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ABSTRACT In proof-of-work-based (PoW-based) blockchain networks, the miners participate in
a crypto-puzzle solving competition to win the reward by publishing a new block. Open mining pools attract
a large number of miners for solving difficult problems together. Although the open strategy is likely to
be more efficient, it makes pools susceptible to attack at the same time. In this paper, we present a game-
theoretic analysis of mining pool strategy selection in order to explore the trade-off between the efficiency of
openness and the vulnerability of attacks in a PoW-based blockchain network.We first model the pool mining
process as a two-stage game, wherein the pools might decide whether to open or not and to attack or not.
Based on the two-stage game model, we analyze the Nash equilibrium and the evolutionary stability of the
mining games among pools, which uncovers the pool selection dynamics of PoW-based blockchain networks.
In particular, we find that the attack behavior is the norm for a weak pool and triggers lower expected utilities
when punishing the attacks more severely. Numerical simulations also support our theoretical findings as
well as demonstrate the stability of the pools’ strategy selection.

INDEX TERMS Blockchain, block withholding attack, game theory, Nash equilibrium, evolutionary
stability.

I. INTRODUCTION
The blockchain networks are point-to-point (P2P) networks
that use a distributed consensus algorithm to generate and
update data [1]. More specifically, the blockchain data struc-
ture is employed in such networks to verify and store data,
the cryptography is utilized to ensure the security of data
transmission and access, while the intelligent contracts are
adopted to program and manipulate data [2]. As an inte-
grated application of distributed data storage, point-to-point
transmission, consensus mechanism, and encryption algo-
rithm, blockchain has recently generated explosive interest
from both academia and industry [3]–[7], with many pro-
posed applications, such as big data [8], [9], cloud and
edge computing [10], [11], healthcare [12], Internet of things
[13], [14], intelligent transportation system [15], electrical
energy systems [16], industry security [17], cyber-physical
systems [18], social governance [19], and so on. A survey of
this topic can be referred to [20] and [21].

As one of the most successful applications of the
blockchain technology, the bitcoin system applies the

consensus mechanism of proof-of-work (PoW) to realize
non-tampered and non-forged transactions [22]. The core
idea of the PoW consensus mechanism is to ensure the con-
sistency of data and the security of consensus through the
computing power competition of distributed nodes [22]. The
nodes compete with each other based on their respective
computing power in order to solve a complex SHA256 math-
ematical problem, which is difficult to solve but easy to
verify. The node that solves the problem first accounts
for the blocks and obtains the bitcoin rewards generated
by the system automatically [23]. In the bitcoin system,
the process of producing blocks is called mining, and the
participants in the mining are called miners. The system
generates one block approximately every 10 min on aver-
age, which means that a miner with a small fraction of the
total mining power is unlikely to be rewarded for a long
time [23]. Theoretically, solo miners will take several years
to win the block reward, and thus, miners resort to using
open pools to increase the possibility of gaining a stable
income.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8427

https://orcid.org/0000-0002-1641-2611


Y. Wang et al.: Pool Strategies Selection in PoW-Based Blockchain Networks: Game-Theoretic Analysis

In open pools, it is easy for participants to register as min-
ers, where participants are only required to provide a public
network interface. However, the openness of the pool makes
it vulnerable to being attacked [24]. The pool that initiates
the attack will infiltrate its partial miners into a victim pool by
registering as a regular miner who receives mining tasks from
the victim pool [25]. The mining power that the attacker redi-
rects towards the victim’s tasks is called the infiltration rate,
and the attacking miners are called infiltrating miners [25].
When the attacker receives partial proofs of work (PPoWs)
from the infiltrating miners, it sends them to the manager
of the victim pool who estimates their true mining power.
However, when the attacker receives full proofs of work
(FPoWs) from the infiltrating miners, it withholds and dis-
cards them. In this case, the victim pool is under the illusion
that the infiltrating power is performing effective mining and
shares its revenue with the attacking pool. This type of attack
is called a block withholding attack [26], [27].

Although pools can increase their profits by attacking other
pools, if all miners choose to attack each other, they will
gain less profit than if they do not attack each other. This
is the mining dilemma in the PoW consensus algorithm,
which corresponds to the classic prisoner’s dilemma in game
theory [28]–[30]. Concretely, attack is the best strategy for
a mining pool, but it is not the best strategy for the whole
system. Understanding and analyzing the game dilemma in
the process of mining undoubtedly provides a theoretical
basis for the development and applications of blockchain
technology.

At present, several literatures have been focused on the
study of the pool game based on game theory. Eyal [25] qual-
itatively analyzed the Nash equilibrium (NE) of mining game
where pools use some of their participants to infiltrate other
pools and perform a withholding attack. They also shown
the existence conditions of the NE for any number of pools.
Liu et al. [31] used the evolutionary games to study which
pool is chosen on calculating the expected earnings of miners
joining different pools. Lewenberg et al. [32] transformed
the choice of miners to join a mining pool into a cooper-
ative game model, wherein the members of the same pool
were regarded as an alliance. They also showed that miners
can increase their profits by changing their mining pool.
Garay et al. [33] used the blockchain bifurcation loop-
hole to map the mining model into a random game
with complete information and controlled the length of
the main chain through the released time of the suc-
ceed mining block. In addition, Kroll et al. [34] pro-
vided a game theoretic analysis of bitcoin, and argued that
the honest strategy constitutes an NE, implying incentive-
compatibility. Tang et al. [35] analyzed the existence condi-
tions of the NE in the choice of miner strategy during the
PoW consensus process and optimized the minerąŕs strat-
egy selection using the zero-determinant strategy. Further-
more, Johnson et al. [36] explored the trade-off amongDDoS
attacks with a series of game-theoretical models of compe-
tition between two pools of varying sizes, and found that

pools have a greater incentive to attack large pools than small
ones.

Motivated by theses references, we apply game theory
to explore the selection of pool strategies based on the
blockchain network, and study the trade-off between the
higher productivity offered by open pools and the increased
vulnerability that comes with openness. Generally, mining
pools can freely choose an open or closed strategy. Openness
might result in a more stable reward but also implies a certain
probability of attack. In the actual mining process, pools may
decide whether to attack or non-attack and whether to be
open or closed. In this paper, we explore the pool selection
dynamics of PoW-based blockchain networks through the
analysis of the NE and the evolutionary stability, which pro-
vides a new idea andmethod for the security of the blockchain
consensus algorithm. Themain contributions of this paper are
summarized as follows.
• We model the process of mining as a two-layer game
model in order to characterize the open-attack deci-
sion in the PoW-based blockchain network. Besides,
we explore the trade-off between the higher efficiency
offered by openness and the increased vulnerability that
comes with it in terms of game theory.

• We apply the NE theory for analyzing the effects of
the damage caused by the attack and the punishment
imposed on the strategy of attack under the condi-
tion that both mining pools choose the open strat-
egy. The results show that punishing the attacks more
severely does not deter the attackers and triggers lower
expected utilities. Besides, with an increase of punish-
ment, the weak pool is inclined to attack other pools.

• In order to overcome the shortcoming that the NE only
describe the local optimization of the pool strategies
selection, we establish an evolutionary game model for
depicting the pool strategies selection under the view-
point of dynamics. We thus analyze the evolutionary
stability of the strategy selection for competitive pools
and present the conditions for the stability of the strategy
evolution.

The rest of this paper is organized as follows: Section II
introduces the NE and evolution stability in the game theory.
In Section III, we present the two-layer game model for
depicting the open-attack decision in the process of mining.
In Section IV, we consider the case wherein both players
choose to be open and apply game theory for analyzing the
NE and the evolutionary stability of mining pool strategy
selection. In Section V, we present a numerical simulation to
verify our conclusion. Finally, we summarize the contents of
this article in Section VI.

II. PRELIMINARIES
A. NASH EQUILIBRIUM
TheNE depicts the best profile of all game players’ strategies,
i.e., under this profile, all game players’ strategies are the
best response against their opponents’ strategies and no game
players will unilaterally change their strategies. From the
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dynamic viewpoint, the state of the NE actually refers to a
fixed point in the strategy profile. At this point, each individ-
ual’s strategy is a best response to the strategy adopted by all
the other individuals.

Let us consider an n-player game with a finite strategy
space A =

∏
ai, where ai is the strategy set of the play-

ers. Denote X = (x1, x2, · · · , xn), xi ∈ ai, and x−i =
(x1, · · · , xi−1, xi+1, · · · , xn). Let ui(X ) = ui(xi, x−i) be the
player’s utility function of strategy xi corresponding to X .
Definition [37]: An NE X∗ = (x∗1 , x

∗

2 , · · · , x
∗
n ) is such a

state wherein each individual cannot change his own strategy
unilaterally in order to obtain a higher utility, i.e.,

ui
(
x∗i , x

∗
−i
)
≥ ui

(
x ′i , x

∗
−i
)
, ∀i, x∗i ∈ X

∗, x ′i /∈ X
∗. (1)

An NE is strict if (1) holds strictly for every x ′i 6= x∗i . If x
∗
i

is a pure strategy, the equilibrium is a pure NE; otherwise, it is
a mixed NE. Every strict NE (SNE) is pure, and thus, we do
not use the term strict pure NE but an SNE.

B. EVOLUTIONARY STABILITY
The concept of NE can characterize the outcome of a single
static game in which the strategy profile achieves a state
such that no player has a unilateral incentive to play another
strategy. However, the strategy profile that is beneficial for
a given player may not always be beneficial for the entire
system. That is to say, NE is only a local optimization concept
from the viewpoint of optimization theory. Correspondingly,
the concept of an evolutionarily stable strategy (ESS) is pro-
posed in order to depict the dynamical evolution of the whole
population.

Assume that the whole population adopts strategy ϕ, and a
small fraction ε (called mutations) adopts strategy φ (φ 6= ϕ).
Definition 2 [38]: Evolutionary forces are expected to

select ϕ against φ if

u(ϕ, εφ + (1− ε)ϕ) > u(φ, εφ + (1− ε)ϕ). (2)

Strategy ϕ is said to be the ESS if for every φ 6= ϕ, and
there are some ε̂y > 0 such that (2) holds for all ε ∈ (0, ε̂y).
That is, ϕ is an ESS if, after mutation, non-mutants are
more successful than mutants. In other words, mutants cannot
invade the population and will eventually get extinct [39].

The definition of an ESS is stronger than that of NE, as the
former is robust against a deviation of the whole population
while the latter is only focused on the deviations of a single
player. Although ESS has been originally defined in biolog-
ical systems, it is highly relevant in the engineering field as
well [39]–[42]. Based on the ESS, we can identify robustness
against deviations of more than one player. Furthermore,
we can apply the convergence theory of evolutionary game
dynamics and stability for capturing the effectiveness and
robustness of the proposed strategy.

III. SYSTEM MODEL
We study an non-cooperative situation wherein miners com-
pete to solve a crypto-puzzle problem in a PoW-based
blockchain network. Assume that there are n miners who are

FIGURE 1. Two-stage game model of the pool strategies selection in a
PoW-based blockchain network. (a) First-stage game: each pool can
choose either closed mining (C) or open mining (O); (b) Second-stage
game: each pool can choose either attack (A) or non-attack (N).

organized into M mining pools in the network. As shown
in Fig. 1(a), each pool can choose either closed mining (C)
or open mining (O). The open strategy for the mining pool
is likely to be more efficient even though the exact level
of efficiency is not known, which reflects a high level of
uncertainty in network science [43], [44]. The selection of the
open strategy implies that every miner, including malicious
ones, can join this pool. Further, the openness makes the
pool more vulnerable to attacks, which damages the mining
efficiency of the whole system. Consequently, in addition to
deciding whether to be open or closed, the pools are also
required to decide whether to attack others for extra benefits.
Thus, each pool can also choose either attack (A) or non-
attack (N ), as shown in Fig. 1(b).
We propose a two-stage game model that isolates these

two factors. In this model, a pool decides whether to be
open or closed and whether to attack other pools. If the pool
chooses to be open, other pools know the global information
well and can decide whether to attack. It should be noted that
the decisions are sequential, i.e., the decision to be open is
made first while the decision about attacking is made second,
which causes the interaction to become a sequential two-stage
game.

In the first stage, the pools have two strategies to choose
from: C and O. Let P = {p1, · · · , pi, · · · , pM }, where pi
represents the mining power of the pool i. The mining power
of the closed pool is fixed and is denoted byQ (Q < min{pi}).
Assume that the open strategy’s mining power obeys a uni-
form distribution between 0 and 1, i.e., pi ∼ U [0, 1]. The
pool that first solves the crypto-puzzle wins. Assume that
the reward for the winning pool is R, and the income of
other pools is 0. Without the loss of generality, we normalize
R = 1 in this work. As the time required for mining the block
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successfully is inversely proportional to the mining power
in the absence of an attack, the higher mining power of the
pool results in a greater likelihood of winning the reward.
Moreover, as Q < min{pi}, the probability of a closed pool
mining a block successfully almost tends to 0, where the
mining pools cannot attack each other.

In the second stage, the pools decide whether to attack
other pools or not, where attack is denoted as A and non-
attack is denoted as N . Here, the attacked pool infiltrate
miners to other pool and only submit PPoW to the attacked
pool as the computational share. Although the attacker does
not affect directly the revenue of other pools and does not
change the pool’s effective mining power, it share the reward
from the attacked pool. Therefore, each miner earns less,
as the same revenue is distributed among more miners. Let
m (m ∈ [0, 1]) be the loss of reward for the attack pool.
Here, m can be considered as a punishment for the attack
strategy, where the punishment is considered intuitively as an
effective mechanism towards the malicious behaviors [45].
In addition, the damage inflicted by the attack is denoted by
d (d ∈ [0, 1]), which determines how much mining power
is lost because of being attacked. In the following, we char-
acterize the equilibrium of the two-stage game in terms of
parameters of m and d .

IV. GAME ANALYSIS OF MINING POOL
STRATEGY SELECTION
In this section, we apply game theory for analyzing the
equilibrium of the mine pool strategy selection, in which the
trade-off between the higher efficiency of openness and the
vulnerability of attacks in the blockchain network is inves-
tigated. Furthermore, we study the evolutionary stability of
the mining games among pools, wherein the dynamics of
closed mining and open mining strategies are considered.
Since each decision of pool made in the first stage (to be
open or closed) results in a different second-stage game
(whether to attack or not), we first analyze the second-stage
game, based on which, we can analyze how decisions are
made in the first-stage.

A. NASH EQUILIBRIUM IN SECOND-STAGE GAME
In this subsection, we consider the interactions between two
competitive open mining pools. Without loss of generality,
we denote two pools as pool 1 and pool 2, which can be
generalized to M pools. Let p1 and p2 be the mining power
of pool 1 and pool 2, which are known before they decide on
attacking. We only consider the case that p1 > p2, and the
other case is symmetric (the case of p1 = p2 is not effect
on the first-stage game). When p1 − d > p2, the attack
by pool 2 does not make its power to exceed the power of
pool 1. In this case, the strategy of attack does not change the
outcome nor the pool attacks. When p1 − d = p2, the attack
by pool 2 only make its power equal to the power of pool 1.
Since the attack will be punished, pool 1 will not choose
active attack, and pool 2 only attack when m < 1/2.
In this case, if pool 1 choose to attack, it will get the utility of

1−m, or else, the utility is 1/2+m. Further, when m > 1/4,
pool 1 choose to non-attack. The above two situations have no
effect on the first-stage game. Thus, we mainly discuss that
p1 − d < p2, in which a unilateral attack by the weak pool
(i.e., pool 2) brings it ahead of the strong pool (i.e., pool 1).
Accordingly, when each pool chooses A, the utility of pool 1
is 1−m and that of pool 2 is−m; when each pool chooses N ,
the utility of pool 1 is 1 and that of pool 2 is 0. When pool 1
chooses A and pool 2 chooses N , the utility of the former is
1−m, while the utility of the later is m. The payoff matrix of
A and N is presented in Table 1.

TABLE 1. Payoff matrix of the second-stage game.

The mining pool game has a unique mixed equilibrium
point. Let η1 and η2 be the probabilities of pools 1 and 2
attacking, respectively. For pool 1, an attack results in an
expected utility of η2(1 − m) + (1 − η2)(1 − m) = 1 − m,
while an non-attack scenario results in an expected utility of
η2m+ (1− η2) · 1 = 1− η2 + η2m. In a mixed equilibrium,
a pool’s expected utility from choosing either actions must be
the same, which results in 1− m = 1− η2 + η2m, i.e.,

η2 =
m

1− m
. (3)

Similarly, for pool 2, the expected utility from an attack is
η1(−m)+ (1−η1)(1−m) = 1−m−η1. The expected utility
from an non-attack scenario is η1m+ (1−η1) ·0 = η1m. The
mixed equilibrium condition is then satisfied 1 − m − η1 =
η1m, i.e.,

η1 =
1− m
1+ m

. (4)

Theorem 1: The larger of the value m, the more (less)
likely that the weak (strong) pool will attack.

Proof: FromEqs. (3) and (4), it can easily be determined
that with an increasing the value of m (increasing the value
of punishment), the attacking probability of the strong pool
decreases and that of the weak pool increases. Thus, when m
increases, the weak pool is inclined to attack, and the strong
pool is inclined to refrain from attacking. That is to say,
it is norm that a weak pool present an attack behavior when
increasing the value of punishment.
Remark 1: The behavior in Theorem 1 contradicts the

intuition that punishment will prevent the attacks, i.e., the
severer punishment of the attack is performed, the lower
likelihood of the attacking for strong pool is.
Corollary 1: Increasing the value of m, the weak pool is

more likely to win.
Proof: Let pwin1 and pwin2 be the probabilities of pool 1

and pool 2 winning the reward, respectively. In the case of
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p1− d < p2, pool 2 wins when it attacks and pool 1 does not
attack, the probability of which is pwin2 = η2(1−η1) = 2m2

1−m2 .
Consequently, the probability of pool 1 winning the reward is
pwin1 = 1 − 2m2

1−m2 =
1−3m2

1−m2 . The greater the punishment is,
the more likely the weak pool is to win.
Theorem 2: When the punishmentm >

√
2−1, punishing

the attacks more severely gives rise to lower expected utilities
of the pools.

Proof: Let upool1 and upool2 be the expected utilities
of pool 1 and pool 2, respectively. From the above analysis,
we know that upool1 = 1−m. Thus, increasing the value ofm,
the utility of pool 1 decreases. On the other hand, the expected
utility of pool 2 is

upool2 = η1m =
1− m
1+ m

· m =
m− m2

1+ m
. (5)

Since u′pool2 =
1−2m−m2

(1+m)2
, then u′pool2 > 0 when 0 < m <

√
2− 1, and u′pool2 < 0 when m >

√
2− 1. These means that

the utilities of pool 2 decrease with the increasing of m when
m >
√
2− 1.

Remark 2: From Theorem 2, we know that the social wel-
fare of the system decreases when the value of m increases.
This result suggests that increasing the punishment of an
attack is damaged for the system.

B. EVOLUTIONARY STABILITY IN FIRST-STAGE GAME
In above subsection, we computed the expected utilities in the
second-stage game when two competitive pools were open
under the condition p1 − d < p2, in which we can see
the influence of parameters m and d on the attack strategy
and the profit of the mining pool. We now take a step back
and compute the expected utilities when two competitive
pools are open but before their mining power has become
known.

(i) When both pools use an open strategy O, the utility of
pool 1 (and symmetrically, that of pool 2) is

U = P(p2 < p1 < p2 + d)(1− km)+ P(p2 + d < p1) · 1

+P(p1<p2 − d) · 0+P(p2 − d < p1 < p2)(
m− m2

1+ m
)

= P(p2 < p1 < p2 + d)(1− m)+ P(p2 + d < p1)

+P(p2 − d < p1 < p2)(
m− m2

1+ m
). (6)

The first term corresponds to the utility of pool 1 in
the mixed equilibrium of the game under the condition
p2 < p1 < p2 + d . The second term corresponds to the utility
of pool 1 when pool 2 cannot overtake pool 1 even after
attacking it under the condition p2 + d < p1. The third term
corresponds to the utility of pool 1 when pool 1 cannot reach
pool 2 even after attacking (p1 < p2 − d), and the forth term
corresponds to the utility of pool 1 in themixed equilibrium of
the game under the condition (p2 − d < p1 < p2). Under the
assumption that pi is uniformly distributed between 0 and 1,

we have

P(p2 + d < p1) =
∫ 1

0

∫ 1

0
1(p2+d<p1)dp2dp1

=

∫ 1

d

∫ p1−d

0
1dp2dp1

=
1
2
− d +

d2

2
, (7)

P(p2 < p1 < p2 + d) =
∫ 1

0

∫ 1

0
1(p2<p1<p2+d)dp2dp1

=

∫ 1

0

∫ min{p2+d,1}

p2
1dp2dp1

=

∫ 1

0
(min{p2 + d, 1} − p2)dp2dp1

=

∫ 1−d

0
d · dp2 +

∫ 1

1−d
(1− p2)dp2

= d −
d2

2
, (8)

P(p2 − d < p1 < p2) =
∫ 1

0

∫ 1

0
1p2−d<p1<p2dp2dp1

=

∫ 1

0

∫ p2

max{p2−d,0}
1dp2dp1

=

∫ 1

0
(p2 − max{p2 − d, 1})dp2dp1

=

∫ d

0
p2dp2 +

∫ 1

d
d · dp2 = d −

d2

2
.

(9)

The utility of each pool is

U = (d −
d2

2
)(1− m)+ (

1
2
− d +

d2

2
) · 1

+ (d −
d2

2
)(
m− m2

1+ m
)

=
1
2
− m(d −

d2

2
)+ (d −

d2

2
)(
m− m2

1+ m
)

=
1
2
− (d −

d2

2
)(

2m2

1+ m
). (10)

The utility of each pool decreases as bothm and d increase.
In the extreme case, when both m and d are 1, the utility is 0.
Whenever either of the parameters is at its minimum value
of 0, the utility is at its maximum value of 1/2.
(ii) When both pools use a closed strategy C , there is no

reason to attack, and they both choose N in the second stage.
Each pool is equally likely to win, and the expected utility of
each pool is 1/2.

(iii)When pool 1 is open and pool 2 is closed, pool 1 cannot
attack but pool 2 attacks if doing so causes it to overtake
pool 1. Pool 2 attacks if the realized mining power of pool 1
is less than the damage, i.e., p1 < d , then pool 2 can win.
As the power of the open strategy is higher than that of the
closed strategy, the utility of pool 1 is

d · (0+ m)+ (1− d) · 1 = 1− d + md . (11)
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From Eq. (11), we know that pool 1 receives a payoff of 1
when its mining power is sufficiently high in order to remain
free from attack, the probability of which is 1 − d . Further-
more, pool 1 receives a payoff of m when its mining power is
sufficiently low for it to be overtaken, probability of which is
d . Similarly, the utility of pool 2 is

(1− d) · 0+ d(1− m) = d(1− m). (12)

Thus, the mining power of pool 1 is sufficiently low for it to
be overtaken after an attack (which has a probability of d),
and thus, pool 2 attacks and receives the reward minus the
punishment, i.e., 1−m. For pool 2, attacking pool 1 results in
a positive utility while not attacking pool 1 results in a zero
utility. The case in which pool 2 is open and pool 1 is closed is
symmetrical. From the above analysis, we obtain the payoff
matrix shown in Table 2.

TABLE 2. Payoff matrix of the first-stage game.

Based on the payoff matrix of first-stage game in Table 2,
we can apply evolutionary game theory to explore the evo-
lutionary stability of mining pool’s open strategy selection.
Consider a system withM pools to mine the blocks together.
In each mining operation, each pool randomly selects another
pool to form a game pair. For each mining pool, they exist
two strategies: O and C . Denote x1 and x2 as the frequencies
of the strategies O and C , respectively. Thus, x1 + x2 = 1.
We can obtain the expected utility of each strategy from
the payoff matrix, as shown in Table 2. For a game player
adopting strategy O, the probabilities of him meeting the
opponents of strategy O and C are x1 and x2, respectively.
Thus, the expected payoff of the pools on when they adopting
strategies O and C are as followsP1 = x1[

1
2
− (d −

d2

2
) ·

2m2

1+ m
]+ x2(1− d + md)

P2 = x1[d(1− m)]+
1
2
x2.

(13)

According to the pairwise proportional imitation proto-
col [38], we can use the replicator dynamic equation to
approximate the evolution dynamics of the population

ẋi(t) = xi(Pi − P̄), i = 1, 2, (14)

where P̄ =
∑2

i=1 xiPi represents the average payoff of the
strategy. We can then obtain the following frequency change

rate equation of each strategy

ẋ1(t) = x1(P1 − P̄)

= [
1
2
− (d −

d2

2
) ·

2m2

1+ m
](x21 − x

3
1 )

+(x1x2 − x21x2)(1− d + md)

−x21x2[d(1− m)]−
1
2
x1x22

ẋ2(t) = x2(P2 − P̄)

=
1
2
(x22 − x

3
2 )+ (x1x2 − x22x1)d(1− m)

−x21x2[
1
2
− (d −

d2

2
) ·

2m2

1+ m
]

−x1x22 (1− d + md)

(15)

Let ẋi(t) = 0, (i = 1, 2), then we can obtain two rest points
of the Eq. (15) in the form of (1, 0) and (0, 1). Here, the states
(1, 0) and (0, 1) indicate that all the pools adopt strategies
O and C , respectively. We are now ready to investigate the
evolutionary stability of these two fixed points. In practical
scenarios, the blockchain network is composed of a large pop-
ulation of miners. We can thus apply an asymptotic analysis
and obtain the following theorem on the evolutionary stability
of the rest points.
Theorem 3: (i) The state of (1, 0) is an ESS if

d(1− m)+ (d −
d2

2
) ·

2m2

1+ m
<

1
2
; (16)

(ii) The state of (0, 1) is an ESS if m < 1− 1
2d .

Proof: For the equilibrium point: x1 = x∗, x2 = 1 −
x∗, (x∗ ∈ {0, 1}), the Jacobi matrix at this point is

J =
[
J11 J12
J21 J22

]
=


∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2


x1=x∗,x2=1−x∗

.(17)

Furthermore, the elements are derived as follows

∂f1(x)
∂x1

= [
1
2
− (d −

d2

2
) ·

2m2

1+ m
](2x1 − 3x21 )

+ (x2 − 2x1x2)(1− d + md)

− 2x1x2[d(1− m)]−
1
2
x22

∂f1(x)
∂x2

= (x1 − x21 )(1− d + md)− x
2
1d(1− m)

− x1x2
∂f2(x)
∂x1

= (x2 − x22 )d(1− m)− x
2
2 (1− d + md)

− 2x1x2[
1
2
− (d −

d2

2
) ·

2m2

1+ m
]

∂f2(x)
∂x2

=
1
2
(2x2 − 3x22 )− x

2
1 [
1
2
− (d −

d2

2
) ·

2m2

1+ m
]

+ (x1 − 2x2x1)d(1− m)− 2x1x2(1− d + md).

(18)

When x∗ = 1, the corresponding Jacobi matrix is

J |x1=1,x2=0 =
[
J11 J12
J21 J22

]
,
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where J11 = − 1
2+ (d−

d2
2 ) ·

2m2

1+m , J12 = −d(1−m), J21 = 0,

and J22 = d(1−m)− 1
2 + (d − d2

2 ) ·
2m2

1+m . Its corresponding
eigenvalue is

λ1 = −
1
2
+ (d −

d2

2
)(

2m2

1+ m
)

λ2 = d(1− m)−
1
2
+ (d −

d2

2
) ·

2m2

1+ m
.

(19)

When (d − d2
2 ) ·

2m2

1+m <
1
2 , λ1 < 0; and when d(1− m)+

(d − d2
2 ) ·

2m2

1+m <
1
2 , λ2 < 0. Thus, state (1, 0) is stable.

When x∗ = 0, the corresponding Jacobi matrix is

 |x1=0,x2=1 =

[ 1
2 − d + md 0
1− d + md −

1
2

]
.

Its corresponding eigenvalue is
λ1 = −

1
2

λ2 =
1
2
+ md − d .

(20)

When m < 1 − 1
2d , λ2 < 0, and thus, state (0, 1) is

stable.

V. NUMERICAL SIMULATIONS
In this section, we present the numerical analysis used
for verifying the above conclusions. Consider a network
with n = 5000 individual miners which evolves to form
500 mining pools (i.e., M = 500).

FIGURE 2. The attacked probability of pools with increasing m when
p2 < p1 < p2 + d .

In order to investigate the trade-off between the higher
efficiency of openness and vulnerability to attacks, we first
consider the effects of the parameters m and d on the strategy
of attack. Fig. 2 shows that in mining games, increasing the
value of m has a small effect on the total number of attacks,
i.e., the increasing value of m does not help in preventing
attack behavior. Moreover, in the case that both mining pools
are open and p2 < p1 < p2 + d , the probability of pool 1
choosing to attack decreases from 1 to 0with the increasing of
m from 0 to 1. In contrast, the probability of pool 2 choosing
to attack increases as m increases and reaches a maximum

FIGURE 3. The mining probability of pools with increasing m when
p2 < p1 < p2 + d .

FIGURE 4. The utilities of pools obtained with increasing m when both
pools are open and p2 < p1 < p2 + d .

value of 1 at m = 0.5. Furthermore, the total number of
attacks also reaches a maximum at m = 0.5.
In Fig. 3, we illustrate the variation of the pools’ winning

probability with the increase in m when both pools are open
and p2 < p1 < p2 + d . It is shown that the probability of the
strong pool winning gradually decreases as the punishment
for attacking increases, while the probability of the weak pool
winning gradually increases as the punishment for attacking
increases. This does not contribute to the entire system’s
welfare. From the viewpoint of optimization, it is beneficial
to set the punishment to 0, because the probability of the
strong pool winning is 1 at this time. It is shown in Fig. 4 that
the utility of strong pool decreases when the punishment m
increases under the conditions that the two pools are both
open and p2 < p1 < p2 + d . Moreover, the utility of the
weak pool first increases and then decreases as m increases
under the same conditions. In addition, a higher punishment
m is not beneficial to the social welfare of the entire system.
Figure 5 shows that when the two pools are open, the increase
in m and d results in a lower social welfare. This provides a
certain reference for the design of themining incentivemodel,
i.e., increasing the value ofm and d does not contribute to the
overall optimization.

Later, we demonstrate the evolutionary stability of themin-
ing games among 500 pools. Set d = 0.2 and m = 0.2 such
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FIGURE 5. The social welfare of the system obtained vs the increasing of
d under different values of m.

FIGURE 6. Replicator dynamics of the pool selection strategies and the
evolution trajectory from x(0) = (0.25, 0.75) with d = 0.2 and m = 0.2.

FIGURE 7. Evolution of the pool’s population states over time with
d = 0.2 and m = 0.2 for various initializations.

that the condition (i) in Theorem 3 is satisfied. It is shown
in Fig. 6 that strategy C is evolutionarily stable with an initial
point x(0) = (0.25, 0.75). Fig. 7 shows that the stable state
x∗ = (1, 0) is independent of the initializations. Therefore,
the pool selection game admits a unique ESS of x∗ = (1, 0)
and the mining pool tends to choose strategy O, which is
in accordance with our theoretical finding (i) in Theory 3.
In contrast, we set d = 0.8 and m = 0.2, which satisfy the
condition (ii) in Theorem 3, and there is a unique ESS of
x∗ = (0, 1). Fig. 8 shows that strategy C is evolutionarily

FIGURE 8. Replicator dynamics of the pool selection strategies and the
evolution trajectory from x(0) = (0.25, 0.75) with d = 0.8 and m = 0.2.

FIGURE 9. Evolution of the pool’s population states over time with
d = 0.8 and m = 0.2 for various initializations.

FIGURE 10. The frequency of strategy O as m varies for various
values of d .

stable with an initial point x(0) = (0.25, 0.75). Fig. 9 demon-
strates that there is a unique ESS of x∗ = (0, 1), and the
mining pool tends to choose strategyC , which is independent
of the initializations.

Finally, we examine the evolution of the stable states with
respect to various values of m and d for the same network
settings. As shown in Fig. 10, increasing the value of m
is beneficial for the appearance of the all O stable state.
Furthermore, there exists a critical value ofm that leads to the
stable of state transforming from all C to allO. Moreover, the
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FIGURE 11. The frequency of strategy O as d varies for various
values of m.

larger the value of d , the greater critical value of d is. And
thus, decreasing the value of d promotes the appearance of
the allO stable state.When d = 0.4, the frequency of strategy
O is maintained at a value of 1 regardless of the value of m.
Similarly, it is shown in Fig. 11 that increasing the value of d
inhibits the appearance of the strategy O’s stable state. There
is also a critical value of d that gives rise to the stable of state
transforming from all O to all C .

VI. CONCLUSIONS
In this paper, we have treated the damage caused by the attack
and the punishment which affect the choice of the mining
pool’s strategy. We have modeled the mining pool selection
as a two-stage game, where there is only one winner in the
competition. Based on the game theory, we have analyzed the
NE of the two-stage game and found that malicious behavior
is the expected behavior. Furthermore, we have investigated
the evolutionary stability of the pool selection dynamics for
competitive pools and revealed the conditions for the network
to admit a unique evolutionary stable state. The numerical
evaluation results in this study have provided the evidence
for our theoretical discoveries.

Our results emphasize that despite open mining being a
more efficient method of mining blocks, it is also a less
secure approach. In such distributed and competitive scenar-
ios, it is natural for a selfish player to hurt its opponents,
and thus, attacks on other players are essentially unavoid-
able. We expect the results obtained in this work to hold
in a variety of more complicated scenarios that exhibit a
fundamental trade-off among efficiency, openness and vul-
nerability. Furthermore, we expect our work provides a new
idea and method for the security of the blockchain consensus
algorithm.
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