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ABSTRACT We propose an l0-norm constrained normalized least-mean-square (CNLMS) adaptive beam-
forming algorithm for controllable sparse antenna arrays. To control the sparsity of the antenna array, an l0-
norm penalty is used as a constraint in the CNLMS algorithm. The proposed algorithm inherits the advantages
of the CNLMS algorithm in beamforming. The l0-norm constraint can force the quantities of antennas to a
certain number to control the sparsity by selecting a suitable parameter. In addition, the proposed algorithm
accelerates the convergence process compared with the existing algorithms in sparse array beamforming,
and its convergence is presented in this paper. To reduce the computation burden, an approximating l0-norm
method is employed. The performance of the proposed algorithm is analyzed through simulations for various
array configurations.

INDEX TERMS l0-norm, sparse controllable array, NLMS algorithm, constrained adaptive beamforming.

I. INTRODUCTION
Beamforming is an important application of array processing
and is widely used in radar, sonar, mobile communications,
seismic sensing, biomedical engineering and other fields.
The formed beam realizes high gain in the desired direc-
tion and suppresses interferences in other directions so as to
enhance signal-to-interference-plus-noise ratio (SINR). The
linearly constrained minimum variance (LCMV) algorithm
introduced by Frost, III [1] is a famous beamforming method
for creating a beam in the desired direction and forming a
null in the direction of the interfering signal. The LCMV
algorithm minimizes the output power with the objective of
minimizing the contribution of undesired interference and
maintains a constant gain in the direction of observation.
Adaptive beamforming algorithms adjust the weighted vec-
tors of the antenna array tomatch the time-varying signals and
interferences. The classic beamforming algorithm CNLMS is
a normalized adaptive version of LCMV, which was derived
with the assumption that array elements can be adjusted in
real-time [2].

In some applications, e.g. radar, large arrays are essen-
tial for achieving the desired performance. However, large
antenna arrays require intensive computation, complex
transceiver architectures and consume a significant amount
of power. As a result, existing beamforming algorithms may
be limited by the power consumption, cooling requirement,
computation resources, and cost, for large arrays. With the
recent development in sparse signal processing [3]–[13],
a promising approach for solving the problems mentioned
above is to force the filter coefficients toward sparsity which
in beamforming applications is defined as the proportion of
active antenna elements.

Making use of the sparse characteristics which exist
in many applications, e.g. wireless communications,
speech signal processing, and remote sensing, sparse
signal processing shows particular advantage and have
drawn remarkable attention in recent years. Motivated by
the Least Absolutely Shrinkage and Selection Operator
(LASSO) [14] and Compressive Sensing (CS) [15], LMS
based algorithms have been introduced for sparse system
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identification [3]–[5], [16]–[18]. Among these algorithms,
the zero-attracting LMS (ZA-LMS) and the reweighted
zero-attracting LMS (RZA-LMS) proposed in [3] are rep-
resentative. In ZA-LMS, an l1-norm penalty on the filter
coefficients is applied to the quadratic cost function of
the standard LMS algorithm and results in an modified
LMS updating with a zero attractor for all the filter taps.
RZA-LMS further improved the filtering performance by
considering reweighted step sizes of the zero attractor for
different taps. The zero-attracting technique has been also
expanded to many other algorithms [19]–[24]. In addition,
another type of algorithms for sparse system identifica-
tion is Proportionate Normalized LMS (PNLMS) and its
variations [16]–[18], [25]–[33]. Motivated by CNLMS and
the methods of sparse system identification, the l1-norm
linearly constrained normalized LMS (L1-CNLMS) algo-
rithm and its weighted version (L1-WCNLMS) are proposed
in [34]. L1-WCNLMS employs an l1-NC on the filter coef-
ficients to force the weighting vector towards sparsity and is
able to form the desired beam using fewer antennas. However,
it is not easy to control the sparsity of the array using
L1-WCNLMS algorithm.
Inspired by the L1-WCNLMS algorithm in [34], we devel-

oped an l0-NC CNLMS (L0-CNLMS) algorithm with bet-
ter performance and stability. l0-NC is a feasible choice
because l0-norm represents the amount of non-zero elements.
For example, in CS theory, l0-norm minimization solution
is optimal for sparse signal recovery. In beamforming, the
l0-norm solution has not seen wide-spread use due to
its Non-Polynomial (NP) hard problem. Several possible
remedies have been proposed [4], [5], [35]–[37]. In [4],
an l0-norm constrained LMS (CLMS) algorithm is proposed
for sparse system identification which utilizes an approxi-
mative expression of l0-norm. In [37], different approaches
for approximating l0-norm are introduced to realize sparsity-
aware data-selective adaptive filters. In addition, a soft
parameter function penalized normalized maximum cor-
rentropy criterion (SPF-NMCC) algorithm is proposed for
sparse system identification in [5]. In comparison with zero-
attracting MCC (ZA-MCC), SPF-NMCC algorithm achieves
a better performance which proves that l0-norm constrained
algorithm can speed up the convergence process compared
with l1-norm penalty method [38].

From the above mentioned recent studies, the sparse beam-
forming can be realized by using norm penalties into the
corresponding cost function. In this paper, an approximat-
ing l0-NC is used to develop an L0-CNLMS algorithm for
improving the beamforming performance for controllable
sparse antenna arrays. The L0-CNLMS algorithm can achieve
better performance than L1-WCNLMS algorithm. Similar to
the L1-WCNLMS algorithm, a new convergence factor is
developed to dynamically adjust the convergence speed of the
algorithm.

The proposed L0-CNLMS algorithm can reach a large
degree of sparsity of down to 20%. The performance
of the L0-CNLMS algorithm is validated by considering

FIGURE 1. Signal processing of planar antenna array.

different array shapes and conditions. A comparison between
the L0-CNLMS and the L1-WCNLMS is provided to demon-
strate that the L0-CNLMS can accelerate the convergence
process. The proposed algorithm shows great potential for
satellite communication [39], tactical military communica-
tion systems [40], and many other applications that use sparse
antenna arrays.

II. MATHEMATICAL MODEL OF ADAPTIVE
ARRAY PROCESSING
Figure 1 illustrates a planar antenna array composed of M
elements receivingQ far-field signals including interferences
and signal of interest (SOI) with wavelength λ and various
azimuths (θ i) and zeniths (φi) during N snapshots. Since we
are interested in only the far field, the signals can be seen as
plane waves. Figure 2 shows the arrangement of the planar
antenna array.

If we define the data received by the origin of coordinates
during the k th snap as x(k), then the data received by the
antennas in other positions x(k,Pm) can be obtained through
the propagation time-delay τm:
τm =

aiTpm
c

, m = 1, ...,M , i = 1, . . . ,Q,

x(k,Pm) = x(k−τm), k = 1, . . . ,N

x(k) =
Q∑
i=1

fi(k)e
−j2πc
λ

k
+ n(k),

(1)

where Pm is the antenna coordinate, c is the propagating
speed of signals, ai = [− sin θi cosφi,− sin θi sinφi]T is
a unit vector, θi and φi are the input direction of signals,
fi(k) is the complex envelope of the input signals and n(k)
represents the noise vector. Here, we consider only narrow-
band signal whose complex envelope fi(k) is approximately
constant during the time-delay. We can then transform the
time-delay information into the variation of phase, i.e., the
spatial characteristics of antenna array can be expressed by
phase information. As such, the input data during k th snapshot
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FIGURE 2. Antenna array coordinate graph.

is:

xk = [x(k − τ1) x(k − τ2) · · · x(k − τM )]T . (2)

The output signal yk during k th snap is:

yk = wH
k xk , k = 1, . . . ,N , (3)

where wk is the coefficient vector. So the instantaneous error
is ek = dk−yk , where dk represents the desired output signal.
The input signals matrix X can be defined as:

X = [ x1 x2 · · · xN ] = AF+ N, (4)

where A is the M × Q steering matrix which contains the
spatial characteristics information, F is the Q × N complex
envelope matrix, and N indicates white noise matrix.

The beam pattern for a direction (θ, φ) is:

B(θ, φ) = wH exp
{
−j

2πaTpm
λ

}
. (5)

III. NORM AND SPARSITY
In this paper, an approximate l0-NC is employed. In CS
theory, l0-norm minimization solution is the optimal solution
for sparse signal recovery. However, the l1-norm, which has
the same solution under particular conditions, is popular in
many applications because l0-norm minimization is a NP
hard problem. In recent years, many studies on l0-norm have
been proposed [37], [41]. In [37], different approaches for
approximating l0-norm are introduced.
In this paper, l0-norm is approximated as:

||w(k)||0 ≈ Sβ (w(k)) =
M−1∑
i=0

(1− e−β|wi(k)|), (6)

where parameter β controls the approximation. Figure 3(a)
shows the effect of β. As β increases, the curvature of
Sβ (w(k)) becomes sharper. When β is very large, the function
is close to l0-norm.
In order to reduce the computational complexity brought

by the exponential function, we use the first order Taylor
series expansions of exponential functions [4]:

fβ (x) = e−β|x| =

{
1− β|x| β|x| ≤ 1;
0 elsewhere,

(7)

FIGURE 3. (a) Performance of Sβ (w(k)) for various parameter β. (b) The
curves of function fβ (x) with various parameter β.

shown in Fig. 3(b), a larger β signifies stronger attraction for
small coefficients but less scope width.

One may notice that the sparse adaptive beamforming
method proposed in [34] employs an l1-norm as a constrain to
derive the final update formulation. The L1-WCNLMS is an
l1-norm canonical technique, which is implemented via using
the l1-norm constraint to speed up the convergence procedure.

By applying the approximate expression of the exponential
functions, it is obvious that the equation:

||wk ||0 ≈ Sβ (w(k)) ≈ JHk wk , (8)

is satisfied in terms of the gradient as Jk , of approximated l0-
norm. Equation (8) is an important condition for the proposed
algorithm.

IV. THE CLMS ALGORITHM AND THE CNLMS
ALGORITHM
A. THE CLMS ALGORITHM
The solution to the LCMV algorithm introduced in [1] and
[42] is:

wopt = R−1C(CHR−1C)−1f, (9)

where R, C, f are the covariance matrix, constrained matrix,
constrained vector, respectively. H represents Hermitian oper-
ator (conjugate transpose), and the covariance matrix R is
defined as E[xkxHk ]. It is estimated by the time average.
CLMS algorithm is the adaptive version of LCMV [1],

[42]. The target function of CLMS algorithm is:

min
w

E
[
|ek |2

]
s.t. CHw = f. (10)

The Lagrange multiplier is used to transform the con-
strained optimization problem for the solution of uncon-
strained extreme value problem. The cost function is:

Lclmsk = E
[
|ek |2

]
+ γH

1 (C
Hw− f). (11)

By using the steepest descent method, the coefficient vec-
tor updating equation at iteration k can be calculated:

wk+1 = wk −
µ

2
gwLclmsk , (12)

where gwLclmsk is the gradient vector of Lclmsk and points to the
steepest rise direction of the cost function [34], [42]:

gwLclmsk = −2E
[
e∗kxk

]
+ Cγ 1. (13)
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In the calculation process, the instantaneous estimate of
E[x∗kx

H
k ] is employed:

ĝwLclmsk = −2e∗kxk + Cγ 1. (14)

Applying the constrain relation CHwk+1 = f, γ 1 can be
solved. Finally, the updating equation for CLMS algorithm
is:

wk+1 = P
[
wk + µe∗kxk

]
+ fc, (15)

with: {
P = IM×M − C(CHC)−1CH,

fc = C(CHC)−1f,
(16)

where P is a symmetric projection matrix, fc is an M×1
vector, I is the unit matrix, and µ is the convergence factor.
Because wk was forced to satisfy the constraint in (10), it is
obvious that the following equation is satisfied [2]:

Pwk + fc = wk . (17)

B. THE CNLMS ALGORITHM
To accelerate the convergence of CLMS algorithm, the nor-
malized version CNLMS algorithm is proposed [2]. A fea-
sible method is to reduce the instantaneous error eap(k) =
dk − xHk wk+1 as much as possible during each iteration.
As a result, a variableµk is used to replace the constantµ [2],
[34], [42].

Considering (15) and (17), we obtain:

eap(k) = ek
(
1− µkxHk Pxk

)
. (18)

To minimize eap(k), we use the partial derivative of e2ap(k)
with respect to µk :

∂
[
|eap(k)|2

]
∂µ∗k

=

∂
[
eap(k)e∗ap(k)

]
∂µ∗k

= 0. (19)

According to [42]:

∂
[
|eap(k)|2

]
∂µ∗k

=
1
2

[
∂|eap(k)|2

∂<µk
+ j
∂|eap(k)|2

∂=µk

]
, (20)

where <µk and =µk are the real and imaginary parts of µk .
(19) can then be transformed as:

∂
[
|eap(k)|2

]
∂µ∗k

=
eap(k)
2

[
∂e∗ap(k)

∂<µk
+ j
∂e∗ap(k)

∂=µk

]
. (21)

Then, we can obtain

µk =
µ0

xHk Pxk + ε
, (22)

where the parameter ε is positive to avoid excessive step size
when xHk Pxk is too small. Finally, the CNLMS algorithm
coefficients updating function is:

wk+1 = P

[
wk + µ0

ekxk
xHk Pxk + ε

]
+ f. (23)

V. THE PROPOSED L0-CNLMS ALGORITHM
A. ALGORITHM DERIVATIVE PROCESS
In [4], an l0-norm penalty on the filter coefficients is incor-
porated to the cost function of LMS algorithm to speed
up coefficient shrinkage. In [43], an l1-norm penalty is
added to the constrain list of CLMS algorithm to enhance
sparsity.

In this paper, an l0-norm is utilized. The objective function
is:

min
w
E
[
|ek |2

]
s.t.

{
CHw = f;
||w||0 = t,

(24)

where || · ||0 denotes l0-norm that counts the number of non-
zero entries in w, and t is the constrain of ||w||0.

The cost function is:

L l0k = E
[
|ek |2

]
+ γH

1

(
CHw− f

)
+ γl0 [||w||0 − t]. (25)

According to (6), the proposed cost function can be written
as:

L l0k = E
[
|ek |2

]
+ γH

1

(
CHw− f

)
+ γl0

[
M−1∑
i=0

(
1− e−β|wi(k)|

)
− t

]
. (26)

The instantaneous estimate of the gradient L l0k in (26) is
expressed as:

gwε(w) = −2 e∗kxk + Cγ 1 + γl0Jk ,
Jk = β[sgn(w1)(1− β|w1|)

, · · · , sgn(wM )(1− β|wM |)]T.

(27)

where sgn(·) is an element-wise sign operator, which is
defined as:

sgn(x) =


x
|x|

x 6= 0;

0 elsewhere.
(28)

According to the steepest descent method, the coefficients
updating equation can be written as:

wk+1 = wk −
µ

2

{
−2e∗kxk + Cγ 1 + γl0Jk

}
. (29)

Next, we use constraints in (24) to eliminate γ 1 and
γ l0 . Here, we assume that the algorithm has converged, i.e.
wk+1 = wk . The approximation JHk wk+1 = t is proposed
in [34], aswk andwk+1 are expected to be in the same hyper-
quadrant. Then the constraints can be written as:

CHwk+1 = CHwk = f (30a)

JHk wk+1 = t. (30b)

Using (30a), γ 1 can be solved premultiplying (29) by CH:

γ 1 = G
(
2e∗kxk − γl0Jk

)
, (31)

where G = (CHC)−1CH.
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Using (30b) and applying (8), l0-norm is denoted as tk =
JHk wk . Multiplying (29) by JHk :

t = tk −
µ

2

{
−2e∗kJ

H
k xk + JHk Cγ 1 + γ2n

}
, (32)

where n=JHk Jk is a scalar.
Defining l0-norm error as eL0 (k) = t − tk , and substituting

(31) to (32), γl0 can be solved:

γl0 = −
2
mµ

eL0 (k)+
2e∗kJ

H
k Pxk
m

, (33)

where m = JHk PJk is a scalar.
Taking γ 1 and γl0 into (29) and making use of (17), we can

obtain the update equation for L0-CLMS:

wk+1 = wk + µ0e∗kQ+ fL0 (k), (34)

where: 

P = IM×M − C(CHC)−1CH,

q = JHk Pxk ,
m = JHk PJk ,

Q = P(xk −
qJk
m

),

ek = −wH
k xk ,

fL0 (k) = (t − JHk wk )(
PJk
m

).

(35)

The same approach of CNLMS algorithm can be applied to
the L0-CNLMS algorithm.
According to the update equation of L0-CLMS algorithm

list on (34), we can obtain:

eap (k) = ek (1− µkQxk) . (36)

Applying (19), (20) and (21), we can get µk for the
L0-CNLMS algorithm:

µk =
µ0[ek − fHL0 (k)xk ]

ekQHxk + ε
. (37)

The final updating function of L0-CNLMS algorithm is:

wk+1 = wk + µke∗kQ+ fL0 (k), (38)

where: 

P = IM×M − C(CHC)−1CH,

q = JHk Pxk ,
m = JHk PJk ,

Q = P(xk −
qJk
m

),

ek = −wH
k xk ,

fL0 (k) = (t − JHk wk )(
PJk
m

),

µk =
µ0[ek − fHL0 (k)xk ]

ekQHxk + ε
.

(39)

The final algorithm is expressed via pseudo-codes in
Algorithm 1.

Algorithm 1 Algorithm for L0-CNLMS
Input:t , µ0, k , β, in
Output: w out

Initialisation:
1: P = IM×M − C(CHC)−1CH;
2: fc = C(CHC)−1f;
3: w(1) = fc;
LOOP Process

4: while (k<kmax) do
5: ek=dk -wH

k xk ;
6: eL0 (k) = t − tk ;
7: Jk = β[sgn[w1](1-β|w1|),···,sgn[wM ](1-β|wM |)]T;
8: q=JHk Pxk ;
9: m=JHk PJk ;
10: Q = P(xk −

qJk
m );

11: fL0 (k) = (t − JHk wk )(
PJk
m );

12: µk =
µ0[ek−fHL0 (k)xk ]

ekQHxk+ε
;

13: wk+1 = wk + µke∗kQ+ fL0 (k);
14: end while
15: return w

TABLE 1. Complex operations in each iterations.

The computational complexity of the proposed
L0-CNLMS in each iteration is given in Table 1 under the
assumption that Q = 1. It can be seen that the complexity of
the proposed L0-CNLMS is O(M ) which is similar to that of
CNLMS. However, the proposed L0-CNLMS is superior to
the CNLMS and the L1-WCNLMS with respect to the con-
vergence and the performance for sparse array beamforming,
which will be verified in next section.

In our proposed L0-CNLMS algorithm, we aim to develop
an l0-norm based sparse adaptive beamforming method,
which exploits the sparse characteristic of the array while
keeping the same beam patterns with previous adaptive beam-
forming algorithms. We use the l0-norm constraint in the new
cost function to get the derivation of the proposed L0-CNLMS
algorithm in detail. Since the l0-norm is an approximation
for getting a close solution of l0-norm constraint due to
the NP-hard problem, other l0-norm approximation can be
used for smoothing the l0-norm, such as smooth l0-norm in
compressed sensing [15], [36], l0-norm in adaptive filters [4].
In the L0-CNLMS algorithm, we introduce the l0-norm to
create a new cost function since the l0-norm constraint can
directly get the active array elements to accelerate the conver-
gence and achieve a better sparse beamforming. The deriva-
tion of the proposed algorithm is based on the gradient
descent method which has been found in the adaptive filter
and adaptive beamforming algorithms [9]–[11], [34], [43].
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FIGURE 4. Algorithm working process.

TABLE 2. Parameter values for SHA simulations.

In addition, our proposed L0-CNLMS utilizes two different
constraints to obtain the high gain and sparsity of the array.
Thus, the active antenna array elements can be controlled
to realize sparse array with reliable and controllable beam
patterns.

B. ALGORITHM WORKING PROCESS
From equation (24), we can see that the proposed L0-CNLMS
algorithm has two constraints, where one is used for obtain-
ing high gain and suppressing the interferences while the
other one is to exploit the sparsity. In our proposed algo-
rithm, we aim to propose sparse controllable beamforming
algorithm to use less active array elements and to achieve
acceptable beam pattern performance in comparison with
other algorithms. The operating principle of our proposed L0-
CNLMS algorithm is presented in Fig. 4. Since we use the
l0-NC to exploit the sparsity property of the arrays to reduce
the active elements and to reduce the computational burden,
the small coefficients are attracted to zero without sacrificing
the gain of the main lobe. Thus, the active coefficients in the
array become larger, which will deteriorate the side lobe level
(SLL) and the first null beam width (FNBW).

VI. SIMULATION RESULTS
Simulations are carried out on various array configurations
to evaluate the effectiveness of the L0-CNLMS algorithm
for adaptive array beamforming. Then, investigations and
comparisons of L0-CNLMS and L1-WCNLMS are illustrated
to demonstrate the improvement of the proposed algorithm.
Interferers and SOI in the experiments are narrowband QPSK
signals. Parameters of the simulations are listed in the follow-
ing tables.

FIGURE 5. SHA simulations: The beam patterns for the L0-CNLMS
compared with CNLMS and LCMV algorithms, pink lines show the
directions of interferences, the yellow line is on behalf of the SOI. The
thinned array at iteration k = 6× 103, white circles represent the
elements turned off by L0-CNLMS. (a) Simulation I: Beam patterns,
(b) Simulation I: Array sparsity = 19.8%, (c) Simulation II: Beam patterns,
(d) Simulation II: Array sparsity = 49.5%, (e) Simulation III: Beam
patterns, (f) Simulation III: Array sparsity = 19.8%.

A. STANDARD HEXAGONAL ARRAY (SHA)
In the first simulation, we consider a SHA receiving signals
for satellite communication. Each edge of SHA employs
6 antennas, leading to a total of 91 antennas. The major
parameters of the simulation are listed in Table 2. We vary
the direction of the signals, the number of the signals, and the
sparsity of the antenna array.

Results are shown in Fig. 5 and Fig. 6. The L0-CNLMS,
LCMV and CNLMS algorithms form beams with nearly
identical shape in the main lobe and nulls. From the mean-
square-error (MSE) and the l0-norm shown in Figure 6,
the MSE performance of the L0-CNLMS algorithm is better
than that of CNLMS. The L0-CNLMS algorithm converges
after 3,000 iterations and achieves similar performance
with various signals’ zeniths, quantity and directions. The
L0-CNLMS algorithm achieves a sparsity of 19.8%, 49.5%,
and 19.8% which equal to the prescribed parameter t of 0.2,
0.5, 0.2.
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FIGURE 6. SHA simulations: The MSE performance for L0-CNLMS and
CNLMS algorithms and l0-norm of the coefficient vector at iteration
k = 6× 103. (a) Simulation I: MSE, (b) Simulation I: l0-norm,
(c) Simulation II: MSE, (d) Simulation II: l0-norm.

TABLE 3. Parameter values for RA simulations.

B. RECTANGULAR ARRAY (RA)
In the second simulation, we consider a 100-element
RA receiving C-band signals commonly found in radar
systems. The parameters of the simulations are listed
in Table 3.

Figure 7 is the result of RA simulation. Detail perfor-
mances of MSE and l0-norm are omitted for brevity. We can
conclude from the results that the proposed algorithm can
be used in RA properly. Same as SHA, the L0-CNLMS
can deal with the varying conditions successfully and form
the ideal beam. Similarly, the sparsity of the antenna arrays
are controlled exactly and equal to the parameter t . In this
way, we can change the performance of the formed beam
through regulating the sparsity of the antenna array which is
significant in sparse array beamforming.

C. TRIANGULAR ARRAY (TA)
In this simulation, TA is considered as the senor for P-band
signals which has particularly advantage in stealth aircraft

FIGURE 7. RA simulations: The beam patterns for the L0-CNLMS
compared with CNLMS and LCMV algorithms. The thinned array at
iteration k = 3× 103. (a) Simulation I: Beam patterns, (b) Simulation I:
Array sparsity = 20%. (c) Simulation II: Beam patterns, (d) Simulation II:
Array sparsity = 40%, (e) Simulation III: Beam patterns, (f) Simulation III:
Array sparsity = 69%.

TABLE 4. Parameter values for TA simulations.

and satellite detection. TA in this simulation contains 9 rows
where each row consists of 13 elements. The parameters of
the simulations are given in Table 4.

As Fig. 8 indicates, the beams are formed successfully
against the SOI and interferences, and the sparsity of arrays
match the parameter t well.
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FIGURE 8. TA simulations: The beam patterns for L0-CNLMS compared
with CNLMS and LCMV algorithms. The thinned array at iteration
k = 3× 103. (a) Simulation I: Beam patterns, (b) Simulation I: Array
sparsity = 34.2%, (c) Simulation II: Beam patterns, (d) Simulation II: Array
sparsity = 53.8%.

TABLE 5. Parameter values for IA simulations.

D. IRREGULAR ARRAY (IA)
In the fourth simulation, we study an IA working at S-band.
Here, the IA is a 112-element rectangular array with circular
boundary. Parameters of the simulations are given in Table 5.

The simulation results show similar performances as the
above cases (Fig. 9) which means the proposed algorithm can
deal with different applications and control the sparsity.

E. INVESTIGATION AND COMPARISON OF THE L0-CNLMS
Herein, we present the performance of the L0-CNLMS in
comparison with the L1-WCNLMS algorithm to verify its
benefits and improvements. An X-band SHA is used to ana-
lyze the proposed method in these experiments.

1) SMALL SPARSE RATIO
For small sparse ratio, the parameters listed in Table 6 are
used to investigate the behaviors of the L0-CNLMS and the
simulation results are given in Figs. 10 and Fig. 11. For the
case I, as we can see from Fig. 10, L1-WCNLMS finally

FIGURE 9. IA simulations: The beam patterns for L0-CNLMS compared
with CNLMS and LCMV algorithms. The thinned array at iteration
k = 3× 103. (a) Simulation I: Beam patterns, (b) Simulation I: Array
sparsity = 59.8%, (c) Simulation II: Beam patterns, (d) Simulation II: Array
sparsity = 89.2%.

TABLE 6. Comparison in small sparse ratio.

achieves a sparse solution after 2 × 104 times of iterations,
while the proposed L0-CNLMS converges at 3 × 103 times.
This means L0-CNLMS achieves a higher level of sparsity
faster than L1-WCNLMS. It is also observed that the SLL
in the L1-WCNLMS is higher than that of the L0-CNLMS
although the L1-WCNLMS employs much more elements.
That is to say, the L0-CNLMS can achieve better beam pattern
performance with fewer antennas.

For case II, we change the directions of interferences.
From Fig. 11, it is found that the L1-WCNLMS fails to get
the sparse solution and has the same beam pattern with the
CNLMS. On the contrary, L0-CNLMS can still successfully
get the sparse solution. Fig. 11 (c) and (d) illustrate the reason
why L1-WCNLMS may lose the sparse solution. It can be
seen that the L1-WCNLMS algorithm has already converged
and its coefficients don’t change any more after 5 × 103
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FIGURE 10. Comparison of L0-CNLMS and L1-WCNLMS in small sparse
ratio, Case I: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms. (b) The thinned array for L1-WCNLMS
at iteration k = 2× 104, array sparsity = 49.5%, (c) The thinned array for
L0-CNLMS at iteration k = 3× 103, array sparsity = 38.5%,
(d) Comparison of MSE performance of L0-CNLMS and L1-WCNLMS.

TABLE 7. Comparison in big sparse ratio.

iterations, since the l1-NC forces all the coefficients to small
uniformly. From the comparisons, we found that the L0-
CNLMS algorithm is stable and robust when it is used for
dealing with the sparse antenna array beamforming.

2) LARGE SPARSE RATIO
When the sparse ratio is large, our proposed L0-CNLMS
showsmore stable beam patterns then those of L1-WCNLMS,
making it more suitable for various engineering applications.
For obtaining the comparison results, the simulation param-
eters are presented in Table 7 and the simulations are shown
in Fig. 12. It turns out that the L0-CNLMS shows a better
performance in terms of the beam patterns and MSE for the
same experiment conditions.

Several experiments are carried out to verify the stabiliza-
tion of L0-CNLMS and L1-WCNLMS algorithms. We can

FIGURE 11. Comparison of L0-CNLMS and L1-WCNLMS in small sparse
ratio, Case II: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms. (b) The thinned array for L0-CNLMS
at iteration k = 3× 103, array sparsity = 59.3%, (c) Coefficients in
working process, iteration k from 1 to 3× 103, (d) Coefficients in working
process, iteration k from 5× 103 to 2× 104.

draw a conclusion from Fig. 13 that the beam patterns
for L0-CNLMS are much more stable than those of the
L1-WCNLMS based beam patterns. Especially, the
L0-CNLMS has the same shape for the main lobe in different
experiments. Also, the sparsity of the L1-WCNLMS varies
from 18.7% to 49.5%, while the L0-CNLMS has the stable
sparsity which can get a high accuracy.

VII. ITERATION CONVERGENCE ANALYSIS
In this section, we provide the convergence analysis of the
proposed L0-CNLMS algorithm. Herein, we consider wo as
the optimal coefficient vector, nk as the noise. Also, we define
the coefficient error as1wk = wk−wo. In this case, the priori
error in the k th iteration can be described as:

ek = xHk wo + nk − xHk wk = nk − xHk 1wk . (40)

Substituting µk into the final updating function of the
proposed algorithm in equation (38), we obtain:

wk+1 = wk +
µ0

εk
[ek − fHL0 (k)xk ]Q+ fL0 (k), (41)

where εk = QHxk is a scalar.
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FIGURE 12. Comparison of L0-CNLMS and L1-WCNLMS in big sparse
ratio, Simulation: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms, (b) The thinned array for L1-WCNLMS
at iteration k = 3× 103, array sparsity = 18.7%, (c) The thinned array for
L0-CNLMS at iteration k = 3× 103, array sparsity = 19.8%,
(d) Comparison of MSE performance for L0-CNLMS and L1-WCNLMS.

Taking fL0 (k) into consideration, (41) can be rewritten as:

wk+1 = wk + [I−
µ0

εk
QxHk ]fL0 (k)+

µ0

εk
e∗kQ. (42)

Next, Substituting (40) into (42), we get

wk+1 = wk + [I−
µ0

εk
QxHk ]fL0 (k)+

µ0

εk
(n∗k − xHk 1wk )Q.

(43)

Notice that fL0 (k) = (t − JHk wk )(
PJk
m ). In the proposed

algorithm, we use the constraint that JHk wk+1 = t , i.e., the
equation JHk wo = t is satisfied when the algorithm is con-
verged. Using his method, fL0 (k) can also be expressed as:

fL0 (k) = (JHk wo − JHk wk )(
PJk
m

)

= −JHk 1wk (
PJk
m

)

= −A1wk , (44)

where A = PJkJHk
m . Obviously, A is an idempotent matrix

which means the eigenvalues of matrix A can only be 0 or 1.
Also, we can easily obtain that tr[A] = 1, which is to say that
matrixA has only one non-zero eigenvalue which equals to 1.
After substituting (44) into (43), and describing the updat-

ing equation in coefficient error form, we have:

1wk+1 = 1wk + [I−
µ0

εk
QxHk ](−A1wk )

+
µ0

εk
(n∗k − xHk 1wk )Q

= [I− µ0B]1wk − [I− µ0B]A1wk

+
µ0

εk
n∗kQ

FIGURE 13. Multiple simulations of L0-CNLMS and L1-WCNLMS in big
sparse ratio, (a), (b): Beam patterns for L0-CNLMS and L1-WCNLMS under
multiple simulations, respectively. (c), (e) and (g): The antenna array
thinned by L0-CNLMS of which the sparsities are 19.8%, 19.8% and 19.8%,
respectively. (d), (f) and (h): The antenna array thinned by L1-WCNLMS of
which the sparsities are 49.5%, 36.3% and 18.7%, respectively.

= [I− µ0B][I− A]1wk +
µ0

εk
n∗kQ, (45)

where B = QxHk
εk

. Similar toA, B is also an idempotent matrix
whose maximum eigenvalue is λmax = 1.

Then, we take expectations on both sides of (45), and then,
we have

E[1wk+1] = E{[I− µ0B][I− A]1wk} + E[
µ0

εk
n∗kQ].

(46)
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Considering the independence assumption, that is, 1wk is
statistic independence with nk , xk and Jk [42], and taking into
account that the expectation of nk is 0, we can obtain:

E[1wk+1]

= [I− µ0B][I− A]E[1wk ]

= [I− µ0B][I− A− µ0B− µ0AB]k [I− A]E[1w0]

(47)

Note that AB = 0, and thus (47) can be rewritten as:

E[1wk+1] = [I− µ0B][I− A− µ0B]k [I− A]E[1w0]

(48)

In the discussions above, we have concluded that matri-
ces A and B have the same eigenvalues, of which N − 1
are equal to 0 and the other one is 1. Thus, if µ0 satisfies
|1− 1− µ0| < 1 and |1− 0− µ0| < 1, the algorithm will
converge. In this case, we have

0 < µ0 < 1, (49)

while the convergence domain for L1-WCNLMS is given
in [34], which is

0 < µ1 < 2. (50)

It turns out that L1-WCNLMS has a more widely conver-
gence domain, but it should be pointed out that the selec-
tion of step-size for both L0-CNLMS and L1-WCNLMS
are always far below the upper bound for a better perfor-
mance [34].

VIII. CONCLUSION
In this paper, an L0-CNLMS algorithm is proposed for adap-
tive beamforming as an improved version of L1-WCNLMS in
sparse antenna arrays with controllable sparsity. The results
of the simulations presented in Section VI show that the
proposed algorithm is suitable for sparse array beamforming
in various array configurations.
The proposed algorithm can form excellent beams under

different conditions, e.g., different number of signals and
varying directions. Besides, the sparsity of the antenna array
can be controlled by a parameter t . As such, a trade-off
between the beam quality and hardware/power consumption
can be achieved for any particular application and system
requirement. In addition, the L0-CNLMS algorithm con-
verges faster and uses fewer antennas to achieve a better per-
formance when compared with the L1-WCNLMS algorithm.
We can see from the simulation results that the proposed
L0-CNLMS algorithm is superior to the mentioned algo-
rithms for handling sparse beamforming. The SLL of the
proposed L0-CNLMS algorithm is slightly higher than that of
conventional non-sparse algorithms. For the non-sparse array,
the proposed algorithm has high computations which may
limit its applications. Thus, the adaptive beamforming algo-
rithm with low complexity, low SLL and high performance
should be developed in the future work to meet all the array
beamforming applications.
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