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ABSTRACT Person re-identification (re-id) refers to matching people across disjoint camera views. Most of
person re-idmethods extract discriminative features from the whole images or fixed regions and develop their
metrics. However, these methods ignore that the attention regions with temporal cues in the pedestrian image
pair hold discriminative information. In this paper, we propose the recurrentmodels of visual co-attention that
aim to simulate human eye movement, focusing on the sequential concurrent attention (co-attention) regions
of the same locations when comparing image pairs. Since reinforcement learning provides a flexible learning
strategy for sequential decision-making, it is naturally applied to perform the temporal re-id co-attention
learning task. The reward functions are designed to recursively optimize the prediction by rewarding or
punishing the learning process. The recurrent models are used to extract information from a sequence of
attention regions. Finally, person re-id is performed based on the whole image feature and the features
from the recurrent models. Our contributions are: 1) the visual mechanism, which can dynamically locate
the optimal co-attention regions to simulate the human re-id process; 2) the design of reward functions
in reinforcement learning, which aims to recursively optimize the prediction process; and 3) experimental
results, which demonstrate the advantages of our method compared with the state-of-the-art methods.

INDEX TERMS Person re-identification, eye movement, reinforcement learning, recurrent neural network,
co-attention mechanism.

I. INTRODUCTION
Person re-id aims to recognize all persons from a gallery
who have the same identity to the probe. The gallery per-
sons and the probe persons are captured from different non-
overlapping camera views across temporal periods. Since
person re-id is widely applied in intelligent video surveil-
lance, criminal investigation, and long-term pedestrian track-
ing, it becomes increasingly important. However, person
re-id remains a challenging problem due to significant intra-
class variations of illumination, view angle, pedestrian pose,
and occlusion. To address these challenges, many methods
have been proposed which can be roughly classified into
two categorizations: feature-based methods and metric-based
methods.

For feature-based methods, significant efforts are devoted
to extract robust handcrafted features [1]–[4] or learn discrim-
inative deep features [5]–[11]. Although these feature-based

methods have achieved encouraging performances, they are
extracted from the whole images or fixed regions. Thus
the features would be misaligned and not be robust when
occlusions or various poses occur.

As for metric learning-based methods, they are devel-
oped to maximize the inter-class feature distance and min-
imize the intra-class distance by projecting the raw data to
the learned metric space [1], [12]–[16]. However, since the
pedestrian appearances undergo large variation across multi-
camera views, there would be still some confusing negative
gallery pedestrians who tend to be more similar to a probe
than positive ones even after metric space learning.

Both feature-based methods and metric learning-based
methods pay more attention to the whole images and fixed
regions, which fail to match well in the case of large
appearance variation and occlusion. In fact, some researchers
have realized that attention regions with temporal cues
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FIGURE 1. The illustration shows the motivation of our method. Different
pedestrian image pairs should hold various temporal co-attention
processes due to dynamic pairwise image environment. The top left
orange box indicates positive sample, and the other three indicate
negative samples.

in pedestrian images hold discriminative information in
re-id [17]–[21]. These methods are based on recurrent neu-
ral network (RNN). RNN is a type of deep neural network
that has recurrent connections, which enables the network
to extract information in the sequence and memorize the
internal states [22], [23]. However, these methods do not
consider exploiting reinforcement learning (RL) based on
RNN to choose attention regions in person re-id, while RL
is a problem dealt by an agent that learns its optimal behav-
ior by trial-and-error interactions with a dynamic environ-
ment [24], [25], providing a flexible learning strategy for
sequential decision-making. In the process of comparing two
images, human focus on a series of identical attention regions
through repeatedly looking back and forth (i.e., co-attention
by eye movements), which is actually a sequential decision-
making process interacting with a dynamic pairwise image
environment. Therefore it is natural to use RL to imitate
the scan order of our eyes, carrying out the temporal re-id
co-attention learning process. This process is in accordance
with the process of human vision perception [26]–[28] and
is subtly robust to occlusion and large pose variation. More-
over, the co-attention regions and the whole image pair hold
distinct intrinsic information of multiple scales. That is to
say, for a given pair, human not only see the details of local
regions, but also get an impression on the whole images.
The examples of pedestrian image pairs with various tempo-
ral co-attention processes are shown in Fig. 1. We can see
that, even for image pairs composed of the same probe and

different galleries, the locations and scales on which humans
fixate should be strongly task-specific. It is meaningful to
learn to adaptively co-concentrate on the appropriate local
regions and visual scales over time for different image pairs,
and use the past information to guide what and where to look
at next.

In this paper, we propose Recurrent Models of visual
Co-Attention (RMCA) for person re-id motivated to simulate
the co-attention process of eye movements. The proposed
models consider the co-attentionmechanism as the sequential
decision process of a task-driven agent interacting with a
pairwise image environment. The architecture of RMCA is
shown in Fig. 2. First, given an input image pair and the
co-attention coordinates l t−1 of the glimpse, the local features
centered at the coordinates are extracted. Next, local features
are combined with the internal representations memorized
by the hidden layer of RNN, and new internal representa-
tions are generated. Then, the generated internal represen-
tations are used to learn a location policy on the basis of
re-id pairwise label constraints, which decides where and
what to co-attend to in next glimpse. This local co-attention
matching based on RNN iteration is repeated for several
time steps. Finally, the deep global features are extracted
at the end of the time sequence, and they are concatenated
with the internal representations. The joint features are used
to learn the identification action and triplet ranking action
by the designed reward functions of RL. In the architecture,
the sequence of co-attention location generation simulates
the scan order of our eyes. Recurrent feature extraction and
identification/triplet ranking action in RL imitate the function
of our visual system and our brain respectively. As far as we
know, the proposed RMCA is the first attempt to exploit rein-
forcement learning to choose an attention region sequence in
person re-id.

The main contributions of our work are as follows:
(1) We propose recurrent models of visual co-attention for

person re-id called RMCA. Our model is able to dynamically
locate the optimal co-attention regions, and combine them
with the global matching into an integrated framework for
simulating the human re-id process.

(2) We formulate the sequential co-attention match-
ing in RMCA as a reinforcement learning based on

FIGURE 2. The architecture of the proposed RMCA. RNN is used to extract features from a sequence of local attention regions. These representations
are used to learn a location policy on the basis of re-id pairwise label constraints, which decides the next co-attention locations. Finally, the global
features are combined with the internal representations of recurrent models. Person re-id is performed based on these joint features.
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RNN architecture. And the reward functions of RL are
designed to recursively optimize the co-attention locations
and the interactive sequence information for prediction by
rewarding or punishing the learning process.

(3) Extensive comparisons are conducted between RMCA
and the state-of-the-art models on Market-1501 [29],
CUHK03 [5], and CUHK01 [30] person re-id benchmarks,
demonstrating the superior performance of our method.

The remainder of this paper is organized as follows.
Section II gives a brief introduction of the existing meth-
ods. Section III describes the details of our recurrent mod-
els of visual co-attention based on reinforcement learning.
Section IV reports the experimental results, comparing our
method with the state-of-the-art methods. Section V makes
some conclusions.

II. RELATED WORKS
Many existing person re-id methods try to extract hand-
crafted features or learn deep features across cameras. The
handcrafted features are technically designed to be robust
to the person appearances across cameras by alleviating the
effect of various pose, viewpoint, and illumination [1]–[3].
Liao et al. [1] analyze the horizontal stripes and utilize the
local maximal occurrence (LOMO) feature against viewpoint
changes. Matsukawa et al. [2] propose a region descriptor
based on hierarchical Gaussian distribution of pixel features,
which includes the mean and covariance formation. In [3],
a multiple hypergraph fusion (multi-HG)method is employed
to extract complementary information from different feature
descriptors. And with the great success of deep learning in
many computer vision tasks, the deep learning based features
are widely adopted in person re-id recently [5], [31], [32].
Li et al. [5] propose a filter pairing neural network (FPNN)
that introduces a patch-matching layer in the convolutional
neural network(CNN), which can handle the part displace-
ment in each horizontal stripe. Chen et al. [31] formulate a
deep pyramid feature learning (DPFL) CNN architecture to
handle multi-scale feature fusion. Jiao et al. [32] propose a
deep model for joint learning of image super-resolution and
person identity classification.

Besides robust features, metric learning has been widely
applied to dealing with the complex matching problem
for person re-id. Cross view quadratic discriminant analy-
sis (XQDA) [1] automatically selects the optimal dimension-
ality as a discriminative subspace, and learns its distance
metric simultaneously. Liao and Li [33] propose to weight
the positive and negative samples differently with a positive
semidefinite constraint. In recent re-id methods based on
CNN structure, the identification loss and the triplet loss are
widely adopted. The identification loss [34] is emerging with
the advent of large datasets, which does not require random
sampling. Hermans et al. [35] propose an improved triplet
loss, which can do online sample selection within each batch.

Recently, feature sequence based methods such as recur-
rent feature aggregation and attention mechanism have
been adopted in person re-id [17], [18], [21], [23], [36].

In [23] and [36], local features of recurrent appearance
data are extracted and aggregated using RNN, while they
still suffer from occlusion and large pose variation problem.
Xu et al. [21] present a joint spatial and temporal attention
pooling network, which is just applied to video-based person
re-id. Liu et al. [18] propose an attention model which gener-
ates and integrates a series of different local parts by masking
CNN feature map, while the masked feature map is not quite
consistent with human perception. Si et al. [17] learn intra-
sequence feature refinement and inter-sequence feature-pair
alignment via a dual attention mechanism, though there is no
correlation across the learned sequences.

There has been a few previous work incorporating the idea
of reinforcement learning in computer vision tasks. Some
that share the same spirit as our work include image classi-
fication [27], object localization [37], [38] and active object
recognition [39]. In person re-id, Lan et al. [40] formulate
an identity attention as reinforcement learning model for
cropping given auto-detected bounding boxes, which is more
about post-detection than the sequence of attention regions.

III. RECURRENT MODELS OF VISUAL CO-ATTENTION
In this section, we first introduce problem formulation.
Second, the proposed recurrent co-attention matching based
on reinforcement learning is explained with more details.
Third, model training is displayed to optimize the sequential
actions. Finally, the test procedure is described.

A. PROBLEM FORMULATION
The motivation of RMCA is that, when comparing two
images, human focus attention selectively on a series of
local regions to acquire and combine information through eye
movements. And the guidance of human eye movements is
based on past pairwise information and the demands of pedes-
trian matching. To mimic the aforementioned human vision
perception in person re-id, we formulate the local co-attention
matching as a sequential decision process through reinforce-
ment learning built on RNN architecture. RNN processes
pairwise inputs sequentially and combines information over
time to build up a dynamic internal representation of envi-
ronment. The task-specific agent in RL interacts with such
dynamic environment and thus decides the next co-attention
regions with the purpose of maximizing the reward.

At each time step, via observing the environment, the agent
extracts local features of the identical location from a pair of
images. Let gta and gtb denote the local features at t-th time
step captured from two images xa and xb, respectively. In the
RNN based model, gta and g

t
b are combined with the internal

representations at previous time step ht−1a and ht−1b , respec-
tively, and the new internal states of the model, hta and htb,
are generated. The location l t−1 and the matching action of
gta and g

t
b are determined by the past local observations ht−1a

and ht−1b . Similarly, hta and h
t
b would affect the next location

l t to attend to andmatch. The purpose of the agent is to design
a task-specific reward function R and is capable of adaptively
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selecting a sequence of discriminative regions by carrying out
the action policy. Additionally, the agent needs to maximize
the cumulative rewards of all time steps, and it may sacrifice
immediate reward to gain more long-term reward, thus the
agent can integrate information over time most effectively.

B. CO-ATTENTION MATCHING BASED ON
REINFORCEMENT LEARNING
As shown in Fig. 2, the proposed model exploit reinforce-
ment learning based on RNN architecture to simulate local
co-attention matching, with the purpose of locating the opti-
mal regions and improving re-id performance. To this end,
the states, actions and rewards are defined as follows.
States: At each step t, given an image pair (xa, xb) and

the location l t−1 of co-attention region, the agent extracts
local features gta(xa, l

t−1) and gtb(xb, l
t−1), respectively. The

internal representations ht−1a and ht−1b are memorized by
the hidden layer of RNN, which keeps the history of past
observations. The states hta and h

t
b are updated bymapping the

local features and internal representations into hidden spaces:

hta = fr (whah
t−1
a + wgag

t
a + b

h
a), (1)

htb = fr (whbh
t−1
b + wgbg

t
b + b

h
b), (2)

where wha and wga are the forward weights of hidden layer
and input layer for image xa, respectively; whb and w

g
b are the

forward weights of hidden layer and input layer for image xb,
respectively; bha and bhb are bias parameters. The activation
function is fr (x) = max(x, 0), which is the rectified linear
unit (ReLU) function. The concatenation htconca of h

t
a and h

t
b,

i.e., htconca = [hta; h
t
b], summarizes information extracted

from past observations and is sufficient to determine where
to co-attend to next. Therefore, hta and h

t
b can also be referred

to as Markov states.
Actions: The agent in this work executes three actions: the

location action al , the identification action aid and the triplet
ranking action atr .

The location action al is defined to assist the agent to deter-
mine the next co-attention location. At each step t , the agent
would generate a mean value µt based on the history of past
observations htconca:

µt = fµ(wlhtconca + bl), (3)

where wl and bl are the weights and bias of coordinate cal-
culation, respectively; htconca is the concatenation of internal
states hta and h

t
b. The activation function is fµ(x) = ex−e−x

ex+e−x .
Gaussian distribution is generated by the mean µt and a
fixed standard variance σ , and its probability density func-
tion (PDF) is shown as follows:

f (x|µt , σ 2) =
1

√
2πσ

exp
(
−
(x − µt )2

2σ 2

)
. (4)

A noise value x is stochastically choosen from the above
Gaussian distribution, and x is combined with the mean µt

to determine the next co-attention location:

l t = µt + x. (5)

It is worth noting that the co-attention location l is generated
by a two-component Gaussian, and the two components cor-
respond to the horizontal coordinate and vertical coordinate,
respectively. Eq.(4) defines the PDF of Gaussian distribu-
tion for each component. In order to describe the inference
procedure conveniently, we only describe the generation of
one coordinate and use l to represent the location. A small
variance value is chosen as σ = 0.17, since the range of eye
movement at each step would not likely be drastic.

The agent applies the identification action aid to learn
from the image-identity correspondence relations and use
the learned knowledge for matching other unseen pedes-
trians [31]. The local attention features X = {xi}ni=1 are
extracted from a mini-batch of n images, and the identity
class labels of these images are denoted as Y = {yi}ni=1.
These training images capture mid different persons (i.e. yi ∈
[1, · · · ,mid ]). Consequently, the identification action aid
adopts a softmax output:

pi = p(y = yi|xi) =
exp(wixi + bi)∑
k exp(wkxk + bk )

, (6)

where wk and bk refer to the identification weight and bias of
the training identity class k .

The triplet ranking action atr is utilized to mine hard sam-
ples for learning critical information. An anchor sample xaj
is randomly selected from camera A in the mini-batch of mtr
anchor samples (i.e. j ∈ [1, · · · ,mtr ]), and the triplet ranking
action atr of xaj is performed as follows:

zaj = m+max d(xaj , x
+

b )−min d(xaj , x
−

b ), (7)

where x+b and x−b respectively represent all positive and
negative samples of xaj in this mini-batch from camera B;
d(xaj , x

+

b ) and d(xaj , x
−

b ) indicate the Euclidean distance of
positive image pairs and negative image pairs, respectively.
The agent carries out the action atr to mine the hardest posi-
tive sample and the hardest negative sample through ranking
max d(xaj , x

+

b ) (i.e., maximum distance) and min d(xaj , x
−

b )
(i.e., minimum distance) with a margin value m = 0.3.
This is in the spirit of online triplet selection [18], [35]. The
image pairs selected within a mini-batch perform content-
aware actions since their concatenation htconca is dependent on
pairwise environment. Specifically, in the sequential decision
process with T time steps, the location action al is executed
in the first T − 1 steps, while at the last step T, CNN is
utilized to learn global discriminative features concatenated
with internal representations later. The joint feature vectors
are exploited to perform the identification action aid and the
triplet ranking action atr at step T.
Rewards: The reward function is defined as R =

∑T
t=1 r

t .
At each step t , based on the history of past interactions with
the environment, ht−1a and ht−1b , the agent needs to learn
co-attending to the appropriate local regions (gta, g

t
b) of image

pair (xa, xb), which is subject to re-id matching criterion. And
then the agent takes the above actions al , aid and atr . If the
actions serve long term interests such as selecting the dis-
criminative local regions or keeping away from occlusions,
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they should be encouraged, otherwise they should be pun-
ished. Thus, rt is defined to get a scalar feedback signal to
fulfill the encouragement or punishment in each step t as
follows:

r t =
mid∑
i=1

I (y = yi)+
mtr∑
j=1

I (zaj 6 0), (8)

where y and yi are respectively the prediction value and
identity label in Eq.(6), zaj is the result of Eq.(7), and I (x)
is the indicator function, i.e., I (x) equals to 1 when x is true
and 0 otherwise. Intuitively, the term I (y = yi) commits a
positive reward if the correspondence relation between atten-
tion region and identity is proper, or no reward otherwise. The
other term I (zaj 6 0) encourages the true rank of matching
in the selected triplets from one batch. Finally, the rewards
of all mid identities and mtr triplets within a mini-batch are
accumulated to teach the agent to focus its attention on the
discriminative regions.

C. HYBRID OBJECTIVE FUNCTION
The parameters in the location training are learned so as to
maximize the total reward. Most parameters just involve the
gradients of the CNN (feature extraction) and RNN (obser-
vation memory), which can be computed by standard back-
propagation [41]–[43]. However, our co-attention location
generation adopts a non-differentiable stochastic unit with the
condition input, while reinforcement algorithm is powerful to
optimize the stochastic unit by a sample approximation to the
gradient [27], [44]. It is formulated as:

∂r t

∂µt
= (r t − bt )

x − µt

σ 2 , (9)

where r t is calculated from Eq.(8); µt is the mean of the
co-attention locations in Eq.(3) and is also the input of rein-
forcement learning; f (x|µt , σ 2) is shown in Eq.(4), which is
the PDF of a two-component Gaussian distribution; x is the
random sampled value; σ is set to a fixed standard deviation;
bt is a baseline value to reduce the variance of the gradient
of r t w.r.t. µt [27], [45], and in this work bt is the linear
transformation of htconca. b

t is learned via lb = (bt − r t )2.
By making bt a moving average of r t , the baseline bt learns
in effect at the same rate as the rest of the model.

Furthermore, the correct label associated with a training
sample is known at the end of an observation sequence. Then
in a mini-batch the cross entropy loss lid [31], [46] is utilized
to train the identification action aid , and the triplet loss ltr [35]
is applied to train the triplet ranking action atr . lid and ltr are
shown as follows:

lid = −
mid∑
i=1

(yi ln(pi)+ (1− yi) ln(1− pi)), (10)

ltr =
mtr∑
i=1

[m+max d(xa,i, x
+

b,i)−min d(xa,i, x
−

b,i)]+. (11)

where [· ]+ truncates the involved variable at zero. Finally,
a hybrid objective function is constructed to optimize

actions al , aid and atr as follows:

l = λ1lid + λ2ltr + λ3lb − λ4R, (12)

where λ1 = 1, λ2 = 1, λ3 = 0.5 and λ4 = 1 are hyperpa-
rameters. The hybrid loss is optimized to train the recurrent
models and backpropagate the gradients through the models.
It is worth nothing that the gradients of location training are
always learned by the sample approximation techniques from
reinforcement algorithm [27], [44].

D. TEST PHASE
In the test phase, the learned co-attention network RMCA is
applied to all test pedestrian image pairs. The test process
mainly includes three steps. First, given any test pedestrian
image pair and the co-attention coordinates learned by the
location policy, the sequential co-attention regions are gener-
ated. Then, the learned recurrent models are used to extract
features from the sequential co-attention regions and produce
internal representations over time. At last, a joint feature
vector is obtained by concatenating internal representation
and the deep global feature vector extracted at time step T.
The joint feature vector is used to compute Euclidean distance
between such image pair.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The proposed RMCA are implemented in the PyTorch
framework. The main configuration of our computer is
2 × NVIDIA GeForce GTX 1080 Ti GPUs. Before train-
ing the RMCA model, we pre-train the base network
ResNet50M [42] with the standard softmax classification
on the ImageNet dataset [47] for model initialization. After
pre-training, we remove the last two layers and output
3072-dimension feature vector of the pre-trained ResNet50M
network to initialize the global CNN part of our model intro-
duced in Section III-B. The dimension of the RNN hidden
layer is set to 1024. In all of experiments, pedestrian images
are resized to 256 × 128 in pixel, while the size of local
co-attention regions is set to 112 × 56. The local feature
gt is obtained by linear transformation, which is simple but
effective. Certain complex CNN feature extraction may be
valuable but inevitably involves in increasing computation
and complexity. The time step T of RNN is set to 5. The
model is trained by 240 epochs with stochastic gradient
descent (SGD) algorithm. The learning rate is initialized as
0.003 and changed to 0.0003 in the last 120 epochs.

In addition, to overcome the imbalance issue of positive
pairs and negative pairs in the training set of triplet ranking
action, we augment data by following the common techniques
such as random translational transforms [5], random horizon-
tal flips and random crops [48] on each pedestrian image. The
triplet mini-batches are generated through the online triplet
mining strategy [35], which can produce more triplets by
randomly shuffling the dataset according to identity labels.
Each mini-batch includes sixteen persons/identities, and each
of them has four images.
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TABLE 1. The experimental setting on three person re-id datasets. The person bounding box split on CUHK03 only shows the first random split.
SQ: Single-Query; MQ: Multi-Query; SS: Single-Shot; MS: Multi-Shot.

FIGURE 3. Examples of pedestrian image pairs from (a) Market-1501
dataset, (b) CUHK03 dataset with manually cropped person images,
(c) CUHK03 dataset with automatically detected bounding boxes, and
(d) CUHK01 dataset.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
1) EXPERIMENTS ON MARKET-1501
RL needs large data for model training. Market-1501 [29]
and CHHK03 [5] is currently the largest and the second
largest public available image-based re-id datasets. Thus,
it is natural to choose these two datasets for our models.
Market-1501 [29] is a realistic person re-id dataset cap-
tured from six camera views of different resolutions in front
of a campus supermarket at Tsinghua University. It con-
tains 32,668 bounding box images of 1,501 pedestrians.
Fig. 3(a) shows several examples of Market-1501 bound-
ing box images. The standard split setting [29] is adopted,
i.e., 751 pedestrians are used for training and 750 for test.
The training set includes 12,936 images. The test set con-
tains 3,368 query images and 19,732 gallery images with
junk and distractor ones. The training/test data splits and
testing settings of each dataset is summarized in Table 1.
The cumulative matching characteristic (CMC) curve is
employed to measure the performance of the proposed
method on Market-1501 dataset and the following two
datasets. Besides, mean Average Precision (mAP) is also
adopted in Market-1501 to compute the mean of aver-
age precision over all probes, since there is an average of
14.8 cross-camera ground truth matches for each query.

The proposed RMCA is compared with fourteen state-
of-the-art methods under both the single-query and multi-
query settings in Table 2. Our RMCA achieves comparable
results with other methods. Although the rank-1 and mAP
performance of RMCA under multi-query setting are slightly
inferior toHA-CNN [17], it achieves the best rank-1matching
rate of 91.9% and mAP of 78.6% under single-query set-
ting. Specifically, our model improves the single-query mAP
by 2.0%, which indicates that the co-attention mechanism
is not only capable of searching the most obvious ground

TABLE 2. Comparison of state-of-the-art methods on Market-1501 with
both single-query and multi-query settings. The cumulative matching
scores (%) at rank-1 and mAP (%) are listed.

truth match, but also is robust for diverse multi-camera pedes-
trian variations.

To validate the statistical significance of our model per-
formance, we execute a Wilcoxon signed-rank test on the
Market-1501 results. The test verifies that the improvements
in accuracy and mAP rates are statistically significant at the
4% significance level.

2) EXPERIMENTS ON CUHK03
As shown in Table 1, the CUHK03 dataset [5] contains
13,164 images of 1,360 pedestrians captured from six non-
overlapping cameras over months. Each person is observed
by two disjoint camera views and with approximately
2∼5 images in each view. This dataset is constructed by
both manually labeled pedestrians and automatically detected
bounding boxes. Examples of CUHK03 dataset are demon-
strated in Fig. 3(b) and Fig. 3(c). The automatically detected
dataset has a realistic setting because misalignment, occlu-
sions, and missing body parts are common in this dataset.
We follow the standard protocol [5]. That is, the dataset is
partitioned into 1,260 persons for training and 100 persons
for test. The experiments are conducted with 20 random splits
for calculating the average performance. The CMC curve is
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FIGURE 4. CMC curves and rank-1 identification rates for methods comparison on (a) the CUHK03 dataset with manually labeled pedestrian
bounding boxes, (b) the CUHK03 dataset with automatically detected bounding boxes and (c) the CUHK01 dataset with 485/486 split.

TABLE 3. Comparison of state-of-the-art methods on CUHK03 with
labeled setting. The cumulative matching scores (%) at rank-1, 5, 10 and
20 are listed.

computed with the single-shot setting for both labeled and
detected dataset.

According to Fig. 4(a) and Table 3, the proposed method
achieves the best rank-1, rank-5 and rank-10 recognition rate
of 90.6%, 98.6% and 99.4% on labeled CUHK03 dataset,
although the rank-20 matching rate is slightly inferior to
CAN [18]. Fig. 4(d) and Table 4 present the performances
of the proposed method and other state-of-the-art methods
using automatically detected bounding boxes. The result
of the detected CUHK03 is usually inferior to the labeled
CUHK03 due to the misalignment and occlusions caused by
the detector, and the performances of other methods drop sig-
nificantly, such as another attention based method CAN [18]
dropping in rank-1 identification rate by 8.4%. However, our
RMCA only decreases by 1.5% and surpasses the second best
CRAFT-MFA [59] by 4.8%, which exhibits that RMCA is
more robust to misalignment and occlusions.

3) EXPERIMENTS ON CUHK01
We further evaluate RMCA on the CUHK01 dataset [30].
As shown in Table 1, this dataset only contains 971 persons

TABLE 4. Comparison of state-of-the-art methods on CUHK03 with
detected setting. The cumulative matching scores (%) at rank-1, 5, 10 and
20 are listed.

collected from two camera views in a campus environment.
Each person only has two images in each camera view. The
images in camera A are usually the side views of pedestri-
ans, while the images in camera B are nearly the frontal or
back view of pedestrians. It is obvious that the population
size of CUHK01 is much smaller than Market-1501 and
CUHK03 datasets. In addition, we follow a challenging split
protocol [1], [18], [62] containing 485 persons for the training
and 486 for the test. The random training/test split procedure
is repeated 10 times and the average of CMC performance in
multi-shot test setting [1] is reported in Fig. 4(c) and Table 5.
CUHK01 is challenging for our method, since the small
number of samples cannot allow to mine the full potential
of RL. Typically, RL does need large data for model train-
ing. The evaluation on CUHK01 is a “potential/extreme”test,
which however is not given in most existing re-id attention
methods, i.e. our test is more comprehensive in this sense.
And some hand-crafted re-id methods are very competitive
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TABLE 5. Comparison of the state-of-the-art methods on CUHK01 with
486 test identities. The cumulative matching scores (%) at rank-1, 5, 10
and 20 are listed.

with their respective strengths particularly on small datasets
like CUHK01. Encouragingly, our proposed method behaves
robustly and outperforms most competitors except for the
rank-1 of MSE-VCM [57].

4) COMPARISON TO EXISTING ATTENTION METHODS
To further demonstrate the effectiveness of our co-attention
mechanism based on reinforcement learning, we specifically
make a comparison between our method and several exist-
ing attention methods in the Table 2, Table 3, Table 4 and
Table 5, including CAN [18], HA-CNN [20], DuATM [17]
and IDEAL [40]. CAN [18] generates the attention regions by
masking CNN feature map. In DuATM [17], there is no cor-
relation across the temporal attention regions. HA-CNN [20]
jointly learns the soft pixel attention and hard regional atten-
tion. IDEAL [40] just use RL to post-detect auto-detected
bounding boxes to assist re-id. The existing attention meth-
ods are not quite consistent with human vision percep-
tion. Instead, we first introduce the temporal co-attention
mechanism to simulate the scan order of human eyes and
adopt reinforcement learning to perform this process. Since
reinforcement learning provides a flexible learning strategy
for sequential decision-making. The results also suggest the
superiority of our RMCA over other attention methods.

C. EXPERIMENTAL ANALYSIS OF THE
PROPOSED METHOD
1) EFFECT OF TIME STEP LENGTH
We evaluate the rank-1 identification rates using differ-
ent number of time steps on both detected and labeled
CUHK03 dataset, and the step number varies from 2 to 7.
As shown in Fig. 5, the identification rates are gradually
improved when the number of time steps increases from

FIGURE 5. The rank-1 identification rate of our proposed method on
labeled CUHK03 and detected CUHK03 datasets. The number of time
steps varies from 2 to 7.

2 to 5, while more steps bring no obvious improvement
instead of extra computation and complexity. Therefore, it is
a tradeoff to choose 5 steps in our model for the accuracy and
computational cost.

2) EVALUATION OF ACTION DESIGN
At the last step T of the sequential decision process, we intro-
duce the identification action aid and the triplet ranking
action atr to facilitate the agent to interact with the pair-
wise image environment and locate the optimal co-attention
regions. The combination of both actions is complementary.
We evaluate the performance of the proposed method without
the action aid or atr to analyze their importance in ourmethod.
We also conduct the experiments only adopting the hybrid
loss rather than co-attention mechanism.

As shown in Table 6, the accuracies of the comparative
results would decline without the identification action aid ,
the triplet ranking action atr , or the co-attention mechanism.
And the lack of aid would lead to further decline compared
with the absence of atr . All these results indicate that the
combined actions of aid and atr , as well as co-attention
mechanism are helpful for improving the accuracy. The iden-
tification action aid makes better use of the multi-shot char-
acter of three datasets (each identity has multiple images),
and is more about learning discriminative features from the
image-identity correspondence relations. The triplet rank-
ing action atr enables the agent to mine the hard positive
and negative samples for learning critical information. The
co-attentionmechanism enables the agent to adaptively locate
the discriminative regions.

3) VERIFICATION OF IMAGES WITH OCCLUSION
In the test phase, to observe the learned sequential
co-attention processes, we randomly save some image pairs
with co-attention region boxes. And we find that these region
boxes are generally located in the salient parts of images
and adaptively keep away from the occlusion, which is in
accordance with the objective of reinforcement learning.
Therefore, our co-attention mechanism is potentially robust
to occlusions, which may be in a minority but are the most
difficult cases in person re-id.

The following experiments are designed to evaluate the
specific impact of occlusions to our RMCA and other
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TABLE 6. Performance comparison (%) on Market-1501, CUHK03 and CUHK01, adopting different actions in reinforcement learning, or performing
without co-attention mechanism. The cumulative matching scores (%) at rank-1, 5, 10 and 20, as well as mAP (%) are listed.

FIGURE 6. CMC curves for methods comparison on occluded images of
labeled CUHK03 dataset(one split).

FIGURE 7. Visualizing the co-attention regions of different time steps
learned by our method on four occlusion test samples from the labeled
CUHK03 dataset. Each column indicates a time step, and for each orange
frame, the left-most image pair is at the first time step.

four methods, including LOMO+XQDA [1], MLAPG [33],
GOG [2] and MSE-VCM [57]. First, we choose one split
from the experiments on labeled CUHK03 dataset. Then,
we pick out 50 occluded images from its test probe images
while remaining the same 100 test gallery images. Finally,
the comparison experiments are conducted on the particular
test dataset. As shown in Fig. 6, the rank-1 matching rates of
LOMO + XQDA, MLAPG, GOG, GLM-VCM and RMCA
are 32%, 34%, 50%, 62% and 79%, respectively. They are
compared with those using all 100 probe images, decreasing
21%, 23%, 19%, 10% and 7%, respectively. Thus it can be
seen that, compared to other four methods, our RMCA is less
influenced by occlusions due to the co-attention mechanism
based on reinforcement learning. In Fig. 7, we visualize the

co-attention regions of different time steps learned by our
method on three occlusion test samples from the labeled
CUHK03 dataset. These co-attention processes support the
conclusion that RMCA is able to ignore occlusions while
concentrating on the relevant regions during eye movements.

V. CONCLUSION
In this paper, we propose to apply reinforcement learning
based on RNN architecture to simulate local co-attention
matching in person re-id. For any pedestrian image pair,
the proposed model can adaptively select the optimal
sequence of co-attention regions through the agent that inter-
acts with the pairwise image environment. Extensive exper-
iments on three challenging datasets demonstrate that our
method achieves the comparable performance versus the
state-of-the-art methods, especially increases robustness to
occlusion cases. In the future, we will augment the model
with another action. The added action would allow the agent
to focus on the local regions of different scales toward various
image pairs, which will be more flexible and targeted for
matching image pairs.
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