the frame-
work of low-rank matrix recovery to tensor space [22], [23],

min
α,ε

1
2
‖P − L− E‖2F + αrank(L)+ β‖E‖0, (3)

whereP , E andL ∈ RI1×I2×···×Ih are h-order tensors. l0 norm
of tensor E is defined as ‖E‖0 = ‖E(i)‖0, where
E(i) is unfolding matrix of tensor E on the i-th mode. Inspired
by the Tuncker decomposition [24], rank(L) is defined as
6h
i=1λirank(L(i)), where λi is a non-negative parameter satis-

fying 6h
i=1λi = 1 and L(i) is unfolding matrix of tensor L on

the i-th mode.
Because both rank function and the l0-norm are discontinu-

ous and nonconvex, (3) is hard to solve. Hence, the following
model [25] has been put forward,

min
α,ε

1
2
‖P − L− E‖2F + α‖L‖∗ + β‖E‖1, (4)

where ‖L‖∗ = 6h
i=1λi‖L(i)‖∗ and λi is a non-negative

parameter satisfying 6h
i=1λi = 1. References [25] and [26]

have shown that the optimal solution of (3) can be perfectly
recovered by (4) under certain conditions. Unfortunately,
that condition is difficult to satisfy. In the real applications,
the solution can be seriously deviated from the original solu-
tion of (3). In order to balance the solvability and performance
of the model, a joint weighted tensor schatten p-norm and
tensor lp-norm minimization (WTSTP) model is put forward
in this paper that is described in the next subsection.

B. THE PROPOSED MODEL
Before introducing WTSTP, the definition of the weighted
tensor Schatten p-norm of L ∈ RI1×I2×···×Ih and the tensor
lp-norm of E ∈ RI1×I2×···×Ih are given as follows:

‖L‖pw,Sp = 6
h
i=1λi‖L(i)‖

p
wi,Sp , ‖E‖

p
p,p = ‖E(i)‖pp,p (5)

where λi is a non-negative parameter satisfying 6h
i=1λi =

1; L(i) is unfolding matrix of tensor L on the i-th mode;
w = [wT

1 , . . .w
T
h ], wi is the weight vector of each weighted
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Schatten p-norm, 1 ≤ i ≤ h and h = 3; ‖L(i)‖
p
wi,Sp =

6
r(i)
j=1(wi)jσ

p
j (L(i)), where r(i) is the rank of matrix L(i) and

σj(L(i)) is the j-th singular value of matrix L(i), 1 ≤ j ≤
r(i); ‖E(i)‖pp,p = 6j,k |e

(i)
jk |

p, where e(i)jk is the element of E(i)
in position (j, k). The weighted tensor Schatten p-norm and
the tensor lp-norm (5) are used as the regularizations, and
WTSTP is defined as follows:

min
α,ε

1
2
‖P − L− E‖2F + α‖L‖

p
w,Sp + β‖E‖

p
p,p (6)

where α, β are two regularization coefficients and 1
2 is for

ease of calculation.

C. OPTIMIZATION ALGORITHM
A series of auxiliary matrices Mi are introduced to
replace L(i) and to remove the correlation of L(i). Then (6)
changes to:

minMi,L,E
1
2
‖P − L− E‖2F + α6

h
i=1λi‖Mi‖

p
wi,Sp

+β‖E‖pp,p
s.t.L(i) = Mi, i = 1, 2, . . . h.

(7)

The Augmented Lagrange Multiplier (ALM) [27] is
applied to relax the equality constraints of (7), then the fol-
lowing function is obtained:

fµ(Mi, E,L,Qi)

=
1
2
‖P − L− E‖2F + α6

h
i=1λi‖Mi‖

p
wi,Sp + β‖E‖

p
p,p

+6h
i=1(〈Qi,L(i) −Mi〉 +

µi

2
‖L(i) −Mi‖

2
F ), (8)

where µi is a positive scalar,Qi is Lagrange multiplier matrix
and 〈·, ·〉 is the inner product of matrix. Next, alternating
direction method (ADM) [27] is used to solve (7):
M k+1
i =argminMi fµ(Mi, Ek ,Lk ,Qki ), ∀i=1, 2, . . . , h

Lk+1=argminL fµ(M
k+1
i , Ek ,L,Qk )

Ek+1=argminE fµ(M
k+1
i , E,Lk+1,Qk )

Qk+1i =Qki +µi(L
k+1
(i) −M

k+1
i ), ∀i=1, 2, . . . , h

(9)

For termM k+1
i :

M k+1
i = argmin

Mi
λi‖Mi‖

p
wi,Sp + 〈Q

k
i ,L

k
(i) −Mi〉 +

µi

2
‖Lk(i)

−Mi‖
2
F

= argmin
Mi

λi

µi
‖Mi‖

p
wi,Sp +

1
2
‖Lk(i) +

1
µi
Qki −Mi‖

2
F

(10)

Ordering Lk(i)+
1
µi
Qki = U6V T ,6 = diag(σ1, σ2, . . . σr ).

According to [28], δj = GST (σj,
λi
µi
(wi)j, p, J ) (j =

1, 2, . . . , r) (see Algorithm 1), where J is iteration number
of the algorithm, 1 = diag(δ1, δ2, . . . , δr ) and the solution
of M k+1

i can be obtained byM k+1
i = U1V T .

Algorithm 1 x = GST(y, λ, p, J ) [28]
Input: y, λ, p, J
Output: x
if |y| ≤ (2λ(1− p))

1
2−p + λp(2λ(1− p))

p−1
2−p

then
x = 0

else
i = 0,x(i) = |y|
Iterate on k = 0, 1, 2, · · · , J
x(i+1) = |y| − λp(x(i))p−1

k = k + 1
x = sign(y)x(i+1)

end

For term Lk+1:

Lk+1 = argmin
L

1
2
‖P − L− Ek‖2F +6

h
i=1(〈Q

k
i ,L(i)

−M k+1
i 〉 +

µi

2
‖L(i) −M

k+1
i ‖

2
F )

= argmin
L

1
2
‖P − L− Ek‖2F +6

h
i=1
µi

2
‖L(i) +

1
µi
Qki

−M k+1
i ‖

2
F

= v argmin
L

1
2
‖P − L− Ek‖2F +6

h
i=1
µi

2
‖L

− refoldi(M
k+1
i −

1
µi
Qki )‖

2
F , (11)

where refoldi(·) is the inverse operation of the mode-i unfold-
ing. Next, calculate the partial derivative of objective function
of (11) with respect to L, and set it to zero.

−P + L+ Ek +6h
i=1µi(L− refoldi(M

k+1
i −

1
µi
Qki ))=0

(12)

After rearranging the term with L, the following form is
obtained:

L =
P − Ek +6h

i=1µirefoldi(M
k+1
i −

1
µi
Qki )

1+6h
i=1µi

(13)

For term Ek+1:

argmin
E

1
2
‖P − Lk+1 − E‖2F + β‖E‖

p
p,p. (14)

Therefore the element of Ek+1 in position (i, j, k) is
GST ((P − Lk+1)ijk , β, p, J ), where (P − Lk+1)ijk is the
element of P − Lk+1 in position (i, j, k).

III. THE ALGORITHM FOR IMAGE DENOISING
Image denoising aims to reconstruct the original image L ∈
Rm×n×d from its noisy observation P = L + N + E ,
where N and E are assumed as Gaussian white noise with
zero mean and impulse noise, respectively. In this section,
the proposed model (6) be applied to image denoising.
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Algorithm 2 Image Denoising by Soving (6).

Input: Noisy image P , C , σ (0)
n = σn, L̂(0)

= CP and
P̂ (0)
= CP

Output: Denoised image L̂(T )

for t = 1 : T do
Iterative regularization
P̂ (t)
= L̂(t−1)

+ α0(P̂ (0)
− L̂(t−1)

− Ê (t−1))
Estimate local noise level
σ
(t)
n =

λ0

√
|(σ (0)

n )2 − 1
mnd ‖P̂ (t) − L̂(t−1) − Ê (t−1)‖2F |

for each patch Ps in P̂ (t) do
Find similar patches of Ps to form tensor P̂s
from P̂ (t)

Determine weight vector w(t)
i via Eq.(16)

Obtain tensor L̂s and Ês via Eq.(15)
end
Aggregate L̂s to form the denoised image L̂(t)

end
Return: The final denoised image C−1L̂(T )

The image denoising algorithm consists of four basic steps:
preprocessing (only for color images), patch grouping [8],
low-rank tensor recovery, and aggregation. The detail of each
step is described in the following parts.

For color image denoising, the RGB channel space is firstly
transformed to the YCbCr channel space and C represent
the transform operator. For grayscale image denoising, C is
identity matrix.

Since patch grouping results will be seriously degraded by
the impulse noise when E 6= 0, the random-valued impulse
noise need to be firstly detected by the adaptive center-
weighted median filter (ACWMF) as in [29]. To further
improve the effect of algorithm, a characteristic matrix is
defined to record the position of the impulse noise obtained
by ACWMF. Since ACWMF is impossible to detect accu-
rately all the positions of the random-valued impulse noise.
Here, we define the characteristic matrix with 0.3 and 0.7
(instead of 0 and 1) to weight the impulse noise posi-
tion and non-impulse noise position, and this matrix can
be used to weight the term || · ||pp,p in the optimization
process.

First, Algorithm 2 searches for K nonlocal similar
patches of the given patch across the image utilizing block
matching [8]. Next, those similar patches are stacked into
a 3rd-order tensor P̂s which satisfies P̂s = L∗s + E∗s +
N ∗s , where L∗s , E∗s and N ∗s are the patch tensors of original
image, impulse noise and Gaussian noise, respectively. Then,
the estimations of L∗s and E∗s , L̂s and Ês, are obtained by the
following optimization problem:

(L̂s, Ês) = arg min
Ls,Es

1
2
‖P̂s − Ls − Es‖2F + α‖Ls‖

p
w(t),Sp

+β‖Es‖pp,p, (15)

FIGURE 1. Testing image dataset.

where t is the number of iteration, ‖.‖2F and ‖.‖pp,p correspond
to zero mean Gaussian noise and impulse noise respectively.
If we set β → ∞, the above model reduces to the original
low-rank recovery model [30]1 (which is called weighted ten-
sor Schatten p-norm minimization model, or simply WTSN
for short.) defined as follows :

L̂s = argmin
Ls

1
2
‖P̂s − Ls‖2F + α‖Ls‖

p
w(t),Sp

.

Thus model (15) can deal with zero mean Gaussian noise,
impulse noise and any other noise that can be approximated
by mixing these two kinds of noise. The weighting technique
proposed in [21] is adopted for (15). The j-th component of
weight vector w(t)

i is determined as

(wi)
(t)
j = (σ (t)

n )2c
√
K/((δ(t)j (L̂s,(i)))

1
p + ε), (16)

where K is the number of similar patches, c is a positive
constant, ε = 10−16 is added to avoid dividing by zero
and σ (t)

n is the estimation of standard deviation of Gaussian
noise in the iteration t . L̂s,(i) is unfolding matrix of tensor L̂s
on the i-th mode. Since δj(L̂s,(i)), the j-th singular value of
matrix L̂s,(i), is unavailable before L̂s is estimated, it can be
initialized by

δ
(t)
j (L̂s,(i))=

√
max{σ 2

j (P̂
(t)
s,(i)+

1
µi
Qi)− K (σ (t)

n )2, 0}. (17)

The denoised image L̂(t) can be reconstructed by aggre-
gating all the denoised patches together. Algorithm 2 sum-
marizes the whole denoising process, and the iterative
regularization scheme mentioned in [11] is adopted in it.

P̂ (t)
= L̂(t−1)

+ α0(P̂ (0)
− L̂(t−1)

− Ê (t−1)), (18)

where α0 is a relaxation.

1Reference [27] is our previous work published as a conference paper.
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FIGURE 2. Denoising results on image‘‘house’’ by WTSTP and SAIST, noise level σn = 30. (a) Noised image. (b) Original image. (c) Denoised
image by WTSTP. (d) Denoised image by SAIST.

FIGURE 3. Denoising results on image ‘‘straw’’ by WTSTP and SAIST, noise level σn = 100. (a) Noised image. (b) Original image. (c) Denoised
image by WTSTP. (d) Denoised image by SAIST.

FIGURE 4. Denoised results on ‘‘Kodak image1’’, σn = 30. (a) Original. (b) Noisy. (c) BM3D. (d) WTNN. (e) WSNM. (f) WTSTP.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, three different experiments are carried out
to prove the effectiveness of the proposed image denoising
method.

A. REMOVING GAUSSIAN NOISE IN GRAYSCALE IMAGE
The proposed denoising method is compared with a
series of state-of-the-art denoising methods, including
Block-matching 3D Filtering [8] (BM3D), Patch-based
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TABLE 1. Denoising results (PSNR) by different methods.

Near-optimal Image Denoising [31] (PBNO), Expected Patch
Log Likelihood for Image Denoising [32] (EPLL) Global
Image Denoising [33] (GID) and Spatially Adaptive Iterative
Singular-value Thresholding [3] (SAIST).

The implementation details of this part are set as follows:
all these methods are tested on 12 images (see Fig. 1). Gaus-
sian noise with variance σ 2

n is added to these images to get the
noised observations, where σn = {20, 30, 50, 60, 75, 100}.
The size of searching window for similar patches is 30× 30.
According to noise level, patch size and iteration number
are set. For heavy noise, more iterations and bigger patches
are chosen. More exactly, the iteration number T is set to
T = {8, 8, 12, 14}, the size of each patch is set to be {6 ×
6, 7×7, 8×8, 9×9} and p = {0.95, 0.8, 0.7, 0.5} for σn ≤ 20,
20 < σn ≤ 30, 30 < σn ≤ 60 and 60 < σn ≤ 100,
respectively.

Table 1 shows the peak-signal-to-noise-ratio (PSNR)
results by different methods. On each noise level, the highest
PSNR result for each image is highlighted in bold. An overall
impression observed from the table is thatWTSTP achieves at
least comparable denoising performance to other five meth-
ods, and it outperforms other methods by 0.15dB on average
in most cases. The reason is that both local and nonlocal
information within the image can be effectively combined for
image denoising.

The ‘‘house’’ image (see Fig. 2) and the ‘‘straw’’ image
(see Fig. 3) are picked up to show the denoised results in terms
of visual quality. Here, our method is compared with SAIST.
Since compared with other methods, denoising results of
SAIST are the best. It is clear that our method retains much
more structures information and detail within the image than
SAIST. In a word, our method presents strong denoising
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TABLE 2. Color image denoising results (PSNR) by different methods.

TABLE 3. Results (PSNR) on Lena and Barbara by different methods in the case of Gaussian-impulse mixed noise.

ability in both visual perception quality and quantitative
measure.

B. REMOVING GAUSSIAN NOISE IN COLOR IMAGE
In this part, our method is compared with three state-of-
the-art denoising methods for color image denoising: Block-
matching 3D Filtering (BM3D) [8],Weighted Tensor Nuclear
Norm Minimization (WTNN) [9] and Weighted Schatten p-
norm Minimization (WSNM) [21]. The testing image set
contains House, Lena, Pappers, F16, Baboon, the 1− 3th and
12th images from the Kadak PhotoCD. In this experiment,
additive white Gaussian noise with standard deviation σn =
{5, 10, 20, 30} is added to those images to obtain the noised
images, and we set the iteration number as T = {5, 3, 8, 10},
and p = {0.97, 0.9, 0.9, 0.9} for σn ≤ 5, 5 < σn ≤ 10,
10 < σn ≤ 20 and 20 < σn ≤ 30, respectively.

Similarly, the PSNR value and visual quality are used to
evaluate the effectiveness of our method, the PSNR value
results are presented in Table 2 and the highest PSNR value
is highlighted in each cell. As shown in the Table 2 and Fig.4,
our method obviously outperforms the other two methods,
and the reasons are analyzed as follows. (1) Our method v.s.
WTNN: the weighted tensor schatten p-norm requires the
weaker incoherence conditions than weighted tensor nuclear

normminimization, and thus is more robust against noise and
outliers. (2) Our method v.s. BM3D and WSNM: BM3D and
WSNM handle the image channels separately in the process
of color image, while our method handles the image channels
in an unified framework, and the correlation information
among the image channels is effectively used.

C. ZERO MEAN GAUSSIAN-IMPULSE MIXED NOISE
In this part, the proposed work is compared with Cai’s work
[34] and Xiao’s work [29] in case of zero mean Gaussian-
impulse mixed noise, where the testing data include Lena
and Barbara. To have a fair comparison, the noise level is set
the same as in [29]: zero mean Gaussian noise with standard
deviations σ = {5, 10, 15} and random-valued impulse noise
with density level r = {10%, 20%, 30%}.

The denoising results obtained by different methods are
shown in Table 3,2 from which we can find that the denoising
performance has greatly promoted in most cases. The reasons
are as follows: (1) both local and nonlocal information within
the image can be effectively combined for image denoising.

2Since there is no code of the compared methods in the experiment, our
work is directly compared with the experimental results in the paper of those
under the same parameter settings, and thus only quantitative analysis has
been given.
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(2) WTSTP yields a desired sparse solution, and thus is more
robust against noise and outliers. (3) in our work, the impulse
noise detection results obtained by ACWMF are only pro-
vided as a prior for Algorithm 2, and the sparse error term in
our models can effectively compensate it and find the impulse
noise which is not accurately detected by ACWMF.

V. CONCLUSIONS
In this paper, we have proposed a new low-rank tensor
recovery model: joint weighted tensor Schatten p-norm and
tensor lp-norm minimization (WTSTP) for image denoising.
WTSTP has two major merits: On the one hand, it treats the
image patches as tensor instead of vector, and thus makes full
use of the structure information and the relation of different
channels within the image which can improve the denoising
performance; On the other hand, it adopts lp-norm and Schat-
ten p-norm which is robust against noise and outliers and
ensures a more accurate low-rank recovery.Meanwhile, it can
deal with any noise that can be approximated by mixing zero
mean Gaussian noise and impulse noise. In the part of experi-
ment, the proposed algorithm was applied to grayscale image
denoising and color image denoising, and the experimental
results demonstrated the validity of our work. In the future,
we expect WTSTP will be applied in other fields except for
image denoising.
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