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ABSTRACT Gravitational search algorithm (GSA) is a population-based heuristic algorithm, which is
inspired by Newton’s laws of gravity and motion. Although GSA provides a good performance in solving
optimization problems, it has a disadvantage of premature convergence. In this paper, the concept of repulsive
force is introduced and the definition of exponential Kbest is used in a new version of GSA, which is called
repulsive GSA with exponential Kbest (EKRGSA). In this algorithm, heavy particles repulse or attract all
particles according to distance, and all particles search the solution space under the combined action of
repulsive force and gravitational force. In this way, the exploration ability of the algorithm is improved
and a proper balance between exploration and exploitation is established. Moreover, the exponential Kbest
significantly decreases the computational time. The proposed algorithm is tested on a set of benchmark
functions and compared with other algorithms. The experimental results confirm the high efficiency of

EKRGSA.

INDEX TERMS Gravitational search algorithm, repulsive force, exponential Kbest, function optimization.

I. INTRODUCTION

Optimization means finding the global optimal solution of
problem. Over the past few decades, the complexity of opti-
mization problems has increased dramatically. Therefore,
effective optimization methods have become more and more
valuable. There are two kinds of methods for optimization,
classical algorithms and heuristic algorithms [1]. Classical
algorithms based on derivative use the gradient information
of objective function to find the optimal solution. So this
kind of methods are not suitable for non-differentiable func-
tions. Besides, the computational complexity of classical
algorithms increases exponentially as the dimension of prob-
lems increases. Thus, it is not practical to use them to solve
high-dimensional problems. Since 1990s, a series of heuristic
algorithms have been proposed, which can solve complex
high-dimensional problems with incomplete information [2].
This characteristic makes them different from the classical
mathematical algorithms.

Heuristic algorithms are stochastic algorithms, which
seek for good solutions at reasonable computational costs
without guaranteeing optimality. They are inspired by nat-
ural, biological and physical phenomena, and most of
them are population-based algorithms [3]. Population-based

algorithms search the solution space with a set of candi-
date solutions that are generated randomly. In each iteration,
the population is updated by using some specific operations.
These operations are almost simple, but their collective effect
tends to improve the quality of new population. The iteration
is repeated until the stop criterion is met.

Some of the most famous heuristic algorithms are Simu-
lated Annealing (SA) which is designed based on the ther-
modynamic effects [4], Particle Swarm Optimization (PSO)
which mimics the behavior of birds [5], Ant Colony Opti-
mization (ACO) which simulates the foraging process of
ants [6], and Genetic Algorithm (GA) which is inspired by
Darwin’s theory of evolution [7]. These algorithms are well
suited to solve complex computational problems and show
good performance in many fields such as function optimiza-
tion [8], data clustering [9], pattern recognition [10], data
mining [11], image processing [12], computer vision [13] and
neural network training [14]. However, most of the existing
algorithms have the disadvantage of premature convergence.
And this issue remains to be solved.

Gravitational Search Algorithm is one of the new heuris-
tic algorithms, which was proposed by Rashedi et al. [15]
in 2009. It is inspired by Newton’s laws of gravity
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and motion. In this algorithm, the performance of each par-
ticle is represented by its mass. All particles attract each
other by gravitational force, and the force causes all parti-
cles to move towards the heaviest particle whose position
represents the optimal solution. The salient characteristics of
this algorithm are simplicity and efficiency, which make GSA
useful for solving complex problems in technology and engi-
neering [16]-[20]. However, like other heuristic algorithms,
the major disadvantage of GSA is premature convergence.

The key to solving the issue of premature convergence
in heuristic algorithms is to establish a proper balance
between exploration and exploitation. Exploration is the abil-
ity to explore the solution space and find new solutions.
Exploitation is the ability to find the optimal solution among
good solutions. As iterations go on, exploration fades out
and exploitation fades in. The agents in population-based
heuristic algorithms do exploration and exploitation by three
steps: self-adaptation, cooperation and competition. In self-
adaptation stage, each agent improves its own performance.
In cooperation stage, agents cooperate with each other by
transmitting information. And in competition stage, agents
compete for survival. The three steps inspired by natural pro-
cess usually have stochastic forms. They can be implemented
in different ways and guide the algorithm to find the global
optimal solution.

In recent years, some modified versions of GSA have been
proposed in order to avoid trapping in the local optimum and
satisfy the computational requirements. In [21], a novel grav-
itational search algorithm with negative mass is proposed,
which simulates the phenomenon of antigravity and modifies
the definition of mass. In [22], a new attractive-repulsive
gravitational search algorithm is proposed, in which the uni-
form circular motion and centripetal force are introduced.
A chaotic optimization mechanism making Kbest, one of the
parameters in the algorithm, decrease chaotically is applied
in [23]. And a fuzzy logic controller is utilized in [24] to
control the changes of some parameters and improve the
convergence rate of the algorithm.

Since the attraction of gravitational force causes parti-
cles to approach each other merely, the original algorithm
loses the ability to explore the solution space after prema-
ture convergence. Hence, in this paper, a new version of
GSA based on repulsive force is proposed to enhance the
exploration ability and establish a proper balance between
exploration and exploitation. Simultaneously, the exponential
Kbest further balances the exploration and exploitation, and
significantly improves the computational efficiency of the
algorithm.

This paper is organized as follows. In the next section,
a brief review of GSA is provided. In Section III, the pro-
posed EKRGSA and its characteristics are described in
detail. In Section IV, the performance of EKRGSA is eval-
uated by a set of benchmark functions, and the experi-
mental results are compared with the original algorithm
and another modified algorithm. This paper is concluded in
Section V.
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Il. GRAVITATIONAL SEARCH ALGORITHM
In this section, the original Gravitational Search Algorithm is
introduced, which is a new population-based heuristic algo-
rithm inspired by Newton’s laws of gravity and motion. More
precisely, particles in the algorithm obey the following laws:
e Law of gravity: Each particle attracts other particles.
The gravitational force between two particles is directly
proportional to the product of their masses and inversely
proportional to the distance between them.
o Law of motion: The acceleration of each particle is equal
to the resultant force acting on it divided by its inertial
mass.

FIGURE 1. Principle of GSA.

The principle of GSA is depicted in Fig. 1. Particles in
this algorithm simulate the planets in space. They move in
the multidimensional solution space under the effect of grav-
itational force to find the optimal solution. Each particle has
four attributes:

o Position: The position of each particle in the solution

space corresponds to a candidate solution of problem.

o Active gravitational mass: This mass determines the
intensity of gravitational field produced by a particle.
And a particle with larger active gravitational mass pro-
duces a stronger gravitational field than other particles.

o Passive gravitational mass: This mass determines the
intensity of gravitational force acting on a particle in a
known gravitational field. Within the same gravitational
field, a particle with larger passive gravitational mass
experiences stronger gravitational force than others.

o Inertial mass: This mass determines the intensity of
resistance to motion change when force acts on a par-
ticle. And a particle with large inertial mass changes its
motion slowly, while a particle with small inertial mass
changes rapidly.

In GSA, the active gravitational, passive gravitational and

inertial masses of each particle are equal and determined by
a fitness function.
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This algorithm is advanced by adjusting the mass of each
particle, which represents its performance. Heavier particles
correspond to more effective solutions than others. All par-
ticles attract each other according to the law of gravity and
move according to the law of motion. As iterations go on,
the population will be attracted by the heaviest particle whose
position represents the optimal solution in the solution space.

In a D-dimensional solution space that contains N parti-
cles, the position of particle i is defined as follows:

Xi(O=0} (), ... x80), ... xP@), i=1,2,...,N, (1)

where xl.d () denotes the position of particle i in dimension d.
G is named as the gravitational constant but decreased with
iterations to control the search accuracy:
t
G =Gy x e Ymait, 2)
where Gy is the initial value, ¢ is the current iteration, max_it
is the maximum number of iterations, and « is a shrink
constant, which controls the decay rate of the exponential
function.
Kbest is the number of particles with large masses. Only
the Kbest particles exert gravitational force on all particles.
Itis a function of iteration and decreased linearly from N to 1:

ﬁnal_per—i—(l—m)x(lOO—final_per)

100 ’
3

where final_per denotes the percent of particles that exert
gravitational force on all particles in the end. The decreasing
process of the linear Kbest is shown in Fig. 2, where N is 50,
final_per is 2, and max_it is 1000.

Kbest=N x
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FIGURE 2. Decreasing process of linear Kbest.

The parameters G and Kbest play an important role in bal-
ancing the exploration and exploitation. In order to improve
the performance of the algorithm, the values of G and Kbest
are large at the beginning and decreased with iterations.
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The mass of particle i is updated by the following
equations:

Mi(t) = My;i(t) = Myi(t) = M;;(t), 4
mi(t) = l{ili(t) — worst(t) ’ )
est(t) — worst(t)
Mi(t) = m’—(t) (6)
l Z]N:l mj(f)’

where M;(t), Mp;(t) and M;;(t) denote the active gravita-
tional, passive gravitational and inertial masses of particle i,
respectively. And fif;(t) denotes the fitness value of particle i,
which is evaluated by the fitness function. In this algorithm,
best(t) and worst(t) denote the best and worst fitness value
among N particles, respectively. For minimization problems,
they are defined as follows:

best(t) = min fit;(t), ]
@) je{l,.l..,N}‘ l]( ) @

t t —_ .t- t . 8
wors ( ) i {I}l’a)fN}ﬁj( ) ( )

And for maximization problems, they are changed to the
following forms:

best(t) = max_fitj(), O]
Jjell,...,N}

t(t) = i it(1). 10

worst(r) je {Tf?mﬁ /(1) (10)

The gravitational force acting on particle i from particle j
in dimension d is calculated by the following equation:

Mpi(t) X Maj(t)
Rijj(t) + ¢
where ¢ is a small constant, and R;;(¢) is the Euclidean dis-

tance between particle i and particle j, which is defined as
follows:

Fl(t)=G x x @@y —xf@y), A

Ryj(1) = | Xi(0), Xj(0)]) .- (12)

The resultant force acting on particle i in dimension d is a
random weighted sum of gravitational force exerted from the
Kbest particles:

Fly= >

jeKbest j#i

rand; x F{ (1), (13)

where rand; is a uniformly distributed random number in
interval [0, 1], which provides a stochastic characteristic for
the algorithm.

According to the law of motion, the acceleration of particle
i in dimension d is calculated by the following equation:

d
alt) = LN (14)
M;i(t)

The next velocity of particle i in dimension d is equal to a

fraction of its current velocity plus its acceleration:

Vvt + 1) = rand; x v (1) + a? (1), (15)

where rand; is a uniformly distributed random number in
interval [0, 1], which enhances the stochastic characteristic
of the search.
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Furthermore, the next position of particle i in dimension d
is updated as follows:

xd@+ 1) =xd) +vI@ +1). (16)

The process of GSA are listed as Algorithm 1.

Algorithm 1 Gravitational Search Algorithm (GSA)
Input:
N': population size
max_it: maximum number of iterations
Output:
S: optimal solution
1: Identify the solution space
2: Initialize the population
3: while the stop criterion is not satisfied do
4
5

Update the gravitational constant and linear Kbest
Evaluate the fitness value of each particle by the fitness
function
Update the mass of each particle
Calculate the gravitational force between particles in
different dimensions
8:  Calculate the resultant force and acceleration of each
particle in different dimensions
9:  Update the velocity and position of each particle in
different dimensions
10: end while
11: return S

A

Ill. REPULSIVE GRAVITATIONAL SEARCH ALGORITHM
WITH EXPONENTIAL KBEST

Finding the approximate global optimal solution within the
reasonable computational time is the primary task of heuristic
algorithms. One way to achieve this task is to provide a proper
balance between exploration and exploitation. In this section,
a new version of GSA inspired by the physical phenomenon
of repulsive force is proposed to enhance the exploration
ability and computational efficiency of the algorithm.

A. REPULSIVE FORCE

The main characteristic of GSA is that the force is always
attractive, while in the proposed algorithm, the definition
of force is modified. In addition to the gravitational force,
the concept of repulsive force is introduced. Similar to the
interaction between charges, under the same conditions,
the repulsive force between heterogeneous charges and the
attractive force between homogeneous charges are equal in
size but opposite in direction. Therefore, the repulsive force
defined in this paper is equal to the gravitational force in size
but exactly opposite to it in direction.

In the original algorithm, the Kbest particles with large
masses exert gravitational force on all particles. It means
that heavy particles merely attract all particles. But in the
proposed algorithm, the Kbest particles exert both repulsive
force and gravitational force on all particles according to
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distance. In other words, heavy particles affect near and far
particles in two different ways. Supposing that each particle
has a repulsive radius (R;), which is changed with iterations.
The force field generated by a particle provides repulsive
force when the distance to another particle is more than R,
and provides gravitational force when the distance is less than
R,. The repulsive radius is defined by the following equation:

R =AX logmaxfitt’ (17

where t is the current iteration, max_it is the maximum
number of iterations, and A is a positive variable, which is
changed with the ranges of solution space to enhance the
adaptability of the repulsive radius.

The three situations mentioned below correspond to Fig. 3.
In early iterations, the value of R, is small, and most of parti-
cles are repulsed by heavy particles because their distances to
the heavy particles are more than R,. This strategy improves
the exploration ability of the algorithm at the beginning.
As iterations go on, the value of R, is increased. In middle
iterations, some particles are repulsed by heavy particles to
explore the solution space, while the others are attracted by
heavy particles to find the optimal solution. And in late itera-
tions, the value of R, is large, most of particles are attracted by
heavy particles because their distances to the heavy particles
are less than R,. This strategy maintains the exploitation
ability of the algorithm. Therefore, the proposed algorithm
enhances the exploration ability, maintains the exploitation
ability, and establishes a proper balance between them.

In Fig. 3(b), it is assumed that particle i, whose repulsive
radius is R, is a heavy particle, and there are other particles
j and k. If the distance between particle i and particle j is less
than R,, then particle i will attract particle j. The gravitational
force acting on particle j from particle i in dimension d when

xl.d (1) — x;i ()| < R, is the same as the original gravitational
orce:
ij(t) X Ma;(t) %

Rji(t) + ¢

If the distance between particle i and particle k is more
than R,, then particle i will repulse particle k. As mentioned
above, the repulsive force acting on particle k from particle
i in dimension d when |xl" (1) — x,‘f(t)| > R, is defined as
follows:

Fgi(t) = G x Gl —xd@y,  (18)

Mpk(t) X My(t) %
Rii(t) + ¢
The gravitational force and repulsive force acting on parti-

cle i in dimension d are calculated by the following equations,
respectively:

Fri(t) = —G x @) —xd(@0).  (19)

Fgl[-i(t) = Z rand; x Fgg(t), (20
jeKbest j#i

Fri(n = Z randy x Fré (1), (21)
keKbest k#i

where rand; and rand) are uniformly distributed random
numbers in interval [0, 1].
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(a) In early iterations

(b) In middle iterations

(¢) In late iterations

FIGURE 3. Sizes of repulsive radius and directions of force exerted from heavy particle i in early, middle and late iterations. (a) In early iterations.

(b) In middle iterations. (c) In late iterations.
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FIGURE 4. Decreasing process of exponential Kbest.

If Frl.d (t) > F g?(t), the repulsive force will be dominant
and particle i will be repulsed. On the contrary, if Frl.d ) <
F, gl‘.’ (1), the gravitational force will be dominant and particle i
will be attracted. Hence, the resultant force acting on particle
i in dimension d is equal to the sum of repulsive force and
gravitational force, which is a modified version of the original
resultant force:

Fa(t) = Fri(o) + Fgl (1). (22)

B. EXPONENTIAL KBEST

In order to improve the computational efficiency of the

algorithm and enhance the balance between exploration and

exploitation, the definition of Kbest is modified in this paper.
In the original algorithm, Kbest is the number of particles

that exert force on all particles. It is a function of iteration

and decreased linearly from N to 1. But in the proposed
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Algorithm 2 Repulsive Gravitational Search Algorithm With
Exponential Kbest (EKRGSA)
Input:
N': population size
max_it: maximum number of iterations
Output:
S': optimal solution
1: Identify the solution space
2: Initialize the population
3: while the stop criterion is not satisfied do
4:  Update the gravitational constant, exponential Kbest
and repulsive radius
5. Evaluate the fitness value of each particle by the fitness
function
6:  Update the mass of each particle
if the distance between particles > R, then

8: Calculate the repulsive force between particles in
different dimensions

9: else

10: Calculate the gravitational force between particles
in different dimensions

11:  endif

12:  Calculate the resultant force and acceleration of each
particle in different dimensions

13:  Update the velocity and position of each particle in
different dimensions

14: end while

15: return S

algorithm, the function is modified, and Kbest is decreased
exponentially with iterations from N to 1 as follows:

1

final _per) max_it

Kbest =N 23
es. x( 100 (23)

where N is the population size, final_per is the percent of
particles that exert force on all particles in the end, ¢ is the

VOLUME 7, 2019
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TABLE 1. Benchmark functions.

Function Range Minimum value
Unimodal ~ Fi(z) = Y2 2,2 [-100,100° 0

Fa(0) = T2y il +T12, Joi QUSUC

. 2

Rz)=Y2, (2;21 lj) [-100,00° 0

Fy(z) = max{|z;|,1<i < D} [-100,100° 0

Ba) =Y {100@#1 — a2 + (o - 1)2] [-30,30)° 0

Fo(z) = X2 ia? + random[0,1) [-1.28,1.28)° 0
Multimodal  Fr(z) = ~20exp <70.2,/% 2 z§> —exp (% 2 cos(27rzi)) 10 4e [-32,32" 0

Ryz)=1 {lOsin(wyl) 2P s~ 1) [1 4 1082 (myisn)] + (o - 1)2} + Y2 u(z;,10,100,4) [-50,50)P 0

_ an2 D X 2 a2 2 ) D = D
Fy(z) =01 {bm (3nw1) + Y2y (w5 = 1)° [1+sin? (3nw; 4+ 1)] + (2 — 1)* [1 + sin (2#3:")}} + ) im u(z,5,100,4) [=50,50] 0
11 21(b2+b zy) 2 4
Fule)= Y1, [ai i } [-5,5] 0.00030

B b%+b1z3+z4

-1
(1 25 1
Fiy(z) = (% 254 m)

[-65.53,65.53% 1

Fig(x) = 4a? - 210 + 308 + 2120 — 423 + 4} [-5,5] -L0316
Fis(z) = [H-(zl +29+1)2 (19 - 14y + 322 — 14 +6x1r2+3x§)} X {30+(2z1 — 3m)% x (18 - 321 + 1202 + 487 —36z1z2+27z§)] [-5,5 3
Fua(e) = - T ciexp (— Yo aigle; - Pi])2> o, 1 386
Fis(x) = - Tz ciexp (— Yoy aijla; - Pi])2> [0,1° KK
Fig() = - X0, {(X —a)) (X - ;)7 +cl} o [0,10)* -10.1532
Fir(e)=-%1, {(X —a)) (X - ;)7 +cir [0,10)* -10.4029
Fis(o) = = D12, [(X - a) (X = 0))" +cir [0, 10" 10,5364

current iteration, and max_it is the maximum number of
iterations. The decreasing process of the exponential Kbest
is shown in Fig. 4, where N is 50, final_per is 2 and max_it
is 1000.

Neglecting the inconsequential particles with small masses
can effectively reduce the redundant computations then
improve the computational efficiency. Simultaneously, such
modification makes the algorithm do comprehensive explo-
ration in early iterations and precise exploitation in late itera-
tions [25]. So the exploration and exploitation abilities of the
algorithm get further balanced.
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In addition, other equations in the proposed algorithm such
as mass and acceleration calculations, velocity and position
updates are the same as the original algorithm.

In summary, the detailed steps of EKRGSA are listed as
Algorithm 2.

The time complexity of the proposed algorithm is analyzed
as follows:

« Population initialization requires O(N x D), where D

denotes the dimension of solution space.

« Gravitational constant, exponential Kbest and repulsive

radius updates require O(max_it) each.
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FIGURE 5. Performance comparisons. (a) Performance comparison for F;. (b) Performance comparison for F,. (c) Performance
comparison for F;. (d) Performance comparison for Fg. (e) Performance comparison for Fg. (f) Performance comparison for F, 0.
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TABLE 2. Parameter settings.

Parameter GSA AR-GSA  EKRGSA
N 50 50 50

max_it 1000 1000 1000

Go 100 4000 1000

« 20 25 25

Kbest linear 0.6 X N exponential

« Fitness value evaluation requires O(N x D x max_it).

o Mass calculation requires O(N x max_it).

o Repulsive force and gravitational force calculations
approximately require O(N? x D x max _it), when Kbest
is decreased exponentially with iterations and max_it is
large enough.

o Resultant force and acceleration calculations, veloc-
ity and position updates require O(N x D x max_it)
each.

Considering the complexities of the above steps, the total
time complexity of EKRGSA is O(N 2 % D x max _it), which
is equal to the original algorithm.

The space requirement of the proposed algorithm is related
to the population size and dimension of solution space. Thus,
the total space complexity of EKRGSA is O(N x D), which
is also equal to the original algorithm.

In EKRGSA, each particle is affected by the Kbest parti-
cles according to distance, where Kbest is decreased expo-
nentially with iterations. All particles search the solution
space under the combined action of repulsive force and grav-
itational force. In this way, the search ability and efficiency
of the algorithm get a significant boost.

IV. EXPERIMENTAL RESULTS

Satisfactory solution and reasonable computational costs are
two major criteria for heuristic algorithms to solve practical
problems. In this section, in order to investigate the perfor-
mance of EKRGSA, it is compared with the original algo-
rithm and another modified algorithm: Attractive-Repulsive
Gravitational Search Algorithm (AR-GSA), in which the uni-
form circular motion in physics is introduced, and particles
exert centripetal force on each other based on the hypothetical
absorption radius to improve the exploration ability [22].
The existing and proposed algorithms are tested on a
set of benchmark functions including some unimodal and
multimodal functions as presented in Table 1, followed by
the dimension and range of each function, where D is 30.
All benchmark functions are minimization problems, and
the minimum values are presented at the end of Table 1.
Some detailed descriptions of the functions are given in [15].
The convergence rate is more important for the unimodal
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TABLE 3. Minimization results.

Function  Best-so-far GSA AR-GSA EKRGSA
Fi(z) Average 2.03x107'7  1.83x10~'7  3.68x10—1°
Median 1.92x10717  1.82x10~17  2.13x10—1°
Fa(x) Average 232x107%  1.85x10~%  3.74x10~°
Median 2.28x108 1.83x1078 271102
F3(z) Average 2.73x 102 8.80x 102 2.46x103
Median 2.64x 102 8.22x102 2.34x103
Fy(z) Average 3.64x1079  2.01x10—92 2.16x10~%
Median 3.44x1079  1.98x10—°2 1.38x10~8
Fs5(x) Average 34.84 26.08 24.57
Median 26.14 26.06 24.56
Fes(x) Average 0.02 0.03 0.06
Median 0.02 0.03 0.06
Fr(z) Average 3.54x1079  3.14x107%  3.61x10—1°
Median 335x1079  3.15x107%  3.01x10—1°
Fy(z) Average 2.08x1071%  191x1071% 1.91x10—21
Median 1.49x1071%  1.33x1071° 1.18x10—2
Fo(x) Average 246x10718  2.66x10718  3.13x10—20
Median 2.07x10718  2,00x107'8  2.30x10—20
Fio(z)  Average 2.15x1073 1.98x1073  9.05x10~4
Median 201x1073  2.02x1073  8.60x10—*
Fii(xz)  Average 4.47 1.28 1.02
Median 3.13 1.08 1.00
Fia(z) Average -1.0316 -1.0316 -1.0316
Median -1.0316 -1.0316 -1.0316
Fi3(x) Average 3 3 3
Median 3 3 3
Fia(z)  Average -3.86 -3.86 -3.86
Median -3.86 -3.86 -3.86
Fis(z)  Average -3.32 -3.32 332
Median -3.32 -3.32 -3.32
Fig(x)  Average -7.1037 -7.4958 -8.0777
Median -10.1532 -10.1532 -10.1532
Fi7(z)  Average -10.4029 -10.4029 -10.4029
Median -10.4029 -10.4029 -10.4029
Fig(z) Average -10.5364 -10.5364 -10.5364
Median -10.5364 -10.5364 -10.5364

functions, while the minimization results are more important
for the multimodal functions because they have many local
minimums which make algorithms more difficult to find the
global minimum.
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TABLE 4. Computational time (in seconds).

Function GSA  AR-GSA EKRGSA
Fi(x) 7.65  10.50 4.98
Fa(x) 7.57 1052 5.08
F3(x) 993 1294 7.47
Fu(x) 7.49 1047 4.99
Fs(x) 7.88  10.87 5.21
Fo(x) 777 1072 5.43
Fr(x) 7.56  10.68 5.00
Fg(x) 8.69  11.68 6.17
Fo(x) 8.63  11.81 6.23
Fio(z) 481 672 3.44
Fii(z) 775  9.62 6.19
Fia(z) 441 621 3.11
Fiz(z) 445  6.16 3.09
Fia(z) 492 672 3.57
Fis(z) 521 7.15 3.76
Fie(xz) 504 692 3.63
Fiz(z) 515  7.09 3.78
Fig(z) 533 7.28 3.97

In all tests, the population size is 50, and the maximum
number of iterations is 1000. In GSA, Kbest is initialized to
N and decreased linearly with iterations to 1. In AR-GSA,
Kbest is considered as a constant and set to 0.6 times the
population size. And in EKRGSA, A is set to the size of range
of each function, Gy is set to 1000 and « is set to 25, which
are determined by voluminous experiments and comparisons.
Besides, Kbest is initialized to N and decreased exponentially
with iterations to 1. The detailed parameter settings of three
algorithms are shown in Table 2.

The average and median best-so-far results in the last
iteration listed in Table 3 and the computational time listed
in Table 4 are the average of 30 independent runs. The
minimum value and the shortest computational time of each
benchmark function are presented in the bold form.

A. MINIMIZATION RESULTS

The repulsive force prevents the proposed algorithm from
trapping in the local optimum. It is clear from Table 3 that
EKRGSA obtains better or equal results compared with other
algorithms in most of the benckmark functions except for
F3, F4 and Fg, in which GSA and AR-GSA provide slightly
smaller results, respectively.

B. COMPUTATIONAL TIME
The exponential Kbest neglects the force exerted from the
inconsequential particles with small masses. Thus, it can
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improve the computational efficiency. Table 4 shows that
EKRGSA has shorter computational time than other algo-
rithms in all cases.

C. CONVERGENCE RATE

Since EKRGSA adequately explores the solution space,
it converges slowly in early iterations. But under the com-
bined action of repulsive force and exponential Kbest,
EKRGSA can provide better results and faster convergence
rate than other algorithms in late iterations. The convergence
trends of three algorithms for part of representative unimodal
and multimodal benchmark functions are presented in Fig. 5.
This figure confirms the high performance of EKRGSA.

V. CONCLUSION

In recent years, the demands for heuristic algorithms to solve
complex optimization problems have been increased dra-
matically. As one of the new heuristic algorithms, GSA is
constructed based on Newton’s laws of gravity and motion.
In this paper, a new version of GSA is proposed, which is
called EKRGSA. In this algorithm, the concept of repul-
sive force, similar to the interaction between heterogeneous
charges in physics, is introduced. Particles search the solution
space under the combined action of repulsive force and grav-
itational force. In this way, the exploration ability of the algo-
rithm is improved and a proper balance between exploration
and exploitation is established. Simultaneously, the exponen-
tial Kbest can not only further balance the exploration and
exploitation, but also significantly improve the computational
efficiency. In order to evaluate the proposed algorithm, a set
of benchmark functions are used in the experiment. The
experimental results show that, in most cases, EKRGSA can
obtain better solutions and provide higher performance. Thus,
it is confirmed that EKRGSA is suitable for solving function
optimization problems.
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