
Received November 20, 2018, accepted December 11, 2018, date of publication January 2, 2019, date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890402

Exploring the Reasons Behind the Good
Performance of Opposition-Based Learning
QINGZHENG XU 1,2, NA WANG1, FENG ZOU3, AND JUNGANG YANG1
1College of Information and Communication, National University of Defense Technology, Xi’an 710106, China
2School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
3School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China

Corresponding author: Qingzheng Xu (xuqingzheng@hotmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572224, in part by the China
Scholarship Council under Grant 201703170064, in part by the Scientific Research Foundation of the National University of Defense
Technology under Grant ZK18-03-43, and in part by the Anhui Provincial Natural Science Foundation under Grant 1708085MF140.

ABSTRACT In the face of these diverse forms of opposition existed widely in real-world contexts, as a
novel concept in computational intelligence, opposition-based learning (OBL) was originally introduced to
accelerate the population-based algorithm. In addition, its superiority has been proved mathematically and
experimentally. Two key elements (function prototype and algorithm design) that influence the algorithm
performance, however, has not yet fully discussed in the past decade. In this paper, two OBL strategies
are reexamined in respect of function prototype and algorithm design. In the first part of this paper,
considering the position relationship between the optimal solution and the center point, some well-known
benchmark functions are divided into three categories. Then, quasi-opposition-based differential evolution
(QODE) is investigated by two approaches: solving several benchmark functions of various function types
and solving the same functions with a different optimal solution. The numerical experiments reveal that
‘‘smart’’ matching between the benchmark functions and the QOBL is an important factor to the good
performance of QODE. In the second part of this paper, a novel individual-based embedding method is
proposed to coincide with the classical definition of opposition-based optimization. Then, two opposition-
based differential evolution algorithms are compared to discuss the differences between the two embedding
methods. The experimental results confirm that the convergence differences stem from the embedding
method chosen in theOBL scheme rather than the utilization rate of opposite points. Furthermore, the impacts
caused by various function types and jumping rate are also discussed.

INDEX TERMS Opposition-based learning, differential evolution, function type, embedding method,
opposite point, convergence speed.

I. INTRODUCTION
Inspired from the opposition concept in real-world con-
texts, such as opposite particle in physics, antonym in lan-
guage, and subject/object in philosophy, the basic concept
of opposition-based learning (OBL) was originally intro-
duced and simply defined by Tizhoosh [1]. The key idea
of this optimization strategy is, considering an estimate and
its corresponding opposite estimate simultaneously can be
beneficial to find a better candidate solution for an optimizer.
As a novel research field, it has already attracted a recog-
nizable interest in machine learning and artificial intelligence
since 2005 [2], [3].

In the past decade, it was extended rapidly and several
new and potent oppositional strategies were proposed to
improve solution quality, such as quasi-opposition-based

learning (QOBL) [4], quasi-reflection opposition-based
learning (QROBL) [5], center-based sampling [6], gener-
alized opposition-based learning (GOBL) [7], opposition-
based learning using the current optimum (COOBL) [8],
partial opposition-based learning (POBL) [9], rotated-based
learning (RBL) [10], opposite-center learning (OCL) [11] and
comprehensive opposition (CO) [12]. Meanwhile, these OBL
strategies were further successfully applied in swarm and
evolutionary computing algorithms to solve various science
and engineering problems, such as power system, pattern
recognition and image processing, identification, bioinfor-
matics and medicine, etc [3].

A lot of research works have mathematically and experi-
mentally proved that utilizing the opposition concept in the
framework of swarm and evolutionary computing algorithms

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7259

https://orcid.org/0000-0001-8212-1073

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

can enhance (maintain at least) their performance. For a
long time, some consensus have been built in this field.
First of all, it is the opposition-based strategy that can
improve the performance of swarm and evolutionary com-
puting algorithms [4]–[13]. More important, there is con-
tinuing improvement in algorithm performance, with more
opposite points survived to the child population during the
whole evolution process [8], [13], [14]. The key goal of this
paper is to better understand the true reasons behind the
good performance and disambiguate some misunderstanding
of OBL. Thus OBL and QOBL strategies are reexamined in
respects of function prototype and algorithm design in this
paper.

The contributions of this paper to this field can be listed
as follows. First, a function classification principle is intro-
duced and applied to some well-know benchmark functions.
Second, the real reason for the good performance of QOBL
is revealed. We think that it is the ‘‘smart’’ matching between
it and benchmark functions, rather than the strategy itself.
Third, an individual-based embedding method is proposed as
a base to develop opposition-based swarm and evolutionary
computing algorithms. Finally, a more plausible explanation
of the convergence differences between two opposition-based
differential evolution (ODE) is given to reclaim the previous
knowledge. We believe it is the embedding method chosen
in OBL scheme, rather than the utilization rate of opposite
points.

The remainder of this paper is organized as follows. The
concept of opposition-based learning and opposition-based
differential evolution are reviewed in Section II. Three bench-
mark function categories are introduced and the influences
of function type and optimal solution on algorithm conver-
gence are discussed in Section III. Section IV contains a new
embedding method of OBL scheme and further experimental
results of two ODE algorithms over 58 optimization prob-
lems. Finally, Section V concludes this paper.

II. PRELIMINARIES
A. CONCEPT OF OPPOSITION-BASED LEARNING
The definitions of OBL and QOBL studied in this paper are
given as follows.

Let P = (p1, p2, . . . , pD) be an arbitrary point in
D-dimensional space, where p1, p2, . . . , pD ∈ R and
pi ∈ [ai, bi], ∀i ∈ {1, 2, . . . ,D}. The opposite point P̆ =
(p̆1, p̆2, . . . , p̆D) [13] and quasi-opposite point P̆q = (p̆q1,
p̆q2, . . . , p̆qD) [4] of P can be completely defined by its
coordinates, respectively

p̆i = ai + bi − pi (1)

p̆qi = rand(ci, p̆i) (2)

where ci (calculated as ai+bi
2) is the center of the search

interval [ai, bi], and rand(ci, p̆i) is a randomnumber uniformly
distributed between ci and p̆i.
As an example, now we can define opposition-based opti-

mization as follows. Similar to it, quasi-opposition-based

FIGURE 1. Pseudo code for opposition-based differential evolution (ODE).

optimization can also be defined by using the concept of
QOBL given above.
Opposition-Based Optimization: Let P = (p1, p2, . . . , pD)

be a point in an D-dimensional space and P̆ = (p̆1,
p̆2, . . . , p̆D) be an opposite point of point P. Assume f (·) is
a fitness function which is used to measure the candidate’s
fitness. Now, if f (p̆) < f (p), then point P can be replaced with
P̆; otherwise we continue with P. Hence, the optimization
process continues with the fitter one.

B. OPPOSITION-BASED DIFFERENTIAL EVOLUTION
From statistical results in [2], differential evolution (DE) was
widely used as a basic meta-heuristic algorithm to reveal
good performance of OBL strategies. Simple design and easy

7260 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

FIGURE 2. Categories of benchmark functions.

implementation, two main preferences of DE than other soft
computing algorithms, are a basic reason for widespread
application of DE in the last decade.

In [13], OBL was embedded in the classical DE,
DE/rand/1/bin, and then opposition-based differential evo-
lution was developed to accelerate its convergence speed.
The corresponding pseudo code is given in Fig. 1. Note that
two steps (population initialization and generation jumping)
are enhanced using OBL scheme. What is important is that
alternative oppositional DE can also be developed easily by
embedding other opposition-based strategies in two steps.
The details are not yet covered here.

III. EXPERIMENTAL ANALYSIS OF QUASI-OPPOSITION-
BASED LEARNING IN RESPECT OF
FUNCTION PROTOTYPE
A. MOTIVATION
The properties of benchmark functions, such as function
notation, dimension of function spaces, domain and range,
concave/convex, turning points and extremal points, as we
all know, have great influence on algorithm performance.
If the tested algorithm is an excellent match for the function
prototype, its performance may be overestimated. It is unfair
to other algorithms, which do not fit these function characters
and may fit others well, and ultimately leads to questionable
results.

A benchmark function set (or its part) in the pioneer
work [13] was widely employed to measure performance in
most of opposition-based research works [4], [5], [8], [11].
The utilized test suite includes 58 well-known unimodal
as well as highly multimodal optimization problems. The
dimensionality varying from 2 to 30 covers a wide range of
problem complexity. The detailed definition of these bench-
mark functions are presented in Appendix A of paper [13],
together with their global optimums, that can be used directly
readers.

After careful observation of 58 optimization problems,
we found that some optimal solutions are just located at
the center of the function domain, and some close to the
center and some keep away from the central zone. In our
view, the position relationship between optimal solution
and center point of function spaces is a very important,
but yet often overlooked property of benchmark functions.
In this paper, according to the position of the optimal solu-
tion in function domain, these benchmark functions can
be divided into three categories as illustrated in Fig. 2:
locating at the center (Type I), closing to the center (Type
II) and keeping away from the central zone (Type III).

If the optimal solution of multidimensional function closes
to the center only for some dimension, the function is

TABLE 1. Name and type of optimization problems.

VOLUME 7, 2019 7261

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

considered as Type II (part); otherwise it belongs to Type II
(whole). Thus these optimization problems are concluded
in Table 1.

Rahnamayan et al. [4] proved mathematically that, for a
black-box optimization problem, quasi-opposite point has a
higher chance than opposite point to be closer to the unknown
optimal solution. Furthermore, experimental results clearly
illustrate that quasi-opposition-based differential evolution
(QODE) outperforms ODE and DE.

By definition of (2), quasi-opposite point is a uniform
random point generated between center point and opposite
point. As we can imagine, quasi-opposite point must be closer
to the optimal solution which is the center exactly (or near
the center) of function domain. Even it is possible for quasi-
opposition-based algorithm to find the optimal solution of
optimization problem directly (or almost directly).

Coincidentally, for most of benchmark functions tested,
their optimal solutions are the center exactly (Type I), or near
the center (Type II) as shown in Table 1. QODE algorithm can
make full use of this function prototype incidentally or acci-
dentally. As a result, this is nothing to be surprised at the
good performance of QODE to solve these optimization prob-
lems. We have reason to suspect that it is ‘‘smart’’ matching
between benchmark functions and QOBL embedded in DE,
that always leads to the anticipant result.

The main purpose of this section is to check our conjecture
above. Obviously, sharply changing the function property
may achieve ‘‘stupid’’ matching, resulting in poor algorithm
performance. We have two approaches to verify what we
suspect specifically. Firstly, when solving different types of
benchmark functions, QODE may show the biased perfor-
mance. Secondly, when solving the same function with differ-
ent optimal solutions, it may degrade greatly with diverging
from the domain center to the domain vertices.

B. EXPERIMENTAL SETUP
In the next two subsections, QODE will be reexamined
on several benchmark function sets and the only difference

between these function sets is the position of their opti-
mal solutions. All basic optimization problems are borrowed
from [13].

By translating the function definition with respect to
each dimension, the position of optimal solution will
vary accordingly. For f1 (x) =

∑n
1 x

2
i , the new func-

tion is defined as f ∗1 (x) =
∑n

1 (xi − Tr (MAX i −MIN i))2,
in which Tr is a translation factor, and MAXi and
MINi are minimum and maximum values for ith dimen-
sion of f1(x), respectively. At this time, the position
of optimal solution is translated from [0, 0, · · · , 0] to
[Tr (MAX1 − MIN 1),Tr (MAX2 − MIN 2), · · · ,Tr (MAXn
−MIN n)]. As you can see from Fig. 2 and Table 1, for most
of optimization problems, optimal solution falls in between
30% to 70% of function domain. In order to avoid crossing
the boundary, translation factor α is set as a constant value
less than 30% in this study.

As listed below, parameter settings are also bor-
rowed from [4] and [13] and the values stay the same
for all conducted experiments. The termination crite-
rion is to find a value smaller than the value-to-reach
(VTR) before reaching the maximum number of function
evaluations (MAXNFE).

• Population size, Np = 100
• Differential amplification factor, F = 0.5
• Crossover probability, Cr = 0.9
• Jumping rate, Jr = 0.05
• Mutation strategy: DE/rand/1/bin (classic version of
DE)

• Maximum NFE, MAXNFE = 106

• Value to reach, VTR = 10−8

In this study, convergence speed is measured by counting
the number of function evaluations (NFE) until the algorithm
reaches the predeterminedVTR, which is themost commonly
used metric in literatures. A smaller NFE means a higher
convergence speed.

Success rate (SR) used to evaluate the algorithm reliability
is the ratio of runs where the algorithm successfully reaches
the VTR. Low success rate means that more runs are needed
for algorithm to get a significant result.

Utilization rate of opposite points (UR) is another com-
parison site in this study. It is the ratio of opposite points
inherited to the next generation through fitness selection.
Large UR means that opposite points have more effects on
survival of candidate solutions from parent population to
child population.

It is noted that, in order to minimize the effect of
stochastic nature on each measured metric, the reported
result for each function and algorithm is the average over
100 trials.

C. EXPERIMENT SERIES 1: SOLVING BENCHMARK
FUNCTIONS WITH DIFFERENT TYPES
Experimental results (NFE and SR) of applying DE, ODE,
and QODE to solve 58 optimization problems are given

7262 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

in Table 2. To make the table concise, the self-explanatory
SR (one or zero) is omitted here. The best NFE for each case
are highlighted in boldface.

According to statistical data listed in the last row of Table 2,
QODE, ODE and DE get 138, 14 and 31 best NFEs for
all cases, respectively. It can be concluded that, as stated

TABLE 2. Experimental comparison of DE, ODE, and QODE.

VOLUME 7, 2019 7263

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

in [4], QODE performs better than ODE and DE on most
benchmark functions in convergence speed. Furthermore, for
most problems, except F22, these algorithms can obtain the
global optimal solution in limited function evaluations by
the similar success rate. As a result, the dominant difference
between them is in convergence speed.

In order to distinguish the convergence speed intuitively
and quantitatively, acceleration rate (AR) is defined as fol-
lows, based on their NFEs for two algorithms:

AR1:2 =
NFE2 − NFE1

min{NFE1,NFE2}
(3)

where AR1:2 > 0 means algorithm 1 can solve the problem
with less NFE (e.g. high convergence speed).

Please note that the definition of AR is not the same as that
in [13]. In the previous paper, AR is straightly defined as the
ratio between the NFEs for two algorithms. In some cases,
it is possible to produce contradictory results. For instance,
the results on two functions are recorded in Table 3.

From Table 3, algorithm 1 converges faster on F2, while
algorithm 2 converges faster on F1 with the same rate.
Ignoring other factors, two algorithms should have the same
convergence speed as a whole. Unfortunately, the value of
AR1:2 defined in [13] cannot support this obvious conclusion.
On the contrary, AR1:2 proposed in this paper is equal to zero,
which means two algorithms can solve problems with the
same convergence speed.

TABLE 3. An example of contradictory experimental results.

With the help of this new definition of AR, improvement
degree in convergence speed can be discussed for ODE and
QODE. The boxplots of ARDE:ODE and ARDE:QODE for all
kinds of functions are presented below in Fig. 3.

According to classification principle mentioned above,
the deviation degree of optimal solution to the center point
increases in the order of Type I, Type II (whole), Type II
(part) and Type III. The average ARDE:QODE of four function
types are equal to −0.6073, −0.1630, −0.0636 and 0.1195,
respectively. That is to say, convergence speed of QODE
varies from 60% (progression) to −12% (regression). From
Fig. 3(b), shape and position of four boxplots have also
significant difference. These results both indicate that QODE
produce biased performance in function type. If the function
property is matched well with QOBL (such as very close
distance between optimal solution and center point for Type
I), QOBL is very helpful to improve algorithm performance.
On the other hand, for solving Type III functions, QODE
may run counter to conventional views of good algorithm
performance.

7264 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

FIGURE 3. Acceleration rate between DE and ODE (QODE). (a) AR
between DE and ODE. (b) AR between DE and QODE.

D. EXPERIMENT SERIES 2: SOLVING THE SAME
FUNCTIONS WITH DIFFERENT OPTIMAL SOLUTIONS
Next, the influence of the translation factor on algorithm
convergence is studied to check our conjecture. On the whole,
the number of best NFE obtained by QODE becomes smaller
(from 38 to 31) and the number by DE becomes larger (from
4 to 10) when the translation factor increases from zero to
30%. From this, QODE may be very effective, especially to
the functions, which their optimal solutions near the domain
center.

Acceleration rates between each translation factor and zero
are calculated based on Table 2 and (3). The resulted notched
boxplots for Type I, Type II (whole) and Type II (part)
functions are displayed below in Figs. 4(a), 4(b) and 4(c),
respectively.

It can be clearly seen, having compared Figs. 4(a), 4(b) and
4(c), that acceleration rate for Type I functions is the largest
among all function types. Note that the scale of ordinate is
different among three subfigures. Perhaps the most extreme

FIGURE 4. Acceleration rate between different translation factors for
three function types. (a) Type I functions. (b) Type II (whole) functions.
(c) Type II (part) functions.

example is, whenQODE solve F23 (Type I) with 30% transla-
tion factor, AR0:30% is equal to 0.6390 (14064−85818581). That is to
say, QODE needsmore 63.90% times of function evaluations,
only because the optimal solution of F23 shifts from 50%

VOLUME 7, 2019 7265

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

(domain center) to 80% of function domain. From this point,
QODE algorithm is very sensitive to the position of optimal
solution. In fact, from its definition of (2), QOBL always
apts to explore an area near the domain center. If the optimal
solution is luckily situated within the area, QOBL will help
DE to converge quickly. However, its effect is not evident for
other positions of optimal solution.

In addition, the extreme value of AR are 0.1986 and
−0.16369 for Type II (whole) and Type II (part) functions,
respectively. The linear fitting results for DE, ODE and
QODE are also presented in Fig. 4. It is obvious that, except
for DE and ODE algorithms to solve Type II (part) functions,
the slope of fitting line is larger than zero. This result means
three algorithms need more NFEs to solve the optimization
problems with the increasing translation factor. These fully
illustrate function character (e.g. the position relationship
between optimal solution and center point in this paper) has
distinct impact on algorithm convergence.

On more careful observation, it is found that the slope
of fitting line is near zero for DE and ODE. For QODE,
it is much larger than zero, which can be treated as another
evidence supporting the idea that ‘‘smart’’ matching between
benchmark functions and QOBL is an important factor to the
good performance of QODE.

The length of boxplot from lower tail to upper tail shows
the spread of the data distribution. Comparatively speaking,
in most instances, three algorithms can be ranked as fol-
lows, in descend order of data dispersion: QODE, ODE and
DE. It indicates that DE can solve all kinds of optimization
problems in a stable way. Thus we conclude that, the given
function property has a very limited influence on DE and a
great influence on QODE.

E. ADDITIONAL REMARKS
Two experiment evidences suggest that the good performance
of QODE is closely interrelated to the position relationship
between optimal solution and center point. Of course, we do
not deny the value of QOBL to speed up the convergence.

On the other hand, in engineering application, it is rea-
sonable for most cases to assume that the optimal solution
of optimization problem is located near the domain cen-
ter. If not, we can translate the relative position of optimal
solution by changing the definition domain of optimization
problem. In fact, during the evolution process, the range of
candidate solution population is compressing and moving to
global optimum, in which QOBL plays a bigger role. This
process can be considered as another realization of changing
the definition domain.

IV. EXPERIMENTAL ANALYSIS OF OPPOSITION-BASED
LEARNING IN RESPECT OF ALGORITHM DESIGN
A. NEW DESIGN OF EMBEDDING METHOD
As shown in Fig. 1, ODE is developed easily by embedding
OBL scheme in two steps of the classical DE. An interesting
fact about algorithm structure is that OBL scheme is utilized

on the whole population, not on the special individuals.
More specifically, all opposite solutions generated by OBL
definition constitutes an opposition-based population (OPG)
firstly. Then the same population size of fittest individuals
are selected from the joint population (PG and OPG) and
remained to the child generation. It is named population-
based embedding method in this paper. When using this
method, it is possible to pitch on (or give up) both the
candidate solution and its corresponding opposite solution
simultaneously.

Furthermore this population-based embedding method of
OBL is completely different to opposition-based optimization
defined in Section II.A. From the definition, its original inten-
tion is to compare the solution and its corresponding opposite
solution and then select the fitter one. By this means, only
one of two points can in any case be survived to the child
generation and another will be discarded.

To follow along this idea, a new approach named
individual-based embedding method is proposed and the cor-
responding opposition-based DE algorithm is developed in
this paper. This algorithm is called as ODE(Ind) to distin-
guish it with previous ODE(Pop) in [13]. The pseudo code
of ODE(Ind) is presented in Fig. 5. In ODE(Ind), two key
procedures (opposition-based population initialization and
opposition-based generation jumping) convey the idea of
opposition-based optimization entirely by new individual-
based embedding method.

In Section IV.B, two opposition-based DE algorithms are
compared firstly. Then we propose a more plausible explana-
tion of the performance differences between them, which can
reclaim the previous misunderstanding of OBL. Furthermore,
the effects of function type and jumping rate are discussed in
Sections IV.C and IV.D, respectively.

B. HOLISTIC COMPARISON OF TWO
EMBEDDING METHODS
In this subsection, two embedding methods are compared
firstly in terms of convergence speed and algorithm robust-
ness. Experimental results (NFE and SR) of DE, ODE(Pop)
and ODE(Ind) solving 58 optimization problems are given
in Table 4. To make the table concise, the self-explanatory SR
(one or zero) is also omitted here. In addition, acceleration
rates between two opposition-based algorithms using dif-
ferent embedding methods are calculated. Then the average
acceleration rates on each function type are recorded at the
end of the corresponding function type in Table 4, and total
average on four function types are also shown in the last row
of the table.

Comparatively speaking, DE algorithm has relatively high
convergence speed on 28 problems, and ODE(Pop) has on
other 25 problems. Based on the total average ARDE:ODE(Pop),
the convergence speed of ODE(Pop) increases 5.26% than
DE algorithm. Unfortunately, the improvement degree of per-
formance is significantly lower than expected. It was reported
in [13] that ODE is on average 44% faster than DE. The
reason behind this phenomenon is that the performance of

7266 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

FIGURE 5. Pseudo code for opposition-based differential evolution
(Individual) (ODE(Ind)).

ODE(Pop) vary for different jumping rates. It is set as 0.05 in
this paper as mentioned in Section II.B, while it is equal to
0.3 in [13]. In Section IV.C, the effect of jumping rate will be
more fully discussed.

Obviously, the success rates are almost the same for
ODE(Pop) and ODE(Ind) from Table 4. However, ODE(Ind)
has the slowest convergence speed of all algorithms
assessed here. In general, it needs more 4.63% NFEs than

DE algorithm. For 46 problems among all tested problems,
NFE required by ODE(Ind) is larger than that by ODE(Pop).

TABLE 4. Experimental comparison of DE, ODE(Pop) and ODE(Ind).

VOLUME 7, 2019 7267

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

The average ARPop:Ind is larger than zero for all function
types and the total average ARPop:Ind is equal to 8.00%. These
results confirm that ODE(Pop) has a higher convergence
speed comparable with ODE(Ind), owing to the proposed
embedding method.

In these experiments, almost all parameters are the same,
except the embedding method chosen in OBL scheme.
In order to explain the performance difference between two
opposition-based algorithms, we first try to look for sound
reason from the contribution of opposite points.

The goal of embedding opposition-based learning is to
achieve a better approximation of true solution and to accel-
erate convergence of population-based algorithm. We may
take it for granted that algorithm performance will be better
and better the more opposite points survived to the child
population. It is clear from Table 4 that, except for very few
cases, most cases confirm this hypothesis. For example, when
solving function F1, NFE required by ODE(Pop) decreases
by 12%, which means good convergence, and at the same
time, the average UR increases by 105% compared with
ODE(Ind).

However this hypothesis cannot explain why the perfor-
mance of ODE(Ind) deteriorates sharply despite of embed-
ding some opposite points. For example, ODE(Ind) needs
more 2188 function evaluations than the classical DE, while
17.09% opposite points are utilized on average. We believe
that the true reason for good outcomes of opposition-based
algorithm is just the embedding method, rather than the
utilization rate of opposite points. In order to show their

differences, average UR of two opposition-based algorithms
are presented for four typical functions in Fig. 6. Note that the
number of times that opposition-based learning is embedded
in 100 experiments becomes less and less. Then the average
AR may fluctuate violently in the last part of the curve.

Here, we will discuss the simplest case first, namely
opposition-based population initialization. For a good can-
didate solution Xk,0 (k = 1, 2, . . . ,N) in initial population
P0, it is very possible that the corresponding opposite point
OXk,0 also has a similar fitness value and good performance
in opposition-based population OP0. For population-based
embedding method, the pairing solutions with good and sim-
ilar quality, Xk,0 and OXk,0, are both remained to the child
generation. At this time, other solution with bad performance
(and the corresponding opposite point) will be discarded
inevitably. The uniform distribution is usually assumed, with-
out prior knowledge of optimization problem. Thus a natural
inference is that half of initial opposition population can
remained to child generation, and the value of UR is near
50% as shown in Fig. 6. As a result, this population-based
embedding method is biased to high quality solutions and
strongly reduces population diversity.

While for new individual-based embedding method,
the pairing solutions, Xk,0 and OXk,0, are compared directly.
Yet, no matter how good the other is, only one of them can be
survived to the child generation. At this time, some solutions
may be replaced with better opposite points, and popula-
tion diversity has not be affected markedly by opposition-
based learning. In addition, if the benchmark function is
symmetrical about the center of the interval of its definition,
the function fitness of the paring solutions are the same,
and the opposite point cannot be superior than the original
solution, which leads to UR = 0% as shown in Fig. 6(a).
Contrary to the symmetrical case, their function fitness are
different with each other and there is half chance to remain in
child generation as illustrated in Figs 6(b), 6(c) and 6(d).

Next opposition-based generation jumping will be studied.
The fitness of solutions, together with the evolution of pop-
ulation, decrease during the course of minimization. Com-
pared with solution after mutation, crossover and selection
operations, the performance of their opposite point often
become worse remarkably. For two embedding methods of
OBL, in opposition-based generation jumping, the chance to
be chosen of opposite points is much less than 50% as shown
in Fig. 6.

On conclusion, opposition-based learning can be consid-
ered as a mutation operation to some extent. The noticeable
difference between OBL and conventional mutation opera-
tion is that the distance and direction of mutation vector.
A solution can hop to opposite half-plane from the definition
of OBL, while it may move astatically to a slightly different
point for mutation operation. In this way, we can explain
why ODE(Pop) has high convergence speed as follows. For
population-based embedding method, as mentioned above,
it may reduce population diversity like mutation operation.
On the other hand, it can also maintain more solutions with

7268 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

FIGURE 6. Average UR of two opposition-based algorithms for four typical functions. (a) Type I function. (b) Type II (whole) function. (c) Type II (part)
function. (d) Type III function.

good performance, which leads to a high convergence speed
of ODE(Pop).

In fact, the case is just the opposite for new individual-
based embedding method. The candidate sulutions are
updated one by one with the corresponding opposite solu-
tions with good quality. Thus ODE(Ind) has high population
diversity during the whole iteration process. In fairness to DE,
extra fitness evaluation required for the opposite points both
in population initialization and generation jumping phases
are counted in all experiments. As a result, more NFEs are
needed to solve optimization problems, although some oppo-
site points are generated and evolved for ODE(Ind).

To sum up, the performance differences between two
opposition-based algorithms cannot be explained by the uti-
lization rate of opposite points. A possible explanation is,
in our opinions, the embedding method of OBL scheme.

C. EFFECT FOR VARIOUS FUNCTION TYPES
In order to investigate the effect for different function types,
the boxplots of ARODE(Pop):ODE(Ind) for four types are dis-
played below in Fig. 7.

From Fig. 7, it can be seen that the embedding method cho-
sen in OBL scheme has more affection for Type I functions
than other types. For example, ODE(Pop) can solve function
F5 (Type I) in 120489 function evaluations, while ODE(Ind)
needs 357338 function evaluations on average. There is a
distinct difference between them as shown in Fig. 7.

The optimal solution is located at the domain center for
Type I functions. Therefore, it can be reasonably assumed
that their fitness distribution is symmetrical about the center.
By the definition of population-based embedding method,
relatively more opposite points with good quality can be
included in child population to speed up convergence. As a

VOLUME 7, 2019 7269

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

FIGURE 7. ARODE(Pop):ODE(Ind) for four function types.

result, seen from the last five rows in Table 5, ODE(Pop)
has the highest convergence speed on Type I functions
among all types. Hence the difference between ODE(Pop)
and ODE(Ind) on Type I functions looks big compared to
other function types.

D. PROPER SETTING OF JUMPRING RATE
The jumping rate is an important control parameter which,
if optimally set, can achieve even better results. The value of
jumping rate for our current study is borrowed from [4] and is
set to 0.05 without any effort to find an optimal value. In this
subsection, we will discuss the detailed effect on ODE(Ind)
and try to find an optimal jumping rate from a discrete set of
jumping rate values.

Now, we repeat the conducted experiments for Jr ∈
[0.05, 0.3] with step size of 0.05. The results (NFE) for
different jumping rates are presented in Table 5. The total
average AR between two ODE(Ind) algorithms with different
jumping rates are summarized in the last row of the table to
ease the comparison.

It is clearly that, except for very few cases, NFE value
becomes larger and larger with the increasing jumping rate.
The total average AR increased from 0 to 0.150, and the
increasing trend is approximately linear with the value of Jr .
For those few cases, they can simply be considered as random
error in 100 independent experiments.

By contrast, for ODE(Pop) in [13], the general recommen-
dation of jumping rate are 0.3 or 0.6, and the average optimal
value is equal to 0.37 for the same benchmark function set.
As mentioned above, opposition-based learning in ODE(Ind)
can be considered as a mutation operation. Thus the optimal
jumping rate (e.g. mutation probability) must be very small
as shown by the experimental results in this paper.

E. ADDITIONAL REMARKS
To follow along the definition of opposition-based opti-
mization, a new individual-based embedding method is
proposed in this section. The bad convergence perfor-
mance of ODE(Ind) is precisely because of new embedding

method. However its performance can be further improved by
proper setting of control parameters, such as jumping rate.

TABLE 5. Experimental comparison of ode(ind) for different jumping
rates.

7270 VOLUME 7, 2019

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

In addition, the classical population-based embedding
method is also a good choice. In a very ordinary, but ingenious
way, it speed up the convergence at the expense of population
diversity. To an extent, its way of action is similar to that of
mutation operation.

Last but not least important, we give an explanation why
the experimental results are inconsistent with the theoreti-
cal results. Until now, various mathematical theorems have
been proved to indicate the usefulness of using the OBL
concept [4], [11]–[16]. To sum it all up, it is effective than
using the random opposite points, which is proved by many
experiments. Unfortunately this effectiveness needs extra
fitness evaluation required for the opposite points. If the
performance improvement obtained by OBL is insufficient
compared to population evolution of DE algorithm, these
extra costs inevitably degrade performance of opposition-
based algorithm.

V. CONCLUSION
The goal of this paper is exploring the possible reasons
behind the good performance and disambiguate some misun-
derstanding of OBL. In this paper, we reexamined opposition-
based learning in respects of function prototype and
algorithm design.

If benchmark functions are chosen optimally, intelligent
algorithm can achieve even better results. According to the
position relationship between optimal solution and center
point, an important function prototype, some well-known
benchmark functions are divided into three categories: Type
I, Type II and Type III. With the help of acceleration rate,
we firmly believe that QODE produce biased results in
respect of function type and translation factor. These numer-
ical results indicate that ‘‘smart’’ matching between bench-
mark functions and QOBL is an important factor to the good
performance of QODE.

In the second part of this paper, a novel individual-based
embeddingmethod is proposed to coincidewith the definition
of opposition-based optimization. Then two opposition-based

DE algorithms are compared to discuss two embeddingmeth-
ods in OBL scheme. The results confirm that the convergence
difference stem from the embedding method, rather than
the utilization rate of opposite points, and opposition-based
learning can be considered as a mutation operation to some
extent. At last, the effects for different function types and
jumping rates are discussed in this paper.

There are several unexplored aspects that need future
research attention. For instance, a great potential work is
to analyze the extent and causes of negative transfer with
utilizing OBL scheme. In the future, we will also develop
adaptive or self-adaptive OBL strategies that able to control
the jumping rate of opposition during optimization.

ACKNOWLEDGMENT
Qingzheng Xu would like to thank Prof. Y. S. Ong for the
valuable comments on the manuscript.

REFERENCES
[1] H. R. Tizhoosh, ‘‘Opposition-based learning: A new scheme for machine

intelligence,’’ in Proc. Int. Conf. Comput. Intell. Modelling, Control
Automat., Int. Conf. Intell. Agents, Web Technol. Internet Commerce,
Vienna, Austria, Nov. 2005, pp. 695–701.

[2] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao, ‘‘A review of opposition-
based learning from 2005 to 2012,’’ Eng. Appl. Artif. Intell., vol. 29,
pp. 1–12, Mar. 2014.

[3] S. Mahdavi, S. Rahnamayan, and K. Deb, ‘‘Opposition based learning:
A literature review,’’ Swarm Evol. Comput., vol. 39, no. 1, pp. 1–23,
Apr. 2018.

[4] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, ‘‘Quasi-
oppositional differential evolution,’’ in Proc. IEEE Congr. Evol. Comput.,
Singapore, Sep. 2007, pp. 2229–2236.

[5] M. Ergezer, D. Simon, and D. Du, ‘‘Oppositional biogeography-based
optimization,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern., San Antonio,
TX, USA, Oct. 2009, pp. 1009–1014.

[6] S. Rahnamayan and G. G. Wang, ‘‘Center-based sampling for population-
based algorithms,’’ in Proc. IEEE Congr. Evol. Comput., Trondheim,
Norway, May 2009, pp. 933–938.

[7] H. Wang, Z. J. Wu, Y. Liu, J. Wang, D. Z. Jiang, and L. L. Chen,
‘‘Space transformation search: A new evolutionary technique,’’ in Proc.
ACM/SIGEVO Summit Genet. Evol. Comput., Shanghai, China, 2009,
pp. 537–544.

[8] Q. Xu, L. Wang, B. He, and N. Wang, ‘‘Modified opposition-based dif-
ferential evolution for function optimization,’’ J. Comput. Inf. Syst., vol. 7,
no. 5, pp. 1582–1591, 2011.

[9] Z. Hu, Y. Bao, and T. Xiong, ‘‘Partial opposition-based adaptive differential
evolution algorithms: Evaluation on the CEC 2014 benchmark set for real-
parameter optimization,’’ in Proc. IEEE Congr. Evol. Comput., Beijing,
China, Jul. 2014, pp. 2259–2265.

[10] H. Liu, Z. Wu, H. Li, H. Wang, S. Rahnamayan, and C. Deng, ‘‘Rotation-
based learning: A novel extension of opposition-based learning,’’ in Proc.
Pacific Rim Int. Conf. Artif. Intell., Gold Coast, QLD, Australia, 2014,
pp. 511–522.

[11] H. Xu, C. D. Erdbrink, and V. V. Krzhizhanovskaya, ‘‘How to speed up
optimization? Opposite-center learning and its application to differential
evolution,’’ Procedia Comput. Sci., vol. 51, no. 1, pp. 805–814, 2015.

[12] Z. Seif and M. B. Ahmadi, ‘‘Opposition versus randomness in binary
spaces,’’ Appl. Soft Comput., vol. 27, no. 1, pp. 28–37, 2015.

[13] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, ‘‘Opposition-
based differential evolution,’’ IEEE Trans. Evol. Comput., vol. 12, no. 1,
pp. 64–79, Feb. 2008.

[14] Q. Xu, H. Xu, andW.Wu, ‘‘Theoretical analysis and experimental evidence
of opposite-center learning,’’ IEEE Access, vol. 6, pp. 34948–34966, 2018.

[15] M. Ergezer and D. Simon, ‘‘Mathematical and experimental analyses
of oppositional algorithms,’’ IEEE Trans. Cybern., vol. 44, no. 11,
pp. 2178–2189, Nov. 2014.

[16] Z. Seif and M. B. Ahmadi, ‘‘An opposition-based algorithm for function
optimization,’’ Eng. Appl. Artif. Intell., vol. 37, no. 1, pp. 293–306, 2015.

VOLUME 7, 2019 7271

Q. Xu et al.: Exploring the Reasons Behind the Good Performance of OBL

QINGZHENG XU received the B.S. degree in
information engineering from the PLA Univer-
sity of Science and Technology, Nanjing, China,
in 2002, and the Ph.D. degree in control theory and
engineering from the Xi’an University of Technol-
ogy, Xi’an, China, in 2011.

From 2002 to 2016, he was a Lecturer with
the Xi’an Communications Institute, Xi’an. Since
2017, he has been a Lecturer with the College of
Information and Communication, National Uni-

versity of Defense Technology, Xi’an. He is currently a Visiting Scholar with
the School of Computer Science and Engineering, Nanyang Technological
University, Singapore. His main research interests include opposition-based
learning, nature-inspired computation, and combinatorial optimization.

NA WANG received the B.S. degree in mathemat-
ics and applied mathematics and the M.S. degree
in applied mathematics from Shaanxi Normal Uni-
versity, Xi’an, China, in 2004 and 2007, respec-
tively.

From 2007 to 2016, she was a Lecturer with
the Xi’an Communications Institute, Xi’an. Since
2017, she has been an Associate Professor with
the College of Information and Communica-
tion, National University of Defense Technology,

Xi’an. Her main research interests include optimization theory and machine
learning.

FENG ZOU received the M.S. degree from Wuyi
University, Jiangmen, China, in 2007, and the
Ph.D. degree from the Xi’an University of Tech-
nology, Xi’an, China, in 2015.

From 2017 to 2018, he was a Visiting Scholar
with the College of Electronics and Informa-
tion Engineering, Tongji University, Shanghai,
China. He is currently an Associate Professor
with Huaibei Normal University, Huaibei, China.
His research interests mainly include evolutionary

computing, swarm intelligence optimization, and biological information
processing.

JUNGANG YANG received the B.S. degree
in fiber optic communication engineering from
the PLA University of Science and Technology,
Nanjing, China, in 1996, and the M.S. and Ph.D.
degrees in information and communication engi-
neering from Xidian University, Xi’an, China,
in 2003 and 2008, respectively.

He is currently a Professor with the College of
Information and Communication, National Uni-
versity of Defense Technology, Xi’an. His current

research interests include fiber optic communication, information service,
and intelligent computation.

7272 VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARIES
	CONCEPT OF OPPOSITION-BASED LEARNING
	OPPOSITION-BASED DIFFERENTIAL EVOLUTION

	EXPERIMENTAL ANALYSIS OF QUASI-OPPOSITION- BASED LEARNING IN RESPECT OF FUNCTION PROTOTYPE
	MOTIVATION
	EXPERIMENTAL SETUP
	EXPERIMENT SERIES 1: SOLVING BENCHMARK FUNCTIONS WITH DIFFERENT TYPES
	EXPERIMENT SERIES 2: SOLVING THE SAME FUNCTIONS WITH DIFFERENT OPTIMAL SOLUTIONS
	ADDITIONAL REMARKS

	EXPERIMENTAL ANALYSIS OF OPPOSITION-BASED LEARNING IN RESPECT OF ALGORITHM DESIGN
	NEW DESIGN OF EMBEDDING METHOD
	HOLISTIC COMPARISON OF TWO EMBEDDING METHODS
	EFFECT FOR VARIOUS FUNCTION TYPES
	PROPER SETTING OF JUMPRING RATE
	ADDITIONAL REMARKS

	CONCLUSION
	REFERENCES
	Biographies
	QINGZHENG XU
	NA WANG
	FENG ZOU
	JUNGANG YANG

