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ABSTRACT The multimodal light-field imager can simultaneously capture spectral and polarization
characteristic of a two-dimensional target. Due to the diffraction and misalignments of the imaging system,
the pixels receive the light passing through different spectral filters and polarizing filters. As a result,
the spectral and polarization images constructed by extracting the corresponding filter-pixels contain
unwanted information from the other channels. In this paper, we present an imagingmodel of the spectral and
polarimetric radiance for themultimodal light-field imager. Based on the radiance imagingmodel, calibration
schemes are also proposed for determining the spectral response coefficients and polarization response
coefficients of the imager. A data reconstruction method based on Tikhonov regularization is proposed to
reconstruct the target spectrum with better accuracy. Calibrating and imaging experiments of a prototype are
performed and the results confirm the effectiveness of the data reconstruction approach.

INDEX TERMS Multimodal light-field imager, hyperspectral imaging, modeling, calibration, data
processing.

I. INTRODUCTION
The hyperspectral and polarimetric imaging systems, which
can obtain the intensity, wavelength and polarimetric infor-
mation, have been used in the earth observation and remote
sensing [1]–[3]. The conventional imaging systems rely on
the scanning processes to acquire the multi-dimensional
(spatial, spectral, polarimetric) information of targets.
However, the scanning components and procedures increase
the complexity of the systems and introduce motion arti-
facts to the acquired data. In the past decade, the snapshot
multidimensional imagers (SMI) have emerged as a result
of the advancements of large format 2D focal plane arrays,
high-precision fabrication techniques and the computational
techniques [4]. Recently, a light-field architecture has been
modified for detecting the spectral and polarimetric informa-
tion in a single frame [5].

The light-field imaging cameras [6], [7] have been created
to capture 2D spatial and 2D angular information of light
rays on a 2D plane in a single frame. It has been used for
digital refocusing [6], microscope imaging [8], atmospheric
turbulence detection [9], depth estimation [10], [11] and mul-
tispectral imaging [5], [12]. In 2009, Horstmeyer et al. [5]

proposed a multimodal imaging system based on a pinhole
light-field camera to capture the spectrum, polarization state,
and intensity of targets simultaneously. They implemented a
filter array of spectral and polarizing filters in the pupil plane
of the fore-optics. Each pinhole created a sub-image of the
filters array on the sensor, and each filter corresponded to a
region of pixels which was called filter-pixel. The sub-image
resembles the spectral, polarization and intensity information
of the target. In Horstmeyer’s design, ‘‘each filter-pixel is
typically 5×5 sensor pixels from which a 2×2 or 3×3 block
of pixels is sampled and averaged to create synthetic photo
pixel’’. In this case, the information aliasing among differ-
ent channels can be neglected. However, there is a tradeoff
between the number of filters and the size the of filter-pixel.
When the number of pixels covered by a sub-image are fixed,
larger size of the filter pixels will lead to smaller number of
filtering channels.

In order to increase the number of spectral and polariz-
ing channels, we designed a prototype of which the filter-
width corresponding to only one sensor pixel size. We also
separated the filters with a width corresponding to a sensor
pixel size to reduce the information aliasing among different

9688
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2653-7175
https://orcid.org/0000-0002-6575-4407


L. Su et al.: Spectrum Reconstruction of the Light-Field Multimodal Imager

FIGURE 1. A sub-image of white light (a) image with only spectral filters;
b) image with only polarizing filters.

channels. However, the pixels still receive multiplexed infor-
mation from different channels. As shown in Fig.1, the pixels
in the areamarked by blue lineswas designed to receive polar-
ized radiance, whereas the pixels in this area received light
passing through both spectral filters and polarizing filters.

In this case, the averaging method used by Horstmeyer
cannot restore accurate spectral information obtained by our
system. Meng et al. [13] proposed a demultiplexing approach
to reconstruct the spectrum a four-bandpass multispectral
imager. However, the information capturing and reconstruc-
tion model of a multimodal imager that captures both spec-
tral and polarimetric information have not been analyzed
thoroughly.

In this research, we present the models of spectral imaging
and polarization imaging to form the multimodal informa-
tion acquisition model of the multimodal light-field imager.
The spectral calibration scheme is proposed to calibrate the
spectral response coefficients based on the spectral imaging
model. And the polarization calibration method is also into-
duced. The data reconstruction algorithm based on regular-
ization is presented to improve the accuracy of the restored
spectrum. The spectral coefficients and polarization coeffi-
cients of a prototype imager are calibrated based on the pro-
posed calibrating schemes. The restored spectra of different
light sources confirm the effectiveness and robustness of the
regularization algorithm. Furthermore, the proposed method
is used to reconstruct the spectral datacube of a multimodal
light filed image.

II. RADIANCE IMAGE MODEL
We begin with a brief introduction of the architecture of our
prototype light-field multimodal imager.

FIGURE 2. Schematic layout of a prototype multimodal light-field imager.

As shown in Fig. 2, the imaging system is simplified into
a main lens, a spectral-polarzation-filter-array (SPFA), and
a microlens array (MLA) coupled with a sensor. The number
of pixels covered by amicrolens isH . The filter array consists
of several linear variable filters (LVF) and three polarization
filters with different polarization angles.

The main lens images a target on a microlens. The light
rays originating from this target enter in the pupil of the main
lens and pass through different filters. Themicrolens redirects
the filtered light rays on the sensor and formed a sub-images.
As a result, the spectrum and polarimetric information of the
target is captured at the sensor in a single shot. The sensor
converts the radiance L originating from the target to a digital
output signal.

A. SPECTRUM IMAGING MODEL
First, we consider imager only with the LVFs to discuss
the imaging model of the spectral radiance. Each microlens
images an LVF on the sensor to cover several pixels, as shown
in Fig. 3. Even though we designed the width of the LVF to
conjugate with the width of a pixel, the LVF is imaged on two
rows of pixels due to diffraction andmisalignment of imaging
system.

FIGURE 3. Illustration of an LVF image on the sensor.

Considering an arbitrary wavelength λ, the transmittance
of the LVF varies along with the length [14], as illustrated in
Fig.4. The gray scale indicates the transmittance of the given
wavelength. This means the effective aperture of system is
not a circle or square aperture as that of normal system.

FIGURE 4. Illustration the transmission windows of a mono-spectral
wavelength λ.

We note the transmittance of wavelength λ at the position
(x, y) on the filter-plane as τλ(x, y). Then, the light passing
through the filter is given by:∫∫

IA
τλ (x, y)L (λ)dxdy = 0 (λ)L (λ) (1)
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where, L(λ) is spectral radiance of the target, IA is the inte-
grating area of the LVF, and 0(λ) is defined as

0 (λ) =

∫∫
IA
τλ (x, y)dxdy (2)

The single wavelength light passing through the LVF is
received by the several pixels covered by the microlens.
And, the jth pixel receives the fraction αj(λ) of the light at
wavelength λ. When the wavelength changes, the spectral
filtering windows also vary along the length direction as
shown in Fig.4. As a result, jth pixel will receive light from
a continuous spectral range. This is confirmed by the exper-
imentally measured spectral response curve of a single pixel
of the prototype system, as shown in Fig.5.

FIGURE 5. The spectral response of a single pixel of a prototype
multimodal light-field imager.

Therefore, the digital number (DN) of the jth pixel corre-
sponding to the target spectrum is given by:

Dj,Spec = cos4 θ
∫ λend

λstart

αj (λ) 0 (λ)L (λ)
r2

τo
Adλt
hc

ρj (λ)·gedλ

(3)

where, θ is the field angle of the target, [λstart, λend] is the
spectral range of the imager, r is the distance between main
lens and the microlens, τo is the transmittance of the optics
excluding the spectral filters, Ad is the pixel area, ρj(λ) is
the spectral quantum efficiency of the pixel, t is the exposure
time, h is the Planck’s constant, c is the speed of light, and
ge is sensor gain. The discrete version of (3) is given by:

Dj,Spec = t
N∑
n=1

kSj,nL (λn) (4)

kSj,n = cos4 (θ)
τoAdge
r2hc

λαj (λn) 0 (λn) ρj (λn)1λ (5)

If the 1λ was very small, such as 1 nm, the DNs of all the
pixels covered by an arbitrary microlens could be written as
in a matrix form as following:

D1
...

Dj
...

DH


Spec

= t ·



kS1,1 · · · k
S
1,n · · · k

S
1,N

...
...

...
...

...

kSj,1 · · · kSj,n · · · kSj,n
...

...
...

...
...

kSH ,1 · · · k
S
H ,n · · · k

S
H ,N


·



Lλ1
...

Lλn
...

LλN



(6)

where, N = 1 + (λN-λ1)/1λ. Based on this equation,
we could reconstruct the spectral information of target as
L = [Lλ1, . . . ,Lλn, . . . ,LλN ]T by calibrating the coeffi-
cient kSj,n. It requires at least N pixels to sample the spectral
range without their spectral response curve totally overlap-
ping with each other. However, in the case of our prototype
system, the number of effective sampling pixels is smaller
than N .
Assuming the effective spectral channels of the imager

is M , the actually measured target radiance is L =

[L1, · · · ,Lm, · · · ,LM ]. Here, Lm is the average radiance of
channel m, and given by:

Lm =
1

λm,2 − λm,1

∫ λm, 2

λm,1
Lm (λ)dλ (7)

where, [λm,1, λm,2] is the spectral range of spectral channel
m, and λm,1 = λm−1,1 + 1λ. In a small range of spectrum,
the radiance Lm(λ) is normally assumed to be approximately
equal Lm, then the DN contribution of this channel to the jth

pixel is can be written as:

dSj,m ≈ t ·

 m,2∑
n=m,1

kSj,n

 · Lm = tK S
j,mLm (8)

where, coefficients K S
j,m is given by:

K S
j,m =

m,2∑
n=m,1

kSj,n (9)

Then, the digital number of the jth pixel is given as:

Dj,Spec =

M∑
m=1

dSj,m =
M∑
m=1

K S
j,mLm (10)

And the pixel responses of the spectrum can be written as
following equation:

D1
...

Dj
...

DH


Spec

= t ·



K S
1,1 · · · K

S
1,m · · · k

S
1,M

...
. . .

...
. . .

...

K S
j,1 · · · K S

j,m · · · kSj,M
...

. . .
...

. . .
...

K S
H ,1 · · · K

S
H ,m · · · k

S
H ,M


·



L1
...

Lm
...

LM


= t ·KS

· L (11)

Here, the coefficient K S
j,m should be nonnegative and its

unit is J−1 ·m3, andM is the number of the effective spectral
channels.

B. POLARIZATION IMAGING MODEL
For the light-field imager only coupled with polarizing filters,
the responses of pixels can be derived similarly as previ-
ous section. The radiance passing through the wth (w =
1, . . . ,W ) linear polarizer is noted as LPw(λ). Since the linear
polarizer are bandpass spectral filters, the jth pixel receives
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the same portionKP
j,w of the radiance at all wavelength. There-

fore, the DN of the jth pixel corresponding to the polarimetric
information of target is given by:

Dj,Pw = cos4 θ
∫ λend

λstart

τPw (λ)KP
j,wAPwLPw (λ)

r2
τo
Adλt
hc

ρj (λ)

· gedλ

= KP
j,lD
′

Pw (12)

where, τPw(λ) and APw are the transmittance and the area of
the wth polarizer respectively. And, D′Pw is given as:

D′Pw = cos4 θ
∫ λend

λstart

APwLPw (λ)
r2

τo
Adλt
hc

ρj (λ) · gedλ (13)

Here, D′Pw can be considered as the DN value of a pixel
that receives all the light passing through the wth polarizer.
It is determined by the polarized radiance LPw(λ) of the target.
Therefore, we use D′Pw to represent the polarization radiance
at a selected polarization angle of the target directly. Then,
the DNs induced by the polarimetric information are given as
following:

D1
...

Dj
...

DH


Polar

=



KP
1,1 · · · K

P
1,w · · · K

P
1,W

...
. . .

...
. . .

...

KP
j,1 · · · K

P
j,w · · · K

P
j,W

...
. . .

...
. . .

...

KP
H ,1 · · · K

P
H ,w · · · K

P
H ,W

 ·


D′P1
...

D′Pw
...

D′PW


= KP

· DP (14)

Here,KP
j,w is percentage coefficient without unit and should

satisfy the following relationship:∑j=H

j=1
KP
j,w = 1 j = 1, · · · ,H KP

j,w ≥ 0 (15)

C. MULTIMODAL INFORMATION IMAGING MODEL
In a multimodal light-field imager used for spectrum and
polarization imaging, a pixel may receive radiance passing
through spectral filters and polarizing filters due to diffraction
and misalignments of the system components. Therefore,
the spectral and polarimetric information multiplexing model
can be obtained by combining (11) and (14) and given as:

D =
[
tKS KP ]

·

[
L
DP

]
+ Nsensor = KX+ Nsensor (16)

where D = [D1, . . . ,Dj, . . . ,DH ]T is the responses of the
pixels covered by a microlens, K is the coefficient matrix
which consists of spectral coefficients KS and polarization
coefficients KP, X is determined by the spectrum L and
polarimetric information DP of the target. And Nsensor is the
noise vector of observed data due to system noises, which
are the readout noise and quantization noise of sensor. This
equation relates the sensor response DN to the target infor-
mation X by a multiplexing matrix K. Once the coefficients
K S
j,m and KP

j,w are determined, the spectrum and polarimetric
information of the targets can be obtained by applying the
inverse algorithms.

III. SYSTEM CALIBRATION AND DATA RECONSTRUCTION
In order to extract the spectral datacube and polarization
images of different angles, the coefficients ofmatrixK should
be calibrated before applying an algorithm to solve (16).
Furthermore, the algorithm should be robust to data errors
caused by system noises and calibration errors.

FIGURE 6. Schematic layout of spectral calibration setup for the
multimodal light-field imager.

A. CALIBRATION OF SPECTRAL COEFFICIENTS
The schematic setup for obtaining the spectral coefficients
is illustrated in Fig.6. A shading is installed in front of the
main lens to block the linear polarizers. Therefore, the light
only passes through the LVFs during this calibration. The
monochromatic integrating sphere generates uniform light
that can fulfill the entire field of view of the prototype imager.
The central wavelength λn of the monochromatic integrat-
ing sphere can be changed during the calibration process.
A spectroradiometer (ASD Inc.) is introduced to measure the
irradiance of the monochromatic light source.

Once the output of the monochromatic integrating sphere
is stable, the multimodal imager takes an image and the spec-
traradiometer record the source irradiance. Then the coef-
ficient kSj,n of an arbitrary microlens can be calculated by
following equation:

kSj,n = dSj (λn)
/
teLRef. (λn) (17)

where, dSj (λn) is the DN of the jth pixel recorded at wave-
length λn, te is the exposure time of the imager and Lref.(λn)
is the irradiance of the light source measured by the spectro-
radiometer. The entire spectral range of the system is scanned
by changing the central wavelength of output light with every
δλ change. Then, we can calculated the coefficient K S

j,m by
using (9).

B. CALIBRATION OF POLARIZATION COEFFICIENTS
Fig. 7 illustrates the schematic setup for calibrating the polar-
ization coefficients. The LVFs are also blocked by a shading
to only allow light passing through polarizers. A linear polar-
izer is placed in front the panchromatic integrating sphere to
generate a linear polarized light with radiance value LP0(λ).
Based on the Marius’ Law, the radiance passing through the
wth polarizer in the imager is defined as:

LCPw (λ) = LP0 (λ) cos2 (β + ϕPw)+ bw (18)
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FIGURE 7. Schematic layout of polarization calibration setup for the
multimodal light-field imager.

where, β is the transmission axis angle of the rotating polar-
izer, ϕPw is the known transmission axis angle of the wth

polarizer, and the offset bw is due to the imperfect extinction
ratio of rotating linear polarizer and the wth linear polarizer.

Combining (18) and (12), the DN of jth pixel correspoding
to the light passing through the wth polarizer is given by:

dPj,w (β) = KP
j,w

[
D′Pw0 cos

2 (β + ϕPw)+ bw
]
= KP

j,wIPw (β)

(19)

where, IPw(β) = D′Pw0 cos2(β+ϕPw)+bw, andD′Pw0 is given
by (13). During the calibration process, the linear polarizer is
rotated from 0◦ to 180◦ and the imager takes image after every
1β = 1◦ change. The recorded image data at any polarization
angle should satisfy (14) and can be rewritten as: D1 (i1β)

...

DH (i1β)

 =
 KP

1,1 · · · KP
1,W

...
. . .

...

KP
H ,1 · · · KP

H ,W


 IP1 (i1β)

...

IPW (i1β)


(20)

where, i = 1, 2, . . . , 180. The polarization coefficients are
calculated by a nonlinear least-square fitting algorithm using
the cost function given by:

χ2
= min

{
180∑
i=1

D̃ (i1β)− D (i1β)

}
(21)

where, D̃ (i1β) is the fitted pixel responses, and D (i1β) is
the actually measured pixel responses.

C. SPECTRUM RECONSTRUCTION ALGORITHM
Once the coefficients of matrixK are obtained, we can recon-
struct the target spectral and polarizing information by calcu-
lating the solution X of (16). The problem described by (16)
is a discrete ill-posed problem. Its solution can be obtained
by minimizing ‖KX-D‖. A most commonly used algorithm
is the least squares (LS) algorithm used by Meng [13], which
directly taking the pseudoinverse of the calibrated response
matrix K. Then, the restored information is given by:

X̂LS =

(
KTK

)−1
KTD (22)

However, the accuracy of the spectrum reconstructed by
LS algorithm is sensitive to the errors of coefficient matrixK

and the measured data D. The solution can be less sensitive
to perturbations of K and D by implementing regularization
method. In this research, we use the Tikhonov regulariza-
tion (TR) method [15] to solve the problem. The Tikhonov
regularized solution is defined as the solution to the following
least squares problem as the following problem:

argmin
n1,n2

{‖KX− D‖2 + γ 2
‖lX‖2} (23)

where, γ is the regularization parameter that controls the
weight given to minimization of the constrain ‖lX‖ of the
solution relative to the minimization of the residual norm
‖KX-D‖, and the matrix l acts as a regularization opera-
tor. Normally, the matrix l is a discrete derivative operator.
However, in the multimodal light-field imager, the polarimet-
ric information of different linear polarizing angles is inde-
pendent of each other. As a result, the smoothing derivative
can only apply to the spectrum part of the solution. Therefore,
the matrix l for our problem is given by:

l =
[
l2 0
0 IW

]
(M+W−2)×(M+W )

(24)

where, IW is aW×W identity matrix for polarization solution
part, l2 is a (M − 2)×M discrete approximation of the 2nd

derivative operator for spectral solution part. The l2 is given
by following equation:

l2 =

−1 2 −1
. . .

. . .
. . .

−1 2 −1


(M−2)×(M

(25)

The solution of (23) is given by:

X̂TR = (KTK+ γ 2lTl)−1KTD (26)

Therefore, the reconstructed spectrum of the target is
given by:

Lm = x̂m m = 1, . . . ,M (27)

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental results of a pro-
totype multimodal light-field imager. The customized LVFs
and polarizing filters are mounted on a circular glass plate.
The wavelength range of spectral filters is 450nm - 765nm.
And the polarization angles of the polarizing filters are 45◦,
90◦ and 135◦. The microlens array, which is produced by
the Advanced Microoptic System Gmbh (aµs) of Germany,
is placed on the imaging plane of the fore-optics. The size of
each microlenes is 55 µm × 55 µm and the focal length is
0.22mm. The Viewworks VA-29MC sensor is coupled at the
back focal plane of the mircolens array. The detector pixel
size is 5.5 µm × 5.5 µm. Therefore, the sub-image of the
prototype covers 10× 10 pixels.
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FIGURE 8. The spectral calibration setup for obtaining the
monochromatic images.

A. RESULTS OF COEFFICIENTS
CALIBRATION EXPERIMENTS
The spectral calibration setup of the prototype multimodal
imager has been built and is shown in Fig. 8. The output wave-
length of monochromatic integrating sphere is changed for
obtaining the spectral response of pixels covered by an arbi-
trary microlens. The calibration procedures include: 1) take
the light field spectral image of the uniform monochromatic
output and measure the radiance of the light by the spectro-
radiometer, 2) scan the spectral range of the system with δλ
every step and repeat step 1), 3) extract intensities of pixels
at different wavelength to calculate the spectral coefficients
K S
j,m by using (9). The spectral coefficients of an arbitrary

sub-image are plotted in the Fig. 9. Here, the 10×10 pixels
covered by amicrolens are numbered by every ten pixels from
the same column.

FIGURE 9. The calibrated spectral coefficients of pixels covered by
a microlens.

The polarization calibration setup of the prototype imager
is shown in Fig.10(a). Fig.10(b) shows sub-images with inci-
dent light polarized at different angles. The marked three
pixels corresponds to three different polarizing channels of
the prototype respectively. By rotating the linear polarizing
filter placed in front of the output of the integrating sphere,
we can obtain polarization images at different polarization
angles and draw the response curves of pixels as illustrated

FIGURE 10. The polarization calibration: a) the setup, b) the sub-images
at three different polarizing angles, c) the responses of pixels when
rotating the polarizing filter.

FIGURE 11. The calibrated polarization coefficients of pixels covered by a
microlens.

in Fig.10(c). The polarization coefficients can be calculated
by using (21) to fit all the polarization response curves of
all the pixels. The calculated polarization coefficients of an
arbitrary microlens are plotted in Fig. 11.

B. RECONSTRUCTED SPECTRUM
Once the spectral and polarization coefficients are deter-
mined, the spectra of targets can be restored from the recorded
multimodal light-field images by applying de-multiplexing
algorithms. Fig. 12 shows the sub-images behind an arbitrary
microlens when the system is illuminated by the tungsten and
xenon light sources.

In this research, as discussed in section III-C, the imaged
spectral and polarization data of targets are reconstructed
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FIGURE 12. The sub-images of different light sources. (a) Tungsten light.
(b) Xenon light.

FIGURE 13. The reconstructed spectra of two different light sources.
(a) Tungsten light. (b) Xenon light.

by using the LS and TR methods to calculate X of (16).
And the spectra of targets are extracted by using (29). The
restored spectra of the tungsten and xenon light sources are
shown in Fig.13, in which the ‘Ideal’ refers to the reference
spectra of the light sources measured by the same spectro-
radiometer used in the calibration procedure. Comparing the
reconstructed spectra, the spectral curves obtained by the TR
algorithm are much closer to the reference spectral curves
than those reconstructed by the LS algorithms are.

In order to evaluate the performance of the spectral recon-
struction algorithms, we use the criterion spectral angle
mapper (SAM) [16], which is given as:

SAM = cos−1

 LT
RL̂C

‖LR‖
∥∥∥L̂C∥∥∥

 (28)

where, LR and L̂C are the reference spectrum and the cal-
culated spectrum respectively. Here, the SAM describes the
distortion of the calculated spectrum from the reference spec-
trum. And, smaller value of SAM means that the restored
spectrum is more similar to the reference spectrum. The
spectra of a 300×300 microlens area were reconstructed by
the two algorithms, the average and root-mean-square error
(RMS) of SAMs of the light source spectra are given by:

SAM =
∑Q

q=1
SAMq

/
Q (29)

σSAM =

√∑Q

q=1

(
SAMi − SAM

)2/
Q (30)

TABLE 1. The SAMs for different light sources.

where, Q is the total number of sub-images in the selected
area. Theminimum, average andRMSof the SAM of different
light sources are summarized in table 1. The smaller values
of SAMmin and SAM indicate that the TR algorithm can
obtain better results than the LS algorithm can. Furthermore,
smaller value of σSAM also shows that the TR algorithm
performs with better robustness when the noises are different
at different sub-images.

Further imaging experiment was performed to obtain a
multimodal light-field image of several buildings, as shown
in Fig.14. The sub-images of different building surfaces are
enlarged and also illustrated in Fig.14.

FIGURE 14. The multimodal light-field image of buildings.

FIGURE 15. The spectral datacube and color image of the same scene.
(a) Spectral datacube. (b) Color image.

The spectra of the sub-images are extracted by using the
TR algorithm to form the spectral datacube of the entire
scene. Fig.15(a) shows the datacube image generated by
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FIGURE 16. The reconstructed spectra of three building surfaces.

the software. We also took a color image the buildings by
using a commercial Canon camera. There are slightly color
differences between the two images, because the three chan-
nels chosen to generate datacube image have spectral ranges
that are different from the spectral ranges of the RGB chan-
nels of the Canon camera.

The spectra of the three typical surfaces are shown
in Fig. 16. The point A is a wall with red color which
corresponds to the relatively large radiance in the wavelength
range of [600nm, 730nm]. The spectral curve of point C has a
peak around wavelength 550nm, and its curve coincides with
its green color. For point B, its spectral curve has a peak near
550nm and relatively large radiance from 550nm to 670nm.

V. CONCLUSIONS
In this paper, we present a radiance imagingmodel to describe
the relationships between the target radiance and the sensor
responses of a multimodal light-field imager. This model
including the spectral radiance imaging model and the polar-
ization radiance imaging model. Based on these two models,
calibration schemes are proposed to determine the spectral
coefficients and polarization coefficients of the imaging sys-
tem. In the data reconstruction process, we also introduce the
TR algorithm to minimize the reconstruction error introduced
by the system noises and calibration errors. The spectral
and polarization calibration setups are built to calibrate a
prototype of multimodal light-field imager. The spectra of
different light sources are reconstructed from the acquired
imaged data by two algorithms. The quantitatively results
of criterion SAM confirm that the TR approach can restore
the spectrum more accurately than the LS algorithm can.
The spectral datacube of buildings is also obtained by recon-
structing all the light-field sub-images of the captured scene.
In summary, the data reconstruction methodology proposed
in this paper include an imaging model, two calibration
schemes and a de-multiplexing algorithm. And the presented
de-multiplexing algorithm can reconstruct the target spec-
trum with better quality.
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