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ABSTRACT Mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been
considered as the promising techniques to address the explosively growing computation-intensive appli-
cations and accomplish the requirement of massive connectivity in the fifth-generation networks. Moreover,
since the computing resources of the edge server are limited, the computing load of the edge server
needs to be effectively alleviated. In this paper, by exploiting device-to-device (D2D) communication
for enabling user collaboration and reducing the edge server’s load, we investigate the D2D-assisted and
NOMA-based MEC system. In order to minimize the weighted sum of the energy consumption and delay
of all users, we jointly optimize the computing resource, power, and channel allocations. Regarding the
computing resource allocation, we propose an adaptive algorithm to find the optimal solution. Regard-
ing the power allocation, we present a novel power allocation algorithm based on the particle swarm
optimization (PSO) for the single NOMA group comprised of multiple cellular users. Then, for the matching
group comprised of a NOMA group and D2D pairs, we theoretically derive the interval of optimal power
allocation and propose a PSO-based algorithm to solve it. Regarding the channel allocation, we propose a
one-to-one matching algorithm based on the Pareto improvement and swapping operations and extend the
one-to-one matching algorithm to a many-to-one matching scenario. Finally, we propose a scheduling-based
joint computing resource, power, and channel allocations algorithm to achieve the joint optimization. The
simulation results show that the proposed solution can effectively reduce the weighted sum of the energy
consumption and delay of all users.

INDEX TERMS Mobile edge computing (MEC), non-orthogonal multiple access (NOMA),
device-to-device (D2D) communications, power allocation, and channel allocation.

I. INTRODUCTION
With the proliferation of smart devices and mobile inter-
net services, more and more mobile applications, such as
augmented reality (AR), artificial intelligence (AI), and
face recognition, are emerging and have attracted much
attentions [1], [2]. These sophisticated applications are
generally computation-intensive and delay-sensitive, which,
however, cannot be afforded by most mobile devices
due to their limited computing resources and battery

capacities [3], [4]. As an interesting and promising solution
in the fifth-generation (5G) communications, mobile edge
computing (MEC) enables users to offload computing tasks
to the edge server, which can mitigate the cost of devices and
improve the quality of service (QoS) [5]–[8].

Moreover, since a large number of devices offload
computation-intensive tasks to the edge server, there is
an urgent requirement for massive connectivity. However,
due to the allocation manner of communication resources
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(e.g., time slots and frequencies), conventional orthogonal
multiple access (OMA) cannot satisfy the requirements of
the number of user access (NUA) for MEC in 5G networks.
As a potential and compelling technology, non-orthogonal
multiple access (NOMA) enables multiple users to share
one channel at the same time, thereby improving NUA and
spectral efficiency (SE) [9]–[13].

Although NOMA can address the requirement of massive
connectivity, it introduces a new challenge, namely, when vast
users offload tasks to the edge server, the users’ experienced
QoS will be impaired due to the excessive computation work-
load at the edge server. Many approaches have been proposed
to alleviate this issue. Al-Shuwaili and Simeone [14] utilized
the repeatability of computing results of AR to store reusable
results in servers to mitigate the computing load. However,
this scheme often requires a specific scenario. Fan et al. [15],
Chen et al. [16], Ning et al. [17], and Beraldi et al. [18] uti-
lized the cooperation between servers or servers and clouds to
balance the computing load. However, these schemes usually
require neighboring servers and remote clouds to coordinate
their task allocations for the load balancing, which usually
result in a heavy signaling overhead in the backhaul. Thus,
it is necessary to explore a newway of cooperation tomitigate
the computing load of edge servers in the NOMA-based
MEC system.

Device-to-device (D2D) communication has been consid-
ered as an important paradigm in 5G systems and has drawn
lots of research interests [19]–[21]. In D2D-enabled cellu-
lar networks, devices are allowed to communicate directly
through cellular channels, which not only mitigates the work-
load of the base station (BS) but also improves SE and
NUA [22], [23]. Therefore, in this work, we exploit the
D2D to reduce the computing load of the edge server in
the NOMA-based MEC system. In the system, cellular users
(CUs) form multiple NOMA groups, and users in each
NOMA group offload tasks to the edge server through the
same subchannel. Since the computing resource of different
devices is heterogeneous, the device with weak computing
capability can offload task to the device with stronger com-
puting capability through a cellular channel. However, for the
D2D-assisted and NOMA-based MEC, there are still many
factors (such as the multi-user interference and resource allo-
cation) that affect the system performance (e.g., energy con-
sumption and delay). Therefore, interference management
and resource allocation are essential for the D2D-assisted and
NOMA-based MEC system.

Recently, several studies have investigated the perfor-
mance of NOMA-based MEC system. Ai et al. [24] con-
sidered the sociality and cooperation between devices, and
optimized the system delay under the constraints of energy
consumption and power consumption. Wang et al. [25] con-
sidered a multi-antenna NOMA-basedMEC system and opti-
mized the energy efficiency with the constraints of the rate
and power. In [26], multiple users offload tasks to unmanned
aerial vehicles (UAVs) in the way of NOMA and reduced the
energy consumption of system by optimizing the power of

all devices and the trajectory of UAVs. Kiani and Ansari [27]
exploited NOMA into MEC and formulated an optimization
framework to reduce the energy consumption of system by
optimizing user clustering, resource and power allocations.
Moreover, some studies have focused on the D2D-based
MEC system. For instance, Chen et al. [28] proposed a
novel D2D crowd framework for the MEC system to achieve
energy-efficient collaborative task executions at the network
edge for mobile users.

Moreover, inspired by the benefits of NOMA and D2D,
some studies investigated the combination of the two tech-
nologies for further improving the SE and NUA. Thus,
recently, there have been some studies investigated the
D2D communication underlaying a NOMA-based cellular
network [29]–[32]. Zhao et al. [29] considered a novel
NOMA enhanced D2D communication scheme and proposed
a novel algorithm based on the matching theory and sequen-
tial convex programming to maximize the system sum rate.
Pei et al. [30] investigated the resource allocation problem
in the D2D communication underlaying a NOMA-based
energy-harvesting cellular network. Focusing on a uplink
multi-carrier NOMA (MC-NOMA) in D2D underlaying cel-
lular networks, Zheng et al. [31] proposed an iterative algo-
rithm that applies the Karush-Kuhn-Tucker (KKT) conditions
to solve the power allocation problem.

The above studies have investigated the NOMA or D2D
based MEC system and D2D communication underlaying
NOMA-based cellular network. However, for interference
management, some studies focused on one aspect (either
power control or channel allocation). In [32], a joint power
allocation and channel allocation was investigated by exploit-
ing the techniques of lagrangian duality and dynamic pro-
gramming. This work considered a simplified NOMA-based
scenario and internal interference without considering the
influence of inter-group interference. Although Pan et al. [33]
investigated the internal and inter-group interference and
proposed a joint optimization of power and channel alloca-
tions in D2D communication underlaying a NOMA-based
network, this work did not consider the joint optimization
for both cellular and D2D users. Moreover, many existing
studies focus on the interference management, and pay little
attention to the optimization of computing resources which is
significant for the performance of MEC system. To the best
of our knowledge, there is no existing work investigating the
D2D-assisted and NOMA-based MEC system.

Therefore, in this work, we jointly optimize the computing
resource, power and channel allocations to reduce the energy
consumption and delay of both CUs and D2D users. In the
system, all CUs will form multiple NOMA groups. In each
NOMA group, CUs offload tasks to the edge server through
a fixed subchannel. EachD2D pair consists of a task requester
and a task agent, where the task requester offloads a task to
the task agent through one arbitrary subchannel. In order to
minimize the weight sum of energy consumption and delay of
all users, we jointly optimize the computing resource, power
and channel allocations. However, the objective function is
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a non-convex multivariate fractional summation function and
the constraints are also non-convex. After analysis, we decou-
ple the original problem into three subproblems. The main
contributions of this work can be summarized as follows:

1) We simultaneously optimize the energy consumption
and delay for cellular and D2D users under the
constraints of energy consumption, delay, power and
computing resource. The optimization problem is chal-
lenging due to the structure of multivariate fractional
summation. We analyze the relationship between the
three variables in the optimization problem, and decou-
ple the optimization problem into three sub-problems,
and obtain a close-to-optimum solution.

2) We investigate the power allocation problem with two
different matching cases. First, for the single NOMA
group, we propose an iterative particle swarm optimiza-
tion (PSO) algorithm. In each iteration, it transforms
the multivariate problem into a univariate problem to
reduce the computational complexity. Secondly, for
the matching group, we reduce the complexity of the
power allocation problem by transforming the multi-
variate problem into a univariate problem by replacing
the CUs’ power with the task requester’s power. Then,
we quantify the interval of the optimal task requester’s
power allocation and further utilize the PSO algorithm
to find the optimal task requester’s power within this
derived interval.

3) For channel allocation, we propose a one-to-onematch-
ing algorithm based on the swapping operations and
Pareto improvement, and prove that the algorithm con-
verges to the locally or globally optimal solution.
Moreover, in order to achieve the goal of joint
optimization, we propose a scheduling-based joint
computing resource, power and channel allocations
algorithm.

The remainder of this paper is organized as follows.
Section II presents the system model. In Section III, we for-
mulate an optimization problem and decouple it to three
subproblems. In Section IV and Section V, we solve the
three subproblems and propose an algorithm to solve the
joint optimization problem. Numerical results are presented
in Section VI. Finally, conclusion is given by Section VII.

II. SYSTEM MODEL
We consider a cellular uplink communication system which
consists of a BS equipped with a MEC server, U CUs
and N D2D pairs, denoted by D = {D1,D2, · · · ,DN },
as illustrated in Fig. 1. In the system, the CUs and D2D
pairs are uniformly distributed. According to the user clus-
tering method in [34], CUs are divided into M NOMA
groups at equal intervals of channel gains. Denote NG =
{NG1,NG2, · · · ,NGM } as the set of NOMA groups, where
NGm = {NG1

m,NG
2
m, · · · ,NG

Km
m } denotes the m-th NOMA

group, and NGjm is the j-th user in the m-th NOMA group,
and Km denotes the number of users in the m-th NOMA
group. In each D2D pair, there are a sender called D2D task

FIGURE 1. System model.

requester (DTR) and a receiver called D2D task agent (DTA).
Moreover, we assume that DTR and DTA are friends or rel-
atives with solid mutual trust relationship, so DTA can
help DTR without rewards. Both CUs and DTRs have
a computation-intensive and delay-sensitive task Ai

1
=

(Di,Ci,Tmax
i ), whereDi is the input-data size (in bits),Xi rep-

resents the computing intensity (in CPU cycles per bit), and
Tmax
i represents the deadline of each task. In addition, there

are M orthogonal subchannels SC = {SC1, SC2, · · · , SCM },
and we define B = W

M as the bandwidth of each subchannel,
where W is the available channel bandwidth. In particu-
lar, each NOMA group is assigned a subchannel, and CUs
who belong to the same NOMA group offload tasks to the
edge server through the same subchannel. DTRs can select
one arbitrary subchannel for computing offloading. In other
words, each subchannel may not be occupied by any D2D
pair or may be occupied by multiple D2D pairs. In addition,
we assume that the computing resources of the edge server are
divided into multiple computing cells, and the total number
of computing cells is CN . Moreover, we assume that all users
perform computing offloading simultaneously and the BS has
complete channel state information (CSI).

A. COMMUNICATION MODEL
We assume that subchannel SCm is occupied by the
NOMA group NGm. Since each DTR can select any sub-
channel to offload its task, there are two matching cases for
a NOMA group. Specifically, if NOMA group NGm does
not share its subchannel SCm with any D2D pair, then we
call NOMA group NGm as a single NOMA group. Other-
wise (namely, some D2D pairs reuse the subchannel SCm of
NOMA group NGm), we call NOMA group NGm as a match-
ing group. Then, the received signal at the BS corresponding
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to subchannel SCm is given by

ym =
Km∑
j=1

√
pNGjmgNGjm,BxNGjm +

N∑
n=1

αmn
√
pngnBen + ξm,

(1)

where xNGjm and en are the transmit signals of NGjm and
DTRn, respectively. ξm is the additive white Gaussian noise
(AWGN) at the BS on subchannel SCm with variance σ 2.
gNGjm,B is the channel gain between NGjm and BS, and gnB is
the channel gain between DTRn and BS. αmn is a binary vari-
able which represents the channel selection decision. When
αmn = 1, the NGm shares the same subchannel with the Dn.
pNGjm and pn are the power of NG

j
m and DTRn, respectively.

Moreover, we can obtain the received signal of the DTAn,
which is given by

zn =
√
pngnnen +

M∑
m=1

Km∑
j=1

αmn
√
pNGjmgNGjm,nxNGjm

+

M∑
m=1

N∑
l=1,l 6=n

αmnαml
√
plglnel + ξn, (2)

where gnn is the channel gain between DTRn and DTAn, and
gNGjm,n is the channel gain between NG

j
m and DTAn. gln is the

channel gain betweenDTRl andDTAn. ξn is the additive white
Gaussian noise (AWGN) at the DTAn with variance σ 2.
According to the sorting method of the CUs in the NOMA

group in [34], uplink users will be interfered by other users’
signals with lower channel gains. Thus, there exist the intra-
group interference which comes from the inside of the
NOMA group. In addition, there also exist other interfer-
ences which come from DTRs which share the same sub-
channel with the NOMA group. Hence, the signal-to-noise
ratio (SINR) of NGjm is given by

0NGjm
=

pNGjmgNGjm
Km∑

l=j+1
pNGlmgNGlm +

N∑
n=1

αmnpngnB + σ 2

, (3)

where σ 2 is the background noise power. For the D2D pair,
the interference comes from the NOMA group which shares
the same subchannel with it. The SINR of DTRn is given by

0n

=
pngnn

M∑
m=1

Km∑
j=1
αmnpNGjmgNGjm,n+

M∑
m=1

N∑
l=1,l 6=n

αmnαmlplgln+σ 2

,

(4)

and the achievable data rates of NGjm and DTRn are given by

RNGjm = B log2(1+ 0NGjm ), (5)

Rn = B log2(1+ 0n). (6)

B. COST MODEL
In this work, we focus on the energy consumption and delay
of the system. Similar to [35] and [36], in this paper, we do
not consider the energy consumption of the edge server,
DTAs and the process of reception. Therefore, only CUs
and DTRs have energy consumption for the process of task
uploading. The energy consumption of each CU (or DTR) is
given by

Ei = pi
Di
Ri
, i ∈ {NGm,m ∈ [1,M ]} ∪ {DTRn, n ∈ [1,N ]}.

(7)

Besides, the task delay consists of three parts, i.e., the task
uploading delay T up, the task execution delay T exe, and the
task result download delay T down. Due to the small data size
of the computing results, we do not consider the T down. Thus,
the task delay of CUs and DTRs is given by

Ti = T upi + T
exe
i ,

i ∈ {NGm,m ∈ [1,M ]} ∪ {DTRn, n ∈ [1,N ]}, (8)

where T upi =
Di
Ri

and T exei =
Ci
fi
. fi is the computing rate

(in the unit of CPU cycles per second) for the task of user i,
and it is given by

fi =

βNGjmFBS , i ∈ {NGjm}, m ∈ [1,M ], j ∈ [1,Km]

Fclon , i ∈ {DTRn}, n ∈ [1,N ],

(9)

where FBS and Fclon are the computing rates of the com-
puting cell of the edge server and DTAn, respectively.
βNGjm

denotes the number of computing cells assigned to

the NGjm.
In the process of computing offloading, both energy con-

sumption and delay are vital. Similar to [37], we introduce
the non-negative weight factor ω to trade off the energy
consumption and delay. Thus, the weight sum of the energy
consumption and delay of all users in the system is given by

cost = ω(
M∑
m=1

Km∑
j=1

ENGjm +
N∑
n=1

En)

+ (1− ω)(
M∑
m=1

Km∑
j=1

TNGjm +
N∑
n=1

Tn), (10)

where ENGjm and En are the energy consumption of NGjm
and DTRn, and TNGjm and Tn are the task delay of NGjm and
DTRn, respectively. In addition, ω is the weight of the energy
consumption and 1− ω is the weight of the delay.

III. OPTIMIZATION PROBLEM
In this section, we formulate an optimization problem
to minimize the weight sum of the cost of all users
with constraints on the energy consumption, power, delay
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and computing resources. The optimization problem is
given by

P1 :

min
αmn,β

NGjm
,p
NGjm

,pn
cost, (11a)

s.t. ENGjm ≤ E
max
NGjm

, ∀m ∈ [1,M ], ∀j ∈ [1,Km],

(11b)

En ≤ Emax
n , ∀n ∈ [1,N ], (11c)

TNGjm ≤ T
max
NGjm

, ∀m ∈ [1,M ], ∀j ∈ [1,Km],

(11d)

Tn ≤ Tmax
n , ∀n ∈ [1,N ], (11e)

pmin
i ≤ pi ≤ pmax

i , ∀i ∈ {NGm,m ∈ [1,M ]}

∪ {n, n ∈ [1,N ]}, (11f)

αmn ∈ {0, 1}, ∀m ∈ [1,M ], ∀n ∈ [1,N ], (11g)
M∑
m=1

αmn = 1, ∀n ∈ [1,N ], (11h)

0 ≤
N∑
n=1

αmn ≤ αmax, ∀m ∈ [1,M ], (11i)

βNGjm
∈ N+, ∀j ∈ [1,Km], (11j)

1 ≤ βNGjm ≤ βmax, ∀m ∈ [1,M ], ∀j ∈ [1,Km],

(11k)
M∑
m=1

Km∑
j=1

βNGjm
= CN , (11l)

where constraints (11b) and (11c) are energy consumption
constraint conditions. Constraints (11d) and (11e) are task
delay constraint conditions. Constraint (11f) is transmission
power constraint condition. Constraint (11g) indicates that
the αmn is a binary variable. Constraint (11h) indicates that
each D2D pair must share a subchannel with one NOMA
group. Constraint (11i) shows that the NOMA group may not
share subchannel with any D2D pair and the number of D2D
pairs that share subchannel with the NOMA group shall not
exceed αmax. Constraint (11j) denotes the βNGjm is a positive
integer. Constraint (11k) denotes each CU is assigned at least
one computing cell and at most βmax computing cells, where
βmax = CN − U . Constraint (11l) indicates that the total
number of computing cells allocated to all CUs is equal to
the total number of computing cells of the edge server.

P1 is a mixed integer non-linear programming (MINLP)
problem which consists of binary, integer and real variables,
and the objective function is a non-convex function. There
is no efficient approach to solve this problem optimally.
Hence, we have an analysis of P1 as follows. Firstly, we find
that computing resource allocation variables βNGjm are inde-
pendent of the channel allocation decision variables αmn
and transmission power pNGjm and pn. Therefore, computing
resource allocation can be performed separately from power
and channel allocations. Secondly, the power and channel
allocations are coupled, and it is difficult to solve these

two problems synchronously. Similar to [29] and [38],
we consider decoupling the power and channel allocation
problems. Therefore, we decompose the original problem
into three subproblems. First, we prioritize the computing
resource allocation problem to obtain the optimal task exe-
cution delay. Secondly, on the premise of determining the
task execution delay, we propose algorithms to solve power
allocation problem for the single NOMA group and matching
group. Then, we investigate the channel allocation algorithms
for D2D pairs. Finally, we combine the proposed algorithms
of the three subproblems to obtain the minimum weight sum.

IV. COMPUTING RESOURCE AND POWER ALLOCATION
In this section, we first solve the computing resource allo-
cation problem which is related to task execution delay. The
types of task execution delay of different users are different.
For CUs, since their task execution delay depends on the
computing resource allocation strategy, it can be considered
as a variable. For D2D users, since the computing rate of
DTA is a constant, their task execution delay can be consid-
ered as a constant. In other words, the computing resource
allocation is only for CUs. The optimization problem of
computing resource allocation is given by

P2 : min
β
NGjm

(1− ω)(
M∑
m=1

Km∑
j=1

CNGjm
βNGjm

FBS
+

N∑
n=1

Cn
Fclon

), (12a)

s.t. βNGjm >
CNGjm

TNGjmFBS
, ∀m ∈ [1,M ], ∀j ∈ [1,Km],

(12b)

Constraints (11j, 11k), (12c)

in which constraint (12b) comes from constraint (11d) and
ensures that the computing cells assigned to each CU satisfy

the minimum delay requirements. Since
N∑
n=1

Cn
Fclon

is a constant,

we can optimize P2 without taking it into account. We pro-
pose a computing resource allocation algorithm (CRA) to
minimize the sum of the task execution delay of CUs. The
pseudo-code for the CRA is shown in Algorithm 1. As CRA
shows, for each CU, we first ensure that its task execution
delay is lower than the task delay. We define a task execution

delay gain gainexe
NGjm
=

C
NGjm

β
NGjm

FBS
−

C
NGjm

(β
NGjm
+1)FBS

. To minimize

the task execution delay, for each computing cell, we assign it
to the user with themaximum task execution gain. In addition,
nc denotes the number of remaining computing cells in the
allocation process.
Proposition 1: The CRA converges to the optimal comput-

ing resource allocation strategy.
Proof: It is worth mentioning that the allocation strategy

of computing resource is directly related to the task execution
delay of the CUs. In other words, the optimal computing
resource allocation strategy corresponds to the optimal task
execution delay. Thus, we investigate whether CRA can con-
verge to the optimal task execution delay.
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Algorithm 1 Computing Resource Allocation
Algorithm (CRA)
1: Initialization: βNGjm

= 0,∀m ∈ [1,M ],∀j ∈
[1,Km]; nc = CN

2: for all m ∈ [1,M ] do
3: for all j ∈ [1,Km] do
4: repeat

5:

T exe
NGjm
=

C
NGjm

(β
NGjm
+1)FBS

, nc = nc − 1

βNGjm
= βNGjm

+ 1 .

6: until T exe
NGjm

< TNGjm
7: end for
8: end for
9: repeat
10: Calculate gainexe

NGjm
,∀m ∈ [1,M ],∀j ∈ [1,Km].

11: [m∗, j∗] = argmax
m,j

({gainexe
NGjm
}).

12: β
NGj
∗

m∗
= β

NGj
∗

m∗
+ 1.

13: nc = nc − 1.
14: until nc = 0

First, we assume that the solution of the computing
resource allocation variables βNGjm obtained by CRA is S, and
the optimal solution is S∗. Moreover, we assume T exe(S) >
T exe(S∗) where T exe(·) is a function of the solution and rep-
resents the total task execution delays of all CUs. In the last
iteration of the CRA, the user’s parameters with themaximum
task execution delay gain are [m, j]. As mentioned above, due
to T exe(S) > T exe(S∗), there must be [m∗, j∗] 6= [m, j] to
make gainexe

NGj
∗

m∗
> gainexe

NGjm
. This is contrary to the rule of

CRA. Therefore, the optimal solution of task execution delay
is obtained by CRA. In summary, the CRA can converge to
the optimal computing resource allocation strategy.
Proposition 2: The computational complexity of CRA

is O(CN ).
Proof: In CRA, the process of computing resource

allocation is divided into two parts. The first part is to ensure
that minimum delay requirements are satisfied and the second
part is to assign remaining computing cells to the user with the
maximum task execution gain in each iteration. At the same
time, the computing complexity of each iteration in each part
is same and the complexity between the two parts is almost
same. Therefore, we can consider the complexity of each
iteration as a constant. It can be seen that the total number
of iterations is CN , meaning that the computing complexity
of CRA is O(CN ).

A. POWER ALLOCATION OF SINGLE NOMA GROUP
Based on the results of the computing resource alloca-
tion, we investigate the power allocation problem for single
NOMA group and matching group, respectively. We assume
thatNGm is a single NOMAgroup. Thus, the power allocation

problem of the single NOMA group is given by

P3 : min
{p
NGjm

,j∈[1,Km]}

Km∑
j=1

(ωpNGjm

DNGjm
RNGjm

+ (1− ω)(
DNGjm
RNGjm

+ T exe
NGjm

)), (13a)

s.t. ENGjm ≤ E
max
NGjm

, ∀j ∈ [1,Km], (13b)

TNGjm ≤ T
max
NGjm

, ∀j ∈ [1,Km], (13c)

pmin
NGjm
≤ pNGjm ≤ p

max
NGjm

, ∀j ∈ [1,Km], (13d)

where T exe
NGjm

is a constant. Since NGm is a single NOMA

group, 0NGjm =
p
NGjm

g
NGjm

Km∑
l=j+1

p
NGlm

g
NGlm
+σ 2

. However, P3 is a mul-

tivariate nonlinear fractional summation problem. To tackle
this problem, based on the PSO, we propose a power allo-
cation algorithm for single NOMA group (PASNG). The
algorithm is summarized in Algorithm 2, where rn is the
number of rounds, and Km is the period. sn is the serial
number of the current optimized user. Npop is the number of
PSO populations.Niter is the number of iterations of the PSO.
p∗
NGjm,rn

is the power of NGjm at the end of the rounds rn, and
εp is the power error threshold. As shown in PASNG, themain
idea of the algorithm can be summarized as the following
two points. First, in order to avoid high computing complex-
ity, only one user’s power is updated in each iteration, and
the power of other users are kept unchanged. This process
can transform a multivariate problem into a single variable
problem, and reduce the computing complexity as well as the
probability that the PSO algorithm falls into a locally optimal
solution. Secondly, in each iteration, we utilize the PSO to
optimize the power of the corresponding user. When power
of all users are optimized, the above operation is performed
again until the convergence conditions are met, where the
convergence condition indicates that the power of all CUs in
the NOMA group is almost no longer changed. Furthermore,
similar to [39], we do not consider the energy consumption
generated by the implementation of the PSO algorithm.
Proposition 3: The PASNG converges to the locally or

globally optimal solution.
Proof: Similar to [39], we set the parameters of the PSO

to satisfy the condition of converging to a locally or glob-
ally optimal solution. This allows each iteration to obtain
a locally or globally optimal solution under current power
conditions. Moreover, we assume that the power results of
the first iteration is {p1

NGjm
, j ∈ [1,Km]}. During the second

iteration, the next user’s power will be optimized. It is worth
noting that this optimization is carried out on the basis of
power result of the first iteration. Therefore, the result of
the second iteration is better than the result of the first iter-
ation, and so on. It can be seen from the above analysis that
as the number of iterations increases, the cost will continue to
decrease. When each user’s transmit-power does not change
between two consecutive iterations, the locally or globally
optimal solution is obtained.
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Algorithm 2 Power Allocation Algorithm Based on PSO for
Single NOMA Group (PASNG)
1: Initialization: rn = 1, pNGjm = pmax

NGjm
,∀j ∈

[1,Km], sn = Km,Npop = 20,Niter = 50
2: repeat:
3: According to the results of initialization or last iteration,

fix users’ power other than the sn user.
4: Use PSO to optimize the power of the sn user.
5: sn = sn− 1.
6: if sn = 1 then
7: sn = Km, rn = rn+ 1.
8: end if

9: until 1
Km

Km∑
j=1
|p∗
NGjm,rn

− p∗
NGjm,rn−1

| < εp

10: Output: {ps,∗
NGjm

, j ∈ [1,Km]}

Proposition 4: The computational complexity of PASNG
is O(K 2

m × Npop × Niter ).
Proof: PASNG adopts the PSO in each iteration. The

computing complexity of PSO is related to the population
number and total number of iterations. Similar to [39],
the computational complexity of each iteration should be
O(Npop × Niter ). In addition, PASNG adopts a loop mech-
anism where each loop contains Km iterations. According to
the results of repeat experiments, under the condition of Km
users, the number of roundswhen the convergence is achieved
is about Km. Thus, the computational complexity of PASNG
is O(K 2

m × Npop × Niter ).

B. POWER ALLOCATION OF MATCHING GROUP
We investigate the power allocation problem where the
NOMA group matches a D2D pair. We assume that the NGm
shares subchannel with theDn. The power allocation problem
of the matching group is given by

P4 :

min
{p
NGjm

,j∈[1,Km]},pn
ω(

Km∑
j=1

pNGjmDNGjm
RNGjm

+
pnDn
Rn

)

+ (1− ω)(
Km∑
j=1

DNGjm
RNGjm

+
Dn
Rn
+

Km∑
j=1

T exe
NGjm
+

Cn
Fclon

),

(14a)

s.t. ENGjm ≤ E
max
NGjm

, ∀j ∈ [1,Km], (14b)

En ≤ Emax
n , (14c)

TNGjm ≤ T
max
NGjm

, ∀j ∈ [1,Km], (14d)

Tn ≤ Tmax
n , (14e)

pmin
NGjm
≤ pNGjm ≤ p

max
NGjm

, ∀j ∈ [1,Km], (14f)

pmin
n ≤ pn ≤ pmax

n , ∀n ∈ [1,N ], (14g)

where
Km∑
j=1

T exe
NGjm

and Cn
Fclon

are constants. Since NGm is a

matching group, 0NGjm =
p
NGjm

g
NGjm

Km∑
l=j+1

p
NGlm

g
NGlm
+pngnB+σ 2

and 0n =

pngnn
Km∑
j=1

p
NGjm

g
NGjm,n

+σ 2
. This problem is a multivariable fractional

summation problem. To address P4, we fix the task delay
of each user in NOMA group as x times of the optimal
task delays obtained by the PASNG, where x is uniformly
distributed in (1, 2). Under the condition, the SINR of NGjm
is given by

γNGjm
=

pNGjmgNGjm
Km∑

l=j+1
pNGlmgNGlm + pngnB + σ

2

, (15)

where γNGjm = 2

D
NGjm

BTup

NGjm − 1. According to (15), the power of
each user in NOMA group is given by

pNGKmm =
γNGKmm

(pngnB + σ 2)

gNGKmm
, (16)

pNGjm =

γNGjm
(
Km∑

l=j+1
pNGlmgNGlm + pngnB + σ

2)

gNGjm
,

∀j ∈ [1,Km − 1]. (17)

In order to completely represent the power of CUs in (16)
and (17) by the power of the DTRn, we introduce

SNGjm =
Km∑
l=j

pNGlmgNGlm , ∀j ∈ [1,Km], (18)

and according to (16) and (17), we can get the following
formula

SNGjm = GNGjmSNGj+1m
+ HNGjm , (19)

where GNGjm = γNGjm
+ 1 and HNGjm = γNGjm

(pngnB + σ 2).
We define SNGKm+1m

= 0. Using the recursive method, (18)
can be rewritten as

SNGjm =
Km∑
l=j

HNGlm

l−1∏
o=j

GNGom , (20)

and we define
∏j−1

o=j GNGom = 1. Since SNGjm − S
NGj+1m

=

pNGjmgNGjm , combining with (20), we can get the power of the
CUs in NOMA group as

pNGjm =
SNGjm − SNGj+1m

gNGjm

=

Km∑
l=j

HNGlm
l−1∏
o=j

GNGom −
Km∑

l=j+1
HNGlm

l−1∏
o=j+1

GNGom

gNGjm
= INGjmpn + JNGjm , (21)
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where
INGjm =

γNGjm
gNGjm (1+

∑Km
l=j+1 γNGlm

∏l−1
o=j+1 (γNGom + 1))

gNGjm

JNGjm =
γNGjm

σ 2(1+
∑Km

l=j+1 γNGlm

∏l−1
o=j+1 (γNGom + 1))

gNGjm
.

In summary, we convert the multivariate problem P4 into
a single variable problem by fixing the CUs’ task delay and
using the expression of DTR’s power to replace the CUs’
power. Therefore, P4 can be rewritten as

P4.1 : min
pn
ω(

Km∑
j=1

(INGjmpn + JNGjm )T
exe
NGjm
+ pn

Dn
Rn

)

+ (1− ω)
Dn
Rn
+ (1− ω)(TNGjm +

Cn
Fclon

), (22a)

s.t. (INGjmpn + HNGjm )T
up

NGjm
≤ Emax

NGjm
,

∀j ∈ [1,Km], (22b)

En ≤ Emax
n , (22c)

Tn ≤ Tmax
n , (22d)

pmin
NGjm
≤ INGjmpn + HNGjm ≤ p

max
NGjm

, (22e)

pmin
n ≤ pn ≤ pmax

n , (22f)

where Rn = B log2(
Qpn+O
Lpn+O

) and L =
∑Km

j=1 INGjmgNGjm,n.

O =
∑Km

j=1 HNGjmgNGjm,n + σ
2 and Q = L + gnn. Since

(1−ω)(TNGjm +
Cn
Fclon

) and ω
Km∑
j=1

JNGjmT
exe
NGjm

are constants, they

are not considered in the objective function of P4.1. More-
over, we convert the constraints of P4.1 into new expressions
based on the DTR’s power. Therefore, the simplified problem
can be expressed as

P4.2 : min
pn
ω

Km∑
j=1

INGjmT
exe
NGjm

pn +
Dn(ωpn + (1− ω))

Rn
,

(23a)

s.t. pn ≤
Emax
NGjm
− HNGjmT

up

NGjm

T up
NGjm

INGjm
, ∀j ∈ [1,Km],

(23b)

pn ≥
(2

ϕ
B − 1)O

Q− 2
ϕ
B L

, (23c)

pmin
NGjm
− HNGjm
INGjm

≤ pn ≤
pmax
NGjm
− HNGjm
INGjm

, (23d)

pn ≥
(2

φ
B − 1)O

Q− 2
φ
B L

, (23e)

pmin
n ≤ pn ≤ pmax

n , (23f)

where ϕ =
pmax
n Dn
Emax
n

and φ =
Dn
Tmax
n

. Moreover, we

define that f (pn) = Rn, z(pn) =
Dn(ωpn+(1−ω))

f (pn)
, and

h(pn) = ωf (pn) − ωpnf ′(pn) − (1 − ω)f ′(pn). We assume
that p0n is the zero point which indicates h(p0n) = 0.
Proposition 5: The optimal interval for power allocation of

DTR is (0, p0n] under the condition that the task delays of all
users in the NOMA group are fixed.

Proof: First, we get the first derivative of f (pn),
the expression of f ′(pn) is given by

f ′(pn) =
B
ln 2

Ognn
(Qpn + O)(Lpn + O)

=
B
ln 2

(
Q

Qpn + O
−

L
Lpn + O

)
, (24)

and then from the first derivative, we can get the second
derivative

f ′′(pn) = −
Bgnn
ln 2

(2QLpn + O(Q+ L))
(Qpn + O)2(Lpn + O)2

. (25)

Because Q,L,O, pn are all positive, (2QLpn + O(Q+ L))
is always positive. Obviously, the second derivative of f (pn)
is always negative. Moreover, the first derivative of z(pn) is
given by

z′(pn) =
ωf (pn)− ωpnf ′(pn)− (1− ω)f ′(pn)

f 2(pn)
. (26)

Since f 2(pn) is always positive, we study the molecules
of z′(pn). Then, first derivative of h(pn) is given by

h′(pn) = ωf ′(pn)− ωf ′(pn)− ωpnf ′′(pn)− (1− ω)f ′′(pn)

= −f ′′(pn)(ωpn + (1− ω)). (27)

Since f ′′(pn) is always negative, h(pn) is a monotonically
increasing function. Moreover, it’s easy to know that

lim
pn→0

f (pn) = lim
pn→0

B log2(
Qpn + O
Lpn + O

) = 0, (28a)

lim
pn→0

f ′(pn) =
B
ln 2

Q− L
O
=

Bgnn
O ln 2

> 0, (28b)

lim
pn→+∞

f (pn) = lim
pn→+∞

B log2(
Qpn + O
Lpn + O

)

= B log 2(
Q
L
) > 0, (28c)

lim
pn→+∞

f ′(pn) = lim
pn→+∞

B
ln 2

(
Q

Qpn + O
−

L
Lpn + O

)
= 0, (28d)

lim
pn→+∞

pnf ′(pn) = lim
pn→+∞

B
ln 2

(
Qpn

Qpn + O
−

Lpn
Lpn + O

)
= 0. (28e)

Therefore, lim
pn→0

h(pn) = lim
pn→0

[ωf (pn) − ωpnf ′(pn) − (1 −

ω)f ′(pn)] < 0 and lim
pn→+∞

h(pn) = lim
pn→+∞

[ωf (pn) −

ωpnf ′(pn) − (1 − ω)f ′(pn)] = ωB log 2(QL ) > 0. Therefore,
there must be a only p0n > 0 that makes h(p0n) = 0. Thus,
z is a function of pn with a unique trough. Moreover, z(·)
is monotonically decreasing in (0, p0n), and is monotonically
increasing in (p0n,∞).
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Algorithm 3 Power Allocation Algorithm for Matching
Group (PAMG)
1: Initialization: Obtain the optimal users’ power of the

NOMA group NGm by PASNG
2: Calculate the task uploading delay of each user in NGm

according to T up
NGjm
=

D
NGjm

R
NGjm

.

3: Utilize the dichotomy to find the approximate zero point
p0n and satisfy

∣∣h(p0n)∣∣ < ε0.
4: Solve the constraints (23b)-(23f) to obtain the feasible

interval of DTR’s power [pa,ninn , pa,max
n ].

5: if pa,min
n < p0n

6: Search interval is [pa,min
n , pa,max

n ].
7: else
8: Search interval is [pa,min

n , pa,min
n ].

9: end if
10: Use the PSO to search the optimal DTR’s power p∗n.
11: Use formula (21) to calculate the optimal power of the

CUs {pm,∗
NGjm

, j ∈ [1,Km]}.

12: output: p∗n, {p
m,∗
NGjm

, j ∈ [1,Km]}

Besides, since INGjm and T exe
NGjm

are always positive,

ω
Km∑
j=1

INGjmT
exe
NGjm

pn is monotonically increasing in (0,∞).

Hence, the objective function in P4.2 is monotonically
increasing in the interval [p0n,+∞). Since we need to find the
minimum value of the cost, the optimal power of the DTR can
only be distributed within (0, p0n].

Based on the Proposition 5, jointly solving constraints
(22b)-(22f), the feasible interval of DTRn’s power can be
obtained. We assume that the feasible interval of DTRn’s
power is [pa,min

n , pa,max
n ]. In the interval, we can utilize intel-

ligent algorithms to search the optimal power.
In summary, we propose a power allocation algorithm for

the matching group (PAMG) to solve P4.3. The pseudo-code
for PAMG is summarized in Algorithm 3, where ε0 = 10−5

and RNGjm = B log2(1 +
p
NGjm

g
NGjm

Km∑
l=j+1

p
NGlm

g
NGlm
+σ 2

). First, PASNG is

used to obtain the optimal power of CUs in the NOMA group,
and then the corresponding task delay is obtained from the
optimal power. Then, we utilize the dichotomy [40] to obtain
the zero point p0n and solve the constraints (23b)-(23f) to
obtain the feasible interval [pa,ninn , pa,max

n ]. Next, we compare
the pa,min

n and p0n to determine the search interval. Finally,
we utilize the PSO to obtain the optimal power of the DTRn
and utilize (21) to calculate the optimal power of the CUs.

V. CHANNEL ALLOCATION AND JOINT ALGORITHM
The D2D pairs are objects of the channel allocation, and
each subchannel is occupied with a NOMA group. Hence,
the channel allocation problem can be regarded as the
matching problem between NOMA groups and D2D pairs.
In the previous section, we have solved the power allocation

problem for the single NOMA group and the matching group.
In this section, we investigate the matching problem between
NOMA groups and D2D pairs based on the results of the
power allocation.

A. CHANNEL ALLOCATION
First, we consider a one-to-one matching scenario where the
number of D2D pairs is less than or equal to the number
of NOMA groups. To solve the channel allocation problem
in the scenario, we propose a matching algorithm based on
the Pareto improvement and swapping operations. To better
understand the algorithm, we give some definitions.
Definition 1: In the one-to-one matching model, the match-

ing � is a function of set NG ∪ D. Some features of the
function are shown below: 1) |�(Dn)| = 1,∀n ∈ [1,N ],
2) �(Dn) = NGm, 3) |�(NGm)| ≤ 1,∀m ∈ [1,M ],
4) �(NGm) = Dn, if |�(NGm)| = 1.
It can be seen from definition 1 that a D2D pair must

share a subchannel with a certain NOMA group, howover,
a NOMA group can not match any D2D pair. Obviously,
different matching schemes will result in different weight
sums. To better analyze the different matching schemes,
we define the utility functionUn(·) andUNGm (·) of D2D pairs
and NOMA groups, respectively.

Un(NGm) = ω
pnDn
Rn
+ (1− ω)(

Dn
Rn
+

Cn
Fclon

), (29a)

UNGm (Dn) = ω
Km∑
j=1

pNGjmDNGjm
RNGjm

+ (1− ω)
Km∑
j=1

(
DNGjm
RNGjm

+ T exe
NGjm

), (29b)

and due to the one-to-one matching state, the SINRs of NGjm
and DTRn are 0NGjm =

p
NGjm

g
NGjm

Km∑
l=j+1

p
NGlm

g
NGlm
+pngnB+σ 2

and 0n =

pngnn
Km∑
j=1

p
NGjm

g
NGjm,n

+σ 2
, respectively.

Next, we present the swapping operations between two
D2D pairs which have been matched to different NOMA
groups respectively. The swapping operation means two
D2D pairs swap with each other, which is given by

�n↔n′
1
= �(Dn)↔ �(Dn′ ). (30)

Moreover, the two D2D pairs which can be swapped are
called swapping pair. However, not all D2D pairs can form the
swapping pair. The swapping pair is defined in the following:
Definition 2: (Dn,Dn′ ) is a swapping pair if and only if
1) ∀i ∈ {Dn,Dn′ , �(Dn), �(Dn′ )},Ui(�′(i)) ≤ Ui(�(i)),
2) ∃i ∈ {Dn,Dn′ , �(Dn), �(Dn′ )},Ui(�′(i)) < Ui(�(i)).
In the definition 2, �′ is the matching after performing

the swapping operation. As can be seen from the two points
in the definition 2, if the utility functions of two D2D pairs
satisfy the pareto improvement condition, they are a swapping
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Algorithm 4 One-to-One Matching Algorithm (OTOM)
1: Initialization:
2: Randomly selecte N NOMA groups and calculate their

weight sum by PASNG.
3: Randomly and one-to-one match the N NOMA groups

with N D2D pairs.
4: Calculate the utility function of the N matching group by

PAMG.
5: Swapping Operations:
6: Repeat:
7: for ∀Dn ∈ D do
8: for ∀Dn′ ∈ {D\Dn} do
9: Calculate the utility function after the exchange opera-

tion by PAMG.
10: if (Dn′ ,Dn) satisfy pareto improvement condi-

tions then
11: Execute an swapping operation �n↔n′ .
12: break
13: end if
14: end for
15: end for
16: until there is no swapping pair
17: Output: Optimized matching �∗

pair. After the above description, we propose the one-to-
one matching algorithm (OTOM) which is summarized in
Algorithm 4. Specifically, we first randomly selectN NOMA
groups to participate in the matching. Then, we randomly
match the N NOMA with N D2D pairs, and calculate the
corresponding utility function value of theN matching groups
by PAMG. Finally, we keep looking for swapping pairs and
performing swapping operations until there is no any swap-
ping pair.
Proposition 6: The proposed one-to-one matching algo-

rithm converges the locally or globally optimal matching.
Proof: We define that when the swapping operation

is executed, the matching changes from � to �′. For �,
supposing the weight sum of the system is9(�). Because the
swapping pair has to satisfy the pareto improvement condi-
tion, 9(�′) < 9(�). Hence, when each swapping operation
is executed, the weight sum is reduced. Since the number of
D2D pairs is limited, the total number of matching is limited.
There must be a matching which makes the weight sum
minimum. When the algorithm cannot find a new matching
to reduce the weight sum, the algorithm converges to the
locally or globally optimal matching.
Proposition 7: The computational complexity of pro-

posed one-to-one matching algorithm is O(K 2
m × Npop ×

Niter +
9
�0→�∗
1average

).
Proof: In the initialization of OTOM, we utilize PASNG

whose computational complexity is O(K 2
m × Npop × Niter )

to calculate the weight sum of the N NOMA groups.
Then, we assume the initial matching is �0 and the gap of
weight sum between the initial matching and the optimal

matching is 9�0→�∗ . Moreover, we assume that aver-
age variation of weight sum in the swapping operation is
1average. Hence, the average number of swapping operations
is

9
�0→�∗
1average

. Therefore, the computational complexity of pro-

posed one-to-one matching algorithm is O(K 2
m × Npop ×

Niter +
9
�0→�∗
1average

).
When the number of D2D users is greater than the num-

ber of NOMA groups, the one-to-one matching will no
longer apply because there will always be a surplus of D2D
pairs which are idle, which greatly increases the task delay.
Thus, we consider the many-to-one matching. Moreover, due
to complexity, we only consider the situation where two
D2D pairs match a NOMA group, and assume that the
number of D2D pairs does not exceed twice the number of
NOMA groups.

Next, based on the OTOM, we propose the many-to-
one matching algorithm (MTOM). Specifically, if the num-
ber of D2D pairs is less than or equal to the number of
NOMA groups, we randomly select N − 1 D2D pairs and
NOMA groups. Next, we utilize OTOM to obtain the optimal
matching for the selected NOMA groups and D2D pairs.
For each new group consisting of a matching group and a
remaining D2D pair, we fix the power of the matching group
to the results of optimization by PAMG, and then use the PSO
algorithm to optimize the power of the DTR in the remaining
D2D pair. Based on this method, we calculate the weight sum
of the remaining D2D pairs with each matching group, and
select the matching scheme with the minimum weight sum
for each remaining D2D pair. Moreover, when the number
of D2D pairs is greater than the number of NOMA groups,
M D2D pairs are randomly selected to match all NOMA
groups, and their optimal matching is obtained by OTOM.
For the remaining D2D pairs, the weight sum of each D2D
pair with each matching group is calculated, and then we
select the matching scheme with the minimum weight sum.
The convergence and complexity analysis of many-to-one
matching is similar to OTOM. Therefore, analysis is omitted.

B. JOINT COMPUTING RESOURCE, POWER AND
CHANNEL ALLOCATION ALGORITHM
Based on the proposed algorithms for computing resource,
power and channel allocations, we combine the three
algorithms to solve the original problem. We propose a
scheduling-based joint computing resource, power and chan-
nel allocations algorithm (S-JCRPCA) whose flow has been
summarized in Fig. 2.

Specifically, we first utilize CRA to solve the prob-
lem of computing resource allocation. Then, we propose
a scheduling-based combination of power and channel
allocation algorithms. In this combination, the power alloca-
tion algorithm is scheduled by the channel allocation algo-
rithm. In the beginning of the channel allocation algorithm,
we determine the initial matching states. Next, for the single
NOMA groups, since their matching states no longer change,
we calculate their weight sum by scheduling the PASNG.
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FIGURE 2. Scheduling-based joint computing resource, power and
channel allocation algorithm (S-JCRPCA) flow.

For the matching groups, since the matching groups will
converge to the locally or globally optimal solution by the
swapping operations, we schedule the PAMG to calculate the
utility function of swapping pairs in swapping operations.
Moreover, it is worth mentioning that the power allocation
algorithm will be repeatedly scheduled until there is no any
swapping pair. Such that, the channel allocation algorithm
ends. In summary, the S-JCRPCA adopts a scheduling-based
method where Pareto improvement and swapping operations
are introduced to ensure local or global optimality of the
solution.

VI. NUMERICAL RESULTS
In this section, we investigate the performance of
D2D-assisted and NOMA-based MEC system. We con-
sider a cellular uplink communication system. The distance
between DTR and DTA in each D2D pair is uniformly
distributed between [1, 3] (in meters). Rayleigh fading model
is considered in the system, where the channel gains are
exponentially distributed with unit-mean. The calculation
rate of each DTA is uniformly distributed in [1.8 − 2.4]
(in gigacycles per second). The computing rate and total num-
ber of the computing cell are 10 gigacycles per second and 50,
respectively. The size of each task is randomly generated
between 0.1 Mbits and 0.5 Mbits. The rest parameter value
settings are summarized in Table 1.

A. CONVERGENCE OF THE S-JCRPCA ALGORITHM
In Fig. 3, we plot the cumulative distribution function (CDF)
of the number of swapping operations when the number of
D2D pair is 3, 5, 7, respectively. The curves are obtained by
simulating 10000 independent trials. It is worth mentioning

TABLE 1. Simulation parameters.

FIGURE 3. CDF of the number of swapping operations, with M=10, U=20,
ω=0.6.

that since the proposed S-JCRPCA is based on the scheduling
manner, its convergence is equivalent to the convergence of
the channel allocation algorithm. As shown in the figure,
the CDF can achieve convergence with few number of swap-
ping operations in different number of D2D pairs, which
indicates the convergent ability of the channel allocation
algorithm, and thus proves the convergence of the S-JCRPCA
algorithm. Besides, as the number of D2D pairs increases,
the number of swapping operations when the CDF converges
to 1 continuously increases. This is because when the number
of D2D pairs increases, there are more swapping pairs, and
more swapping operations will be performed.

B. PERFORMANCE EVALUATION FOR DIFFERENT
OFFLOADING SCHEMES
Fig.4 plots the system performance of different offloading
schemes. As shown in Fig. 4, we study four kinds of task
execution schemes for DTRs. They are 1)All local: the tasks
of all DTRs are executed locally, 2)All BS: all DTRs offload
tasks to the edge server, 3)S-JCRPCA: all DTR offload tasks
to the corresponding DTA, and each NOMA group shares the
subchannel with at most one D2D pair, 4)Hybrid scheme:
each DTR can choose one of the above three schemes, and
the scheme minimizing the total cost will be adopted.

It can be seen from Fig. 4(a) that the energy consumption
of ‘‘All local’’ is much higher than that of the other three
schemes, which shows that local computing is more energy
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FIGURE 4. Performance comparison of different offloading schemes, with
M = 5, U=25, ω=0.5. (a) Energy consumption. (b) Task delay. (c) Total cost.

intensive than computing offloading. Moreover, the energy
consumption of the ‘‘All BS’’ is slightly higher than that of the
‘‘S-JCRPCA’’, which shows that theD2D-assisted computing
offloading consumes less energy than the general computing
offloading where all tasks offload to the edge server.

Fig. 4(b) shows that as the number of D2D pairs increases,
the delays of the ‘‘All local’’ and the ‘‘All BS’’ increase
rapidly, while the delay of the ‘‘S-JCRPCA’’ increases slowly.
This is because D2D-assisted computing offloading can con-
trol delay to a lower level compared to the local computing
and the general computing offloading.

Moreover, it can be seen from Fig. 4(c) that the curves of
the ‘‘S-JCRPCA’’ and the ‘‘Hybrid scheme’’ almost coincide.
From the enlarged parts, it can be seen that they still have
slight misalignment which is caused by the random selection
when the one-to-one matching algorithm is executed. In sum-
mary, the minimum total cost can be obtained by offloading
tasks of all DTRs to the corresponding DTA.

C. PERFORMANCE EVALUATION FOR DIFFERENT
ALGORITHM BASED ON DIFFERENT
ACCESS MANNERS
Fig. 5(a) shows that in any samematching scheme, the energy
consumption of OMA-based MEC is significantly greater
than that of NOMA-based MEC. This is because NOMA
can enable multiple users to share greater bandwidth than
that of OMA. Although interference will be introduced,
the gain of greater bandwidth is significantly higher than
the negative impact of interference. Moreover, in the same
access mode, we find that when the number of D2D pairs
increases, the energy consumption of the S-JCRPCA(one-
to-one matching algorithm) is generally higher than that of
the S-JCRPCA(many-to-one matching algorithm), which is
because the interference of the single NOMA group is less
than that of the matching NOMA group.

Fig. 5(b) shows that with the increase of D2D pairs’ num-
ber, although the task delays of different algorithms in the
same access mode basically keep the same value, the delay of
S-JCRPCA(one-to-one matching algorithm) is less than that
of S-JCRPCA(many-to-one matching algorithm). This shows
that in the aspect of task delay, S-JCRPCA(many-to-one
matching algorithm) will bring greater negative effects due
to the interference between D2D pairs. In addition, the task
delay of NOMA-based MEC is always lower than that of
OMA-based MEC. Moreover, Fig. 5(c) indicates that the
total cost of NOMA-based MEC is always less than that of
OMA-based MEC, which shows that NOMA is superior to
OMA in energy consumption and delay. Moreover, the curve
of S-JCRPCA(one-to-onematching algorithm) is close to that
of exhaustive search, which indicates that we can obtain the
close-to-optimum solution by the S-JCRPCA.

When the number of D2D pairs is larger than that of
NOMA groups, the one-to-one matching algorithm will no
longer apply. Therefore, we investigate the many-to-one
matching algorithm. To evaluate the performance of the
proposed many-to-one matching algorithm, we plot the total
cost in different many-to-one matching algorithms in Fig. 6.
We find that even in the case where the number of D2D
pairs is larger than that of NOMA groups, the total cost of
NOMA-based MEC is always better than that of
OMA-based MEC.

D. PERFORMANCE EVALUATION FOR DIFFERENT
WEIGHT FACTORS
We plot the total cost in different weight factors in Fig. 7 to
evaluate the performance of different weight factors.
Fig.7 shows the total cost of different weight factors and the
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FIGURE 5. Performance comparison of NOMA-based and OMA-based
algorithms, with M = 5, U=15, ω=0.5. (a) Energy consumption. (b) Task
delay. (c) Total cost.

number of CUs. First, under the same weight factor, the total
cost increases as the number of CUs increases. In addition,
we find that when the number of CUs increases, the difference
between NOMA and OMA under the same weight factor
would be greater. This shows that the greater the number of
CUs, the more obvious the advantage of NOMA relative to
OMA. In the case of the same number of CUs, if the weight
factor is smaller, the total cost will be larger. This is because
when the weight factor is smaller, the proportion of task delay
increases and the absolute value of task delay is larger, so the
total cost will increase.

FIGURE 6. Performance comparison of many-to-one matching algorithms,
with M = 5, U=10, ω=0.5.

FIGURE 7. Total cost versus number of noma groups, with N=5, M=5.

VII. CONCLUSIONS
In this paper, we have studied the computing resource, power
and channel allocations for a D2D-assisted and NOMA-
based MEC system. Firstly, we have proposed a computing
resource allocation algorithm to minimize the task execu-
tion delay. Secondly, we have utilized the PASNG to opti-
mize the power of the single NOMA group. Then, we have
derived the interval of optimal power allocation for DTRs
and optimized the power of all users in the matching group.
Next, we have proposed a one-to-one matching algorithm
and extended it to a many-to-one situation. Finally, we have
proposed a scheduling-based joint algorithm to solve the
original optimization problem. Simulation results showed
that the proposed S-JCRPCA can effectively reduce the total
cost. Meanwhile, in terms of the total cost, the D2D-assisted
computing offloading outperforms other computing modes,
and in terms of the weight sum of the system, NOMA-based
MEC system outperforms OMA-based MEC system. In the
future work, for the D2D-assisted and NOMA-based MEC
system, distributed power and channel allocation algorithms
will be studied to reduce the information interaction between
base stations and users.
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