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ABSTRACT With the rapid development of the construction and operation of mass transit hubs, passenger
data collection, modeling, and prediction for optimal control have become very important. In this paper,
pedestrian facilities are abstracted into connected nodes, and the passenger flow network is formed according
to the facility connection relationship determined by the traffic organization; therefore, the state variables of
the hub, such as saturation, and the traveling time can be estimated by pedestrian flow information collected
by camera monitors and a free Wi-Fi network, including the fast analysis of data features and traffic flow
prediction. The method is applied to a real case. The features of pedestrian flows are classified as chaotic and
nonchaotic. We use a regression model to predict the nonchaotic situation, and the wavelet support vector
machine model is proposed for the chaotic. The results can be used for the control of exits and ramps in

the hub.

INDEX TERMS Transit hub, streamline network, chaos, wavelet support vector, data-driven.

I. INTRODUCTION

With the rapid development of social economy and increasing
traffic congestion, public transportation and slow traffic are
increasingly valued by researchers. As an important link of
various modes of transportation, urban transit hubs directly
affect the attractiveness of public traffic modes to travelers
and the smoothness of the entire urban transport network.
We abstract the urban transit hub facility layout and pedes-
trian streamline organization into a pedestrian streamline
network [1], [2], in which facilities such as the ticket gate,
wicket and passageway are abstracted into adjustable nodes.
Passenger flow demand information and hub operation status
information are integrated, aiming at the efficient use of the
hub system transfer function under the premises of travel
safety and comfort.

The passenger flows are the input and output of pedestrian
facilities. This information can be observed from video, cell
phone signals and other modern data acquisition methods.
The saturation of the facilities and travel time of the pas-
sengers can be estimated based on these online data and

perdition data, and the estimation can be used for the coordi-
nation control of the passenger flow and pedestrian facilities.
Thus, passenger flow forecasting was the core component of
the management and control system in the comprehensive
passenger transport hub and the precondition of the traffic
control and guidance, because the forecasting methods can
provide the future states of the system for proactive manage-
ment and traveler information service. The method of short-
term traffic flow forecasting falls into two categories. The
first is the time series method, based on historical section data
of traffic flow, and the second is the filtering and estimating
method, based on the section data of upstream traffic flow.
Most methods were developed for the prediction of vehicle
traffic flow [3]-[9], [33]-[35].

In this work, we focus on the first type of method, the traf-
fic flow time series method. Based on the reconstruction
phase space method and the analysis of Lyapunov expo-
nents, Sun et al. [8] and Guo et al. [9] found that most
traffic flows have a fractal character in a certain scale range.
References [10]-[14] showed that the chaotic time series
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forecasting method has better prediction accuracy based on
reconstruction of the phase space technique. The method
of support vector machines (SVM) uses machine learning
based on the statistical learning theory and has been widely
applied in the fields of classification and regression including
traffic flow prediction [17]-[19]. Furthermore, the kernel
of an SVM can be alternated with a wavelet function that
satisfies the admissible condition [20], [21], so the wavelet
support vector machine (WSVM) was created. The WSVM
method has been widely used in many engineering fields with
satisfactory results [22]-[25], [30]-[32]. The chaotic charac-
teristics of pedestrian flows at various pedestrian facilities
remained unknown, and exploration of the WSVM method
for time series of pedestrian flow prediction was valuable for
achieving greater prediction accuracy [33]-[36].

In this manuscript, the pedestrian flow data were collected
from a comprehensive passenger transport hub in Beijing.
We investigated the chaotic characteristics of the pedestrian
flow by reconstructing phase space techniques and construct-
ing the chaotic wavelet support vector regression model for
pedestrian flow forecasting. The contributions of our work
were the following: (1) pedestrians flows at various facilities
in the hub have chaotic characteristics except at the escala-
tors, because the pedestrians move at the same speed; (2) the
WSVM model for short-term pedestrian flow forecasting was
proposed based on the reconstructed phase space.

The rest of this paper is organized as follows: Section II
analyzes the chaotic characteristics of short-term pedestrian
flow. Section III constructs the chaotic wavelet support
machine model for pedestrian flow forecasting. Section IV
is an application using real data collected from a passenger
transport hub. Finally, Section V concludes our work and
describes some future research issues.

Il. THE PASSENGER FLOW NETWORK MODEL

There are many passenger facilities in a mass transit hub. The
topology of these facilities is restricted to their relative posi-
tions and the traffic organization of the hub. In the network,
each facility is abstracted as a point, and the link between
two points represents the interface of the points (namely, two
connected facilities).

Each point (trait point) in the network represents a passen-
ger facility and is set as an object with attributes of geometry
and status. The status is described by variables of saturation,
travel time, etc. In Fig. 1, we can directly observe the status
of “entrance,” “Stairl,” and ““Stair2” by a camera monitor,
but the status of “hall” is not observed because of its large
area. However, we can estimate the status of “hall” (the green
point in Fig. 1 (a)) by observing and predicting the flows
of the interfaces between “‘hall” and its connected facilities.
This can be described by the formula

0) =0t —D+f1—-(2+f3),

S(@t) = Q(1)/Omax (1)
where Q(7) is the number of passengers in the facility at time
step t; f 1, f2 and f'3 denote the flows of the links (see Fig. 1);

VOLUME 7, 2019

® /1 - /2 >@®

f3

Entrance

|
® (&)

Hall

(b)

FIGURE 1. Schematic diagram of the passenger flow network and
facilities in a mass transit hub. (a) Passenger flow network. (b) Layout of
facilities.

and S(¢) denotes the saturation of the facility at time step ¢.
Based on equation (1), the in-flow f1, and the out-flow
(f2 + f3), we can estimate the variable values of the facility
status.

Ill. ANALYSIS OF CHAOTIC CHARACTERISTICS

OF PEDESTRIAN FLOWS

In this section, we discuss the chaotic characteristics of
in-flow and out-flow of the facilities in a mass transit hub.

A. PHASE SPACE RECONSTRUCTION

For a one-dimensional time series, the chaotic attractor can
be reconstructed, and the embedding dimension m and delay
time t should be determined for its reconstruction.

Suppose that the length of a pedestrian flow time series
x(t) is n, where the value time step ¢ is set from 1 to n.
Let the embedding dimension be m and delay time be 7; the
reconstruction phase space R™ can be described as follows:

Y(t) = x@), x4+ 1), ..., x(t + (m — D)1)), 2)

where time step ¢t = 1,2, ..., n. Delay time t is determined
by the autocorrelation function

Clr) =Y (x(t) = H)(x(t + 1)=%) / > —x7 3)
t t

where the value of delay time t can be determined by an
empirical method whose value is satisfied by C(r) = (1 —
1/e) - C(1). The embedding dimension can be determined
by the method of pseudo neighbor points, in which some
nonneighbor points change into pseudo neighbor points when
the value of embedding dimension m is too small. Tracking
the number of pairs of pseudo neighbor points, when the
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number of pairs does not increase with increasing value of
embedding dimension m, the phase space is considered to
be expanded completely. The corresponding algorithm for
finding pseudo neighbor points is described in Algorithm 1.

Algorithm 1 Finding Pseudo Neighbor Points
Step 1 The time series is x(¢), and the time delay is t; set
the initial value of embedding dimension m = 1;
Step 2 Reconstruct the phase space based on the series x(t),
T and m; loop the phase points, find their nearest neighbors,
and calculate their distance;
Step 3 Calculate criterion 1 and criterion 2,

lx(i + mt) — x(j + mv)| /| X;i — X;| > L1, )
1/2
((x(i +mt) — x(j + mr))* + || X; — Xj”)

n -1
: <n_1 > k) - 2)2> > L2 5)
k=1

where phase point X; = (x(i), x((+ 1), ..., x(i+(m— 1)1)),
and x is the mean value of time series x(t). If a phase point
is satisfied by one of the two criteria, the point is labeled
as the pseudo neighbor point;

Step 4 Calculate the number of pseudo neighbor points.
If the number does not decrease with increasing embedding
dimension m, the algorithm ends; otherwise, set m =
(m 4+ 1) and jump to Step 2.

B. THE LYAPUNOV EXPONENT

In one-dimensional dynamical system x,+; = F(xy), the
variation of distance between two neighbor points in the next
time step depends on the value of derivative dF /dx. If the
number of iterations is N, let the initial distance between
two neighbor points be ¢, and A = mean(Ln(dF /dx)), so the
distance after N iterations will be as follows:

|F"Gro + ) = F"(xo)| = ee™, ©)
Let the variables ¢ — 0o, N — 00; we can then obtain the
equation

N—1
o i
A= lim 2 0: In }dF Jdx
=

, (N
X=X
where A in the Lyapunov exponent of the dynamical system,
which describes the separation velocity between the neighbor
points of the phase space in each time step. For the reconstruc-
tion phase space of time series, the largest Lyapunov exponent
was calculate using Algorithm 2.

C. KOLMOGOROV ENTROPY AND

CORRELATION DIMENSION

Local instability of chaotic trajectories leads to separation
of adjacent orbits at exponential rates. Kolmogorov entropy
(K-Entropy) is a measure for describing the separation speed
of adjacent orbits, and the reciprocal of K-Entropy is an index
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Algorithm 2 Calculation of Largest Lyapunov Exponent
Step 1 Set initial phase point Y (¢1), find the nearest neigh-
bor point Y (#j) of Y(ty), and set L; = | Y (1)) — Y(1)|;
Step 2 Track the variation of the distance L; with the time
step accumulation; at time #, and Li =Y () —-Y{t)| > &,
where ¢ is a threshold value, # =t; + 2 — t1;

Step 3If 1y = (n—m+ 1), go to Step 4; else let point Y (#x)
be the initial point, and go to Step 2;

Step 4 Let the number iterations be N; the largest Lyapunov
exponent is then

N
o=/t —t1) Y Ln(L]/L). ®)

i=1

in the time dimension, which can determine the horizon of
system prediction. Using joint probability to describe the
information of orbits in phase space,

K = lim lim lim (nt)~!

t—>0e—>0n—>00
n

Z pQio, i1, ..., i) InCio, i1, ..., in)

1050155 in

where 7 is the sampling time of orbit observation, ¢ is the
unit grid size in phase space, and »n is the number of phase
points. Because the dynamic equations of pedestrian flow are
usually unknown, there are difficulties in working with the
problem T — o0, so we approximate the K-Entropy with
Renyi entropy of order 2:

Ky = lim Ky(m,r)

r—0
m— 00
and
1 C(m,
Ky(m,r) = —In &
T Cm+1,r)
1 N
Clm,r) = lim | Zl:#.H (r— Y@ —y@)),
l,/: 3 J

where N is the number of phase points in space R™, m is
the embedding dimension of the time series and denotes the
Heaviside step function, and || Yit)—Y (tj)H denotes the dis-
tance between two phase points. In the process of calculating
Renyi entropy, we can obtain the correlation dimension of
chaotic time series.

d(m,r)=LnC(@m,r)/Inr,

where the range of r values is [2, 600], and the unit of r is
one pedestrian.

D. THE CHAOTIC CHARACTERISTICS

OF PEDESTRIAN FLOWS

The time series data of pedestrian flow were collected from
a Beijing CPTH during rush hours, and the time statisti-
cal interval of the time series was 1 min. These data were
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collected from seven pedestrian facilities, such as passage-
way D1, escalator D2, staircases D3 and D4, and ticket halls
D5 and D6.

The calculation of the delay time, embedding dimension
and largest Lyapunov exponent are shown in Tab. 1. The
results show that most pedestrian flows have chaotic char-
acteristics except the flow on escalators. The value of the
escalator was labeled with blue color in Tab. 1.

TABLE 1. Delay time 7, embedding dimension m and Lyapunov
exponent \.

D1 D2 D3 D4 D5 D6

In 0.35 0.02 0.33 0.07 0.30 0.58
En 0.12 0.00 0.18 -0.17 0.11 0.40
T 2 2 3 2 3 3
m 3 4 3 3 3 3

A 0.10 -0.03 0.03 0.09 0.09 0.04

*Note. ‘In’ and ‘En’ indicate the initial and ending values of the
autocorrelation function, respectively.

TABLE 2. The correlation dimension and Kolmogov entropy.

D1 D2 D3 D4 D5 D6

T 2 2 3 2 3 3
m 3 4 3 2 3 3

Ks 0.36 0.11 0.24 0.35 0.24 0.24
*Note. Symbol 71 indicates the correlation dimensions, and Ks denotes
the value of K-Entropy.

The correlation dimension of the D1 data can be seen
in Fig. 1. We can see the chaos attractors exist only in a limited
range of nonscale intervals. When embedding dimension m is
certain, the K-Entropy value will decrease with increasing r
value, and we take the smallest value of the K-Entropy (see
Tab. 2). The reciprocal of K-Entropy is the horizon of the
system orbit prediction, so the horizons of the forecast of
the short-term pedestrian flow are 3 to 5 time steps, where
the sample time step is 1 min.

IV. WAVELET SUPPORT VECTOR REGRESSION

In the mass transit hub, most passenger flows have chaotic
characteristics. In this section, we focus on the method of
chaotic passenger flow prediction.

A. PHASE SPACE RECONSTRUCTION

Suppose there is a dataset {x;, y;; i = 1, 2, ..., N}, where x; €
R" denotes the input vector and y; € R is the output value. The
idea of support vector regression is to project the data x; € R"
into a higher-dimensional space by a kernel function ® and
classify these data with a hyperplane in the space. The linear
classify function of the support vector machine was defined as

f(x, 0) = 0T &(x)+ b, 9)
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The coefficients can be estimated by finding the extreme
value of the function

1
1 D
RD) = 5 lwll* + T > lyi— i o), (10)
i=1

where D is a positive constant, € is a small positive number,
and the item on the right side of Eq.(9) [y— f(x, )|, is set
to zero when |y— f(x, w)| < o and (|[y— f(x, w)| — o) when
y— fx, 0)| > 0.

Based on the Lagrange multiplier method, Eq.(8) can be
written in the following form:

!
) =" (W —uvDK(x, x;) +b, (11)
i=1

where v and v; are Lagrange multipliers, satisfying v} x
v; = 0, vl-* > (0 and v; > 0. The minimization of Eq.(10)
leads to the following dual optimization form:

1 1
max L(vl-*, V) = —0 Z (U;k — )+ Z (U;k — Ui)yi

i=1 i=1

1o
1
~5 E E Wi = v} — VK (xi, x)),
i—1 j=1

l
st. Y (@ —v) =0, v €[0.D]. (12)
i=1
The kernel K(x;,x;) form can be written in dot form

O(x)! d(x;).

B. THE WAVELET KERNEL
Let w(x) be a mother wavelet function

Wa,ex) = lal ™2 w (x — c>, (13)

where a is a dilation factor, and c¢ is a translation factor.
The wavelet transform of a function f(x) € L?(R) can be
written as

Wa,o(f) = <f(x)» Wa,c(x)>7

and we can reconstruct function f (x) as follows:

f)=w,! /0 b / ” Wa,c(f)wa,c(x)‘;—ﬁ’dc, (14)

where

I F(t 2
Wwa |F(0)] dr.
0 |7]

F(t) = /w(x) exp(—jtx)dx.

The multidimensional wavelet function can be written as
follows:

wex) = [ [we). xeRr™ (15)
i=1
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Therefore, we obtain the wavelet kernels in dot-product form
as follows:

,_m Xi— ¢ X, —c;
K(x,x)_tljw( - )w( - ) (16)

the translation invariant kernels form was K(x,x') =
K@ —x"),

K(x,x’):Hw(Xi;xi), (17)

i=1

We construct the translation invariant kernel by the Morlet
wavelet function:

w(x) = cos(wox) exp(—x2/2), (18)

the wavelet kernel of Eq.(17) is written as follows:

K x) u X — x| (i —x))°
,x) = | |cos cexp | -— ],
X, X wo P P 2a2

i=1
(19)

Thus, we can obtain the regression function of WSVM based
on Eq.(10) and (18):

1 m xj—x]-.
f@) = Z(w—vf“)]’[coswo( — )
i=1 j=1 !

G B
exp 2a? ’

i

where x{ denotes the ith training point in the jth dimension.

C. CHAOTIC TIME SERIES FORECASTING MODEL

Suppose that the length of a chaotic time series is n, and
the embedding dimension and delay time are m and T,
respectively. We can reconstruct the phase space by the one-
dimensional time series based on Eq.(1), with (n — (m — 1)7)
points Y (¢) in the reconstructed phase space:

Y(1) = (x(1), x(1 + 1), ..., x(1 + (m — D7),

Y() = x(@),x(t 4+ 1), ..., x(t + (m — 1)1)),

......... N

Y(M) = (x(n— (m — D),
x(n—@m— Dt + 1), ..., x(n)), 21

where M = n—(m—1)7,and ¢ is an integer where ¢ € [1, M].

Let the phase point Y (¢) be the input data and the cor-
responding x(t + (m — 1)T + 1) in one dimension be the
output data (see Eq.(19)). Chaotic motion is not random,
and the Lyapunov exponent describes the divergent velocity
of a pair of neighbor phase points in the system, so the
trajectory of phase points is predictable in the range of critical
time (1/Amax). Thus, there generally is a compound mapping
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FIGURE 2. The correlation dimension of Datal.

M'(R"™ — R™ — R) among Y(¢), Y(r + 1) and x(¢t + (m —
1)t 4+ 1), which is written as follows:

M Y(t)— Y+ 1) = x(t +(m— D + 1),

where compound mapping M’ can be simplified in the form
M(R™ — R),

M:Y(@t) = x(t + (m— Dt + 1), (22)

Based on the training data Y (¢) and x(r + (m — D)t + 1),
we can use various regression methods to find the mapping
M for chaotic time series forecasting.

V. EXPERIMENT RESULTS

We collected the pedestrian flow data from a Beijing CPTH
during rush hours. The “datal” set in Tab.(1) was selected
as the chaotic time series data for the experiment of regres-
sion model and forecasting. The length of the time series of
data D1 was 184, with time steps of 1 min.

Four regression methods were used for modeling the map-
ping M of Eq.(21): the backpropagation (BP) neural network,
autoregressive and moving average model (ARMA), radial
basis function support vector regression model (RSVR) and
the WSVR, where, the first three classical models were chose
to used as baseline models In the BP neural network model,
we used the hyperbolic tangent sigmoid transfer function. The
hidden layer size was set to five, and the network updated
its weight and bias values according to Levenberg-Marquardt
optimization. We found the minimum value of Akaike’s infor-
mation criterion for estimating parameters p and g of the
ARMA model. The index MSE was selected as a criterion
for finding the optimal dilation factor a of the kernel wavelet
function.

The values of last 50 steps of the time series were used
to verify the regression model. The embedding dimension
of “datal” was 3, and the delay time was 2 (see Tab. 1).
We reconstructed the phase space and the set of support
vector training data (see Fig.(1)). The prediction perfor-
mance of the regression models was described by using sta-
tistical indices of the mean square error (MSE), the mean
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TABLE 3. Mean square errors of four models on fifty time steps.

volume(p/min)

FIGURE 3. The pool of vector training samples.

1 2 3 4 5 6 7 8 9 10
BPNN 1 0.098999 0.13029 0.028545 0.037096 0.091225 0.16971 0.11959 0.022891 0.36665 0.14877
ARMA 0.11693 0.016716 0.1062 0.21003 0.18563 0.074712 0.045457 0.0046506 | 0.26647 0.27622
RSVR 0.11529 0.14768 0.10689 0.074938 0.20716 0.20716 0.19342 0.20716 0.27966 0.10953
WSVR 0.024907 0.13296 0.11943 0.047485 0.12462 0.1686 0.057302 0.032849 0.33045 0.17913
BPNN 1 0.25196 0.16114 0.014781 0.0092471 | 0.06519 0.34738 0.0059201 | 0.3025 0.13481 0.18665
ARMA 0.058875 0.075704 0.2833 0.14851 0.15594 0.23743 0.016931 0.27688 0.07231 0.15288
RSVR 0.11063 0.20977 0.074938 0.034679 0.078507 0.20025 0.12581 0.22949 0.14768 0.20025
WSVR 0.028942 0.051795 0.047167 0.0057081 | 0.11425 0.0014626 | 0.0030625 | 0.021525 0.038405 0.080417
BPNN 1 0.037271 0.28032 0.11282 0.17389 0.091208 0.32662 0.03258 0.47481 0.049019 0.10373
ARMA 0.036608 0.25287 0.17192 0.028092 0.040672 0.15777 0.2732 0.40228 0.089913 0.016787
RSVR 0.12581 0.37044 0.13034 0.10441 0.20716 0.20025 0.078507 0.57875 0.14768 0.10441
WSVR 0.1207 0.058394 0.019944 0.11712 0.036478 0.010181 0.07861 0.3487 0.14983 0.047824
BPNN 1 0.0087924 | 0.40573 0.23349 0.10566 0.068545 0.16611 0.087695 0.027972 0.25851 0.17535
ARMA 0.055983 0.25055 0.048698 0.04038 0.041311 0.39987 0.080266 0.0063603 | 0.14528 0.022206
RSVR 0.11063 0.11572 0.19342 0.14768 0.11063 0.1895 0.12932 0.10689 0.20977 0.19342
WSVR 0.014821 0.040037 0.066609 0.036659 0.13003 0.22889 0.14846 0.015733 0.26509 0.24912
BPNN 1 0.17282 0.05481 0.11481 0.32484 0.020605 0.0051901 | 0.02519 0.031595 0.068822 0.056552
ARMA 0.17503 0.023505 0.077066 0.18258 0.1982 0.067871 0.084699 0.071378 0.075877 0.0093139
RSVR 0.078507 0.10689 0.12581 0.20025 0.11529 0.13034 0.12639 0.078507 0.018255 0.11529
WSVR 0.088502 0.027646 0.068939 0.025134 0.050368 0.17609 0.11433 0.024218 0.012347 0.032823
E
2

25
Time (min)

TABLE 4. Total errors of four models on fifty time steps.

BPNN ARMA RSVR WSVR
MSE 8.1997 7.0023 6.8896 6.0740
MAE 6.1507 5.1597 6.4791 4.5771
MAPE 0.1753 0.1752 0.1963 0.1488

absolute error (MAE) and the mean absolute percentage
error (MAPE). The results can be seen in Tab. 2.
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FIGURE 4. The results of regression models for forecasting. (a) Data of BP
neural network and ARMA. (b) Data of RBF and Wavelet SVR model.

12
MSE = (n_l 3 @ —)2,-)2) ,

MAPE = n~" Y " | — &] - |l " (23)

The performance comparison among the BPNN, ARMA,
RSVR and WSVR regression models can be seen in Fig. 2 and
Tab. 3. According to the values of the statistical error indices,
the WSVR regression model has the lowest errors.
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VI.

CONCLUSIONS

In this paper, we investigated the chaotic characteristics of
pedestrian flows collected from a comprehensive passenger
transport hub and found that most pedestrian flows were
chaotic in limited no-scale intervals, except the flows col-
lected from escalators. Furthermore, based on the reconstruc-

tion

of phase space, we used the wavelet support vector

regression model to map the evolution of the trajectory in one

step
that

for chaotic time series forecasting. The results showed
the chaotic wavelet support vector regression model has

better prediction accuracy. We plan to consider the random
factor and fuzzy method in future work [27]—[38].
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