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ABSTRACT D-optimal designs are frequently used in controlled experiments to obtain the most accurate
estimate of model parameters at minimal cost. Finding them can be a challenging task, especially when there
are many factors in a nonlinear model. As the number of factors becomes large and interacts with one another,
there are many more variables to optimize and the D-optimal design problem becomes high-dimensional and
non-separable. Consequently, premature convergence issues arise. Candidate solutions get trapped in the
local optima, and the classical gradient-based optimization approaches to search for the D-optimal designs
rarely succeed. We propose a specially designed version of differential evolution (DE), which is a repre-
sentative gradient-free optimization approach to solve such high-dimensional optimization problems. The
proposed specially designed DE uses a new novelty-based mutation strategy to explore the various regions in
the search space. The exploration of the regions will be carried out differently from the previously explored
regions, and the diversity of the population can be preserved. The proposed novelty-based mutation strategy
is collaborated with two common DE mutation strategies to balance exploration and exploitation at the early
or medium stage of the evolution. Additionally, we adapt the control parameters of DE as the evolution
proceeds. Using the logistic models with several factors on various design spaces as examples, our simulation
results show that our algorithm can find the D-optimal designs efficiently and the algorithm outperforms its
competitors. As an application, we apply our algorithm and re-design a 10-factor car refueling experiment
with discrete and continuous factors and selected pairwise interactions. Our proposed algorithm was able to
consistently outperform the other algorithms and find a more efficient D-optimal design for the problem.

INDEX TERMS Approximate design, design efficiency, generalized linear model, high-dimensional,
non-separable, sensitivity function.

I. INTRODUCTION
Optimal design problems frequently arise in scientific inves-
tigations when we want to obtain the most accurate sta-
tistical inference at minimal cost. For example, D-optimal
designs are commonly used to estimate parameters in the
statistical model by minimizing the volume of the confidence
ellipsoid of the parameters. When the model is nonlinear,
the design criterion contains the unknown model parameters,
which we want to estimate. Nominal values for the parame-
ters are required to replace the unknown parameters before

optimization and the resulting optimal design is termed
locally optimal [1], [2] because it depends on the nominal
values. Nominal values for the parameters may come from an
expert’s opinion or from a pilot study. The locally D-optimal
design is then implemented to generate data to estimate the
model parameters and the estimated parameters become the
nominal values in the next step. The expectation is that after
a couple of iterations, the estimates will become stable.

In the statistical literature, the optimal design is usually
found from theory and when the model is nonlinear, there is
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usually only one or two factors. The theoretical approach
encounters mathematical difficulties when the nonlinear
model has several factors or the design criterion becomes
complicated. Under such situations, our experience is that the
classical optimization numerical techniques fail to find the
locally optimal design or they become very inefficient. This
is because as the number of factors in the model increases,
the number of parameters in the model also increases. Con-
sequently, the number of design points for the optimal design
increases, resulting in having substantially many more vari-
ables to optimize. Thus, the design problem becomes quickly
high-dimensional and also non-separable when factors inter-
act with one another. Premature convergence can become a
severe issue since solutions can easily get trapped in local
optima.

Nature-inspired metaheuristic algorithms are now increas-
ingly applied to solve a large variety of complicated
optimization problems [3], [4]. Particle Swarm Optimiza-
tion (PSO) [5] is one such algorithm [5]–[7], which has been
recently used to solve various optimal design problems in the
statistical literature [8]–[10]. However, the D-optimal design
problems in these papers have only 3 or fewer factors in
the statistical model and so premature convergence may not
be an issue. Since PSO exerts the selective pressure onto
some current best solutions termed as gbest and pbest , our
experience is that models with 4 or more factors can cause
PSO to experience premature convergence and make PSO
less effective [11], [12].

Differential Evolution (DE) is an algorithm from a family
of gradient-free algorithms-evolutionary algorithms. Muta-
tion, crossover and selection are three fundamental operations
in DE [13], [14]. One advantage that DE has over other
evolutionary algorithms is that it has fewer control parame-
ters [15]–[17], and works well in handling numerical opti-
mization problems [18]–[21]. Compared with PSO, DE can
alleviate the premature convergence issue moderately [13]
since most of the mutation strategies of DE do not exert the
selective pressure onto the current best solution [22]–[26].
However, based on the studies of DE variants for solving
high-dimensional problems, there is no specially designed
mechanism to explore various but novelty regions in the
search space and to preserve the diversity of the population.

To circumvent the above issues and also motivated by
novelty search methods [27], [28] which are capable of
escaping from local optima by trying some novelty solutions
for efficient exploration, we propose a new novelty-based
mutation strategy. At the start of the evolution, a portion
of individuals are randomly selected as the novelty-based
individuals, and their aim is to explore various individuals
which are potentially to be novelty individuals. For each
novelty-based individual, we sample some difference vectors
to be added to the current individual. Among these sampled
difference vectors, we select the one which has the largest
angle differences from the difference vector used in the pre-
vious generation. Each novelty-based individual explores the
region of the search space different from the region explored

in the previous generation so that novelty solutions can be
obtained. As evolution proceeds, various regions of the search
space would be explored and the diversity of the population
is enhanced. The novelty-based mutation strategy is com-
bined with two commonmutation strategies, ‘DE/rand/2’ and
‘DE/current-to-rand/1’. These two mutation strategies can
balance the exploration and exploitation well at the early or
medium stage of evolution as compared with other mutation
strategies [29]. When the individuals obtained from these two
mutation strategies converge, the novelty-based individuals
can provide information of these recently explored regions in
the search space so that these convergent individuals can both
exploit in their current region and explore more regions in the
search space.

We apply the proposed algorithm to generate locally
D-optimal designs for logistic models with several factors
with and without interactions on various design spaces.
Logistic regression models have a binary response with one
or more factors and is among the most frequently used
in scientific investigations across many disciplines. Using
a broad simulation study, we show our proposed algo-
rithm consistently outperforms several of its top competitors.
As an application, we implement our DE based algo-
rithm to re-design a 10-factor car refueling experiment with
both discrete and continuous factors, with and with factor
interactions.

The remainder of this paper is organized as follows.
Section II introduces statistical background and locally
D-optimal designs for logistic regression models. It also
reviews previous applications of using PSO to solve optimal
design problems and a literature review of DE algorithms.
In Section III, we propose a new DE algorithm NovDE and
in Section IV, we apply it to construct and study properties of
D-optimal designs on various design spaces. In Section V,
we apply the proposed algorithm to generate D-optimal
designs for a ten-factor car refueling experiment with and
without factor interactions and there are mixed factors in the
experiment. Section VI concludes with a summary of our
work.

II. BACKGROUND
A. LOCALLY D-OPTIMAL DESIGNS FOR
LOGISTIC REGRESSION MODELS
A generalized linear model is commonly used to study the
mean of a response variable Y as a function of n inde-
pendent variables [1]. We focus on models with a binary
response variable even though the methodology proposed
herein applies more generally. Let E(Yl) = µl and let
ηl=rT (x)β be the linear predictor, where r(x) is a user-
selected regression function that depends on the n factors.
Additionally, let g(.) be a monotonic function such that
g(µl) = ηl [30]. Some common choices for the regression
function are r(x)T = {1, x1, · · · , xn} (additive model) or
r(x)T = {1, x1, · · · , xn, x1x2, · · · , xn−1xn} (model with all
pairwise interaction terms). We assume Yk is independent of
Yl if l 6= k and the design space is user-selected compact set
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and contains all allowable combination levels of the factors
to observe the response.

For the logistic model, we have

g(µl) = log(
µl

1− µl
) = ηl (1)

Our goal is to find an optimal set of factor levels x1, · · · , xL
to estimate the vector of parameters β in the linear predic-
tor [2], [31] when we are given resources to take N observa-
tions. This means that we determine the optimal number of
support points required, i.e. the value of L, the best choices
of the support points x1, · · · , xL from a given design space
and the optimal number of replicates at ni at xi, i = 1, · · · ,L
subject to n1 + · · · + nL = N . The upshot is we have a con-
strained optimization problem where some of the variables
to be optimized are positive integers and constrained to sum
to N .

Following [31], the worth of a L-point design ξ with nl
replicates at xl is determined by its Fisher information matrix
defined by

Iξ =
L∑
l=1

nlϒ(ηl)r(xl)r(xl)T , (2)

where ϒ(ηl) =
(dul/dηl )

2

ul (1−ul )
. For the logistic regression model,

the link function is the logit function in (1) and

ϒ(ηl) =
1

2+ eηl + e−ηl
=

eηl

(1+ eηl )2
. (3)

A locally D-optimal designmaximizes the log-determinant
of the Fisher information matrix Iξ in (2), or equivalently
minimizes the generalized variance of the estimates of the
parameters. Thus, D-optimal designs provide the most accu-
rate estimates of all the model parameters in β. Clearly,
Iξ depends on β and so nominal values for β are required
before optimization. Frequently, the nominal values for β
come from prior experiences or a pilot study [32].

We focus on approximate designs obtained by replacing
each nl bywl = nl/N , the proportion of the total observations
to be taken at xl . More generally, we allow wl to take on any
value between 0 and 1 and doing so turns the problem into
a convex optimization problem where convex optimization
tools can be used to find and verify optimality of a design.
Designs with weights w′is that sum to unity are called approx-
imate designs.

For D-optimality, the design criterion is −log|I (ξ, θ)| and
this is a convex function over the space of all approximate
designs on the given and compact design space of inter-
est [1]. Following [33], the approximate design ξ∗ is locally
D-optimal among all designs if and only if for all x in the
design space, the following checking condition is satisfied:

eβ
T r(x)

(1+ eβT r(x))
2 r(x)

T I−1ξ∗ r(x)− k ≤ 0 (4)

with equality at each support point of ξ∗. Here k is the
dimension of β and the left-hand side of (4) is sometimes
called the sensitivity function.

Often, the worth of a design ξ is measured by its efficiency
relative to the optimal design ξ∗ [1]. For D-optimality, the
D-efficiency of a design ξ is(

det(Iξ )
det(Iξ∗ )

)1/k

.

If its D-efficiency is near 1, ξ is close to ξ∗. If the theoretical
optimal design ξ∗ is unknown, the proximity of a design ξ
to ξ∗ can be determined from convex analysis theory. Specif-
ically, its D-efficiency is at least exp(−θ/k), where θ is the
maximum positive value of the sensitivity function across the
entire design space [34]. If the D-efficiency lower bound is
close to 1, the design ξ is close to the D-optimal design ξ∗.

B. FUNDAMENTALS OF DIFFERENTIAL EVOLUTION
Differential Evolution (DE) was proposed by Storn and
Price [13] in 1995. It is a population-based optimization
algorithm that searches for the optimum iteratively. DE is
simple to implement and has good performance for solv-
ing various types of optimization problems. Compared with
other evolutionary algorithms (EA), the space complexity
of DE is low [14] and number of control parameters in DE
is small [15]–[17]. There are two control parameters in DE;
a scaling factor F for mutation and a crossover rate CR
for the crossover operation. The parameter F controls the
convergence speed and the parameterCR affects both the con-
vergence and the diversity of the population [13], [35], [36].

To fix ideas, suppose f (X ) is the given objective func-
tion and we want to minimize it over a user-selected
D-dimensional space comprising the decision variables.
DE has three main operations: mutation, crossover and selec-
tion. Each solution of generation g is represented by Xi,g,
where i is the index of the corresponding solution. Sometimes
Xi,g is referred to as the target vector, which needs to be
updated for the next generation g + 1. Mutation generates a
mutant vector Vi,g, followed by a crossover which then gen-
erates a trial vector Ui,g based on both Vi,g and Xi,g. The next
step is Selection, where a decision is made whether to update
the solution Xi,g+1 from Ui,g or Xi,g based on their objective
function values. Some details for the three operations follow.

1) MUTATION
Each target vector Xi,g generates a new individual, called
the mutant vector Vi,g and some frequently used mutation
strategies are listed below.

‘‘DE/rand/1’’:

Vi,g = Xr1,g + F · (Xr2,g − Xr3,g) (5)

‘‘DE/rand-to-best/2’’:

Vi,g = Xi,g + F · (Xbest,g − Xi,g)+ F · (Xr1,g − Xr2,g)

+ F · (Xr3,g − Xr4,g) (6)

‘‘DE/rand/2’’:

Vi,g = Xr1,g + F · (Xr2,g − Xr3,g)+ F · (Xr4,g − Xr5,g)

(7)

VOLUME 7, 2019 7135



W. Xu et al.: Finding High-Dimensional D-Optimal Designs for Logistic Models via DE

‘‘DE/current-to-rand/1’’:

Vi,g = Xi,g + K · (Xr1,g − Xi,g)+ F · (Xr2,g − Xr3,g) (8)

In (8), K is randomly generated from [0, 1]. The subscripts
r1 to r5 of X in (5)−(8) represent the random individuals
selected from the population pool.

2) CROSSOVER
Crossover operation is employed after mutation. In crossover,
themutant vectorVi,g is recombinedwith the original individ-
ual Xi,g to form the trial vector Ui,g. Two types of crossover
schemes of DE are binomial crossover and exponential
crossover. Binomial crossover is commonly used in DE to
determine the trial vector as follows [24]:

uji,g =

{
vji,g, rand(0, 1) ≤ Cr j =jrand
x ji,g, otherwise

(9)

where jrand ∈ {1, 2, 3, · · · ,D} is a randomly selected index
to ensure that the trial vectorUi,g can get at least one variable
from the mutant vector Vi,g. The notation rand(0,1) is a
uniform random number from the interval [0,1] and Cr is the
pre-specified crossover rate.

An exponential crossover is another way to implement
a crossover [37]. An integer z is randomly generated
from [1,D]. Another integer L, i.e. the length of decision
variables to be mutated, is determined as follows:

L=0
WHILE(rand(0,1)≤ Cr AND L≤ D)
DO(L=L+1)
If L ≥1, the trial vector Ui,g is generated as follows:

uji,g =

{
vji,g, for j = z, z+ 1, z+ 2, · · · z+ L − 1

x ji,g, otherwise
(10)

If L = 0, then Ui,g is identical to Xi,g.

3) SELECTION
Selection is the last step to determine whether the trial vector
Ui,g survives to enter the next generation based on the objec-
tive function value f (Ui,g).
The selection operation in DE is described below:

Xi,g+1 =

{
Ui,g, if f (Ui,g) ≤ f (Xi,g)
Xi,g, otherwise

(11)

C. LITERATURE REVIEW OF DIFFERENTIAL EVOLUTION
1) THE ADAPTATION SCHEME OF CONTROL PARAMETERS
The success of DE in solving a specific problem crucially
depends on the appropriate choice of mutation strategies and
the associated control parameter values. Many DE studies
have proposed new mutation strategies that stayed constant
for the entire evolution process but a few such as SaDE [29]
have proposed an adaptive approach to select appropriate
mutation strategies based on the successful experiences in the
previous generations.

In terms of the control parameter adaptation schemes, most
DE studies adapt the control parameters F and CR based
on a pre-defined distribution. The mean of this distribution
depends on the successful F orCR values in the previous gen-
erations. In [38], a new crossover method Multiple Exponen-
tial Recombination (MER) that combines the advantages of
binomial crossover and exponential crossover was proposed
to solve the non-separable problems, where the decision vari-
ables are dependent on each other [39]. It has been shown
both theoretically and empirically that for the same value
ofCR, MER can result in improved performances. Hence, it is
promising to embed MER into the control parameter adap-
tation schemes when we solve non-separable optimization
problems.

2) HIGH-DIMENSIONAL PROBLEMS
For solving high-dimensional problems, DE algorithms have
a cooperative coevolution (CC) framework and a noncoop-
erative coevolution framework [40]. CC-based framework
partitions either the entire population into subpopulations,
or partitions the entire decision variables into subcompo-
nents. The optimization process is both parallel within each
subgroup and centralized for the entire group. In [41],
DECC-DML adopted CC framework, and the new partition
strategy called delta grouping was proposed. To empha-
size the interaction between variables in the same group,
the improvement interval of interacting variables in differ-
ent group would be limited. DECC-DML was efficient in
solving non-separable problems with one group of rotated
variables but not so when there are multiple groups. In [42],
DCDE applied the CC framework and a ring connection
to enhance the interactions among variables between differ-
ent groups so that the search behavior of exploration and
exploitation can be balanced. DCDE was capable of solving
some non-separable and multimodal high-dimensional prob-
lems. In [43], DDE-AMS was proposed to solve the high-
dimensional problems by a distributed differential evolution
with adaptive mergence and split on subpopulations. The
mergence and split operators made full use of the population
resource to efficiently solve the problems in a cooperative
and efficient way. For non-CC frameworks, most of the DE
studies focused on adding adaptive mechanisms into the algo-
rithms or proposed new mutation strategies. In [44], both
F , CR, population size and mutation strategies were adapted
and in [40], a new triangular mutation strategy was proposed.

III. PROPOSED ALGORITHM: NOVDE
A. OVERVIEW
Since the D-optimal design problems in this paper are high-
dimensional and non-separable, premature convergence can
be a severe issue with solutions easily getting trapped as local
optima. Compounding the problem is that most of the state-
of-the-art DE methods do not have a special mechanism to
preserve diversity of the solutions and so the issue of prema-
ture convergence is not completely solved. For the mutation
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strategies such as ‘DE/rand-to-best/2’, solutions tend to be
close to the current best region thus limiting the exploration
capability at the early stage. For the mutation strategies such
as ‘DE/rand/2’ or ‘DE/current-to-rand/1’, solutions tend to
be close to each other at the early or medium stage of the
evolution. Thus, to circumvent the issue of premature conver-
gence of DE-based algorithms for solving high-dimensional
and non-separable optimization problems, a mechanism of
exploring various regions of the search space should be
specially designed and combined with other DE mutation
strategies.

Assume that there are n factors in the model and we denote
a L-point design by ξ = ([x11x12 · · · x1np1], · · · , [xl1xl2 · · ·
xlnpl], · · · [xL1xL2 · · · xLnpL]), where pl is the proportion of
the total observations to be taken at the l-th design point
[xl1xl2 · · · xln]. It follows that each individual Xi,g in the
current generation g with population index i is constructed
as Xi,g = (x11x12 · · · x1np1 · · · xl1xl2 · · · xlnpl · · · xL1xL2 · · ·
xLnpL). For an additive model with no interactions among the
factors, the dimension D of Xi,g is (n+ 1)L.

FIGURE 1. The operation of novelty-based mutation strategy. The target
vector is Xi,g, and the difference vector from the previous generation is
di,g−1. In the current generation, the m sampled difference vectors are
d1

i,g · · ·d
m
i,g and θs is the computed angle between d s

i,g and di,g−1, where
s = 1, · · · ,m. The d s

i,g with the largest angle differences θs is selected to
be d∗i,g and the mutant vector Vi,g is generated from Xi,g and d∗i,g.

We propose a new novelty-based DE-based algorithm and
denote it by NovDE to solve our complex optimization prob-
lems using a novelty-based mutation strategy. At the start of
the evolution process, a group of individuals are randomly
selected to be novelty-based individuals. To preserve the
diversity of solutions, various regions of the search space are
explored by these novelty-based individuals. Fig. 1 shows the
difference vector di,g−1 which is the difference between the
trial vector ui,g−1 and the target vector xi,g−1 in the previous
generation g − 1. For the current generation g and a user-
selected value of m, the number of m difference vectors
d1i,g · · · d

m
i,g are sampled. Fig. 1 displays the computed angle θ s

between the sampled difference vector d si,g in the current
generation g and the difference vector di,g−1 in the previous
generation g − 1 where s = 1, 2, · · · ,m. We then add the
difference vector d∗i,g, which has the largest angle difference

between d si,g and di,g−1 among the m samples, to the target
vector xi,g to generate the mutant vector vi,g. This is because
the largest angle differences between d∗i,g and di,g−1 would
enhance each novelty-based individual to explore region in
the search space entirely different than what was explored
in the previous generation g − 1. As the evolution pro-
ceeds, the novelty-based individuals can gradually explore
various and novelty regions in the search space because of
the efficient exploration and the diversity of solutions can be
preserved. The proposed novelty-based mutation strategy is
combined with ‘DE/rand/2’ and ‘DE/current-to-rand/1’ since
they can balance exploration and exploitation at the early or
medium stage of evolution [29]. If the individuals obtained
based on ‘DE/rand/2’ and ‘DE/current-to-rand/1’ are close
to each other, the novelty-based individuals can provide the
information of the recent explored regions of the search space
to those convergent individuals. The convergent individuals
can either exploit in their current region of the search space
or explore more regions of the search space.

The D-optimality criterion is a function of the information
matrix in (2), where xl is part of the consecutive component
in the decision variables. The term xlxTl in equation (2) is
the consecutive variables multiplied by each other, so phys-
ically proximate variables have stronger correlation and the
problem is non-separable. According to [38], the crossover
method MER can solve non-separable problems more effi-
ciently than the binomial or exponential crossover method if
theCR rate is the same. Further,MER updates the consecutive
variables altogether which is more suitable for the structure of
the decision variables in our problem. Thus, MER is selected
to be the crossover method for our problem.

We adapt the control parameters F and CR to find locally
D-optimal designs. The adaptation of F is the same as
the state-of-the-art adaptive DE algorithm SaDE [29] where
the F value for each individual is generated from F =
N (0.5, 0.3). In this way, the value of F falls in the range
[−0.4,1.4] with probability of 0.997, which covers explo-
ration capability when F is large and exploitation capability
when F is small [29]. Because the novelty-based individuals
explore various regions in the search space, F is not required
to be adaptive so it is fixed at 0.5. Our adaptation method
of CR in NovDE is new. A First-in-First-out (FIFO) memory
CRpoolk with a fixed size is applied, and the memory size
for strategy k is proportion to the number of individuals
involved in strategy k . The CRmeank is the mean value of
the successful CR values stored in CRpoolk memory. The
mean value of CRmeank for each strategy k is adapted based
on the success values of CR stored in CRpoolk for strat-
egy k . This adaptation method updates the distribution of
CR more frequently based on the solutions in the current
evolution stage. In NovDE, CR value for each individual
for strategy k is generated from CR = N (CRmeank , 0.1).
The initial value of CRmeank is selected to be 0.7 since if
the value of CR is larger, the exploration would be encour-
aged. At the start of the evolution, exploration should be
encouraged.
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Algorithm 1 NovDE

Require: Target Vector Xi,g = (x1i,g, x
2
i,g, · · · , x

D
i,g), popula-

tion size N , p1=0.45, p2=0.9, sample size m, CRpoolk
with size LPk , where k represents the k−th mutation
strategy.

Ensure: Trial Vector Ui,g = (u1i,g, u
2
i,g, · · · , u

D
i,g).

1: if i ≤ p1 ∗ N then
2: F is generated from N (0.5, 0.3).
3: Xi,g performs ‘DE/rand/2’ to generate mutant vector

Vi,g.
4: end if
5: if p1 ∗ N < i ≤ p2 ∗ N then
6: F is generated from N (0.5, 0.3).
7: Xi,g performs ‘DE/current-to-rand/1’ to generate

mutant vector Vi,g.
8: end if
9: if i > p2 ∗ N then
10: F is fixed to be 0.5.
11: di,g−1 is the differences between trial vectorUi,g−1 and

target vector Xi,g−1 in the previous generation g− 1.
12: Sample number of m difference vectors as d1i,g · · · d

m
i,g.

13: Compute the angle θ s between d si,g and di,g−1 where
s = 1, 2, · · · ,m.

14: d∗i,g is the one with the largest θ
s.

15: The mutant vector Vi,g = Xi,g + F ∗ d∗i,g.
16: end if
17: CR is generated from (CRmeank , 0.1) for different muta-

tion strategy k .
18: Trial vector Ui,g is generated based on MER and the CR

rate.
19: if i > p2 ∗ N then
20: di,g = Ui,g − Xi,g.
21: end if
22: if f (Ui,g) < f (Xi,g) then
23: Record CR value into the corresponding CRpoolk .
24: Perform first-in-first-out operation once the size of

CRpoolk exceeds LPk .
25: Update CRmeank to compute the mean value of ele-

ments in CRpoolk .
26: end if

B. ALGORITHM STRUCTURE
The proposed algorithm NovDE is displayed in Algorithm 1.
In NovDE, three mutation strategies ‘DE/rand/2’, ‘DE/
current-to-rand/1’ and the proposed ‘novelty-based DE’ are
employed to generate the mutant vector Vi,g. Population are
assigned to these three groups to employ one of the mutation
strategies based on the pre-defined ratios p1 and p2. From
step 9 to step 16, the proposed novelty-based DE mutation is
presented. For each novelty-based individual Xi,g, F is fixed
to be 0.5. The number of m difference vectors are sampled
as d1i,g · · · d

m
i,g, and the value of m is user-selected. For each

d si,g in the samples for s = 1, · · · ,m, the angle between

d si,g and the difference vector from last generation di,g−1 is
computed and denoted as θ s. The d si,g with the largest θs
is denoted as d∗i,g. Then in step 15, the mutant vector Vi,g
can be generated based on target vector Xi,g and difference
vector d∗i,g.

For the adaptation of CR, a first-in-first-out memory for
each mutation strategy k is established as CRpoolk with
size LPk . CRpoolk is to store the values of CR that make the
trial vector Ui,g successfully replace the target vector Xi,g for
strategy k . The CRmeank is computed as the mean value of
elements in CRpoolk , and CR for each individual is generated
fromN (CRmeank , 0.1). The crossover method is MER. After
the crossover operation, the novelty-based individuals should
update di,g to be used in the next generation as di,g+1.

IV. EMPIRICAL STUDY
In this section, we evaluate the performance of the proposed
algorithm NovDE for finding locally D-optimal designs for
logistic models on various design spaces with several fac-
tors. Specifically, we compare NovDE with six state-of-
the-art variants of the DE algorithms. ‘DE/rand/2/bin’ [13]
and SaDE [29] are effective in handling general numeri-
cal optimization problems; SaDE+MER [38] is effective in
solving non-separable optimization problems; JADE [23] is
an effective DE variant for its control parameter adaptation
scheme; ANDE [40] and DDE-AMS [43] are effective in
solving high-dimensional optimization problems. In order to
validate the effectiveness of novelty-based mutation, we also
compare the novelty-based mutation combined with the con-
ventional crossover (i.e. binomial crossover), which is termed
as NovDE-Bin. We compare using logistic models on various
design spaces with seven continuous factors and five sets
of nominal values. The design space of each factor is first
selected to be on the prototype interval [−1, 1] before we vary
the design space to [−3, 3], followed by the interval [0, 3].
We next describe the details of our experimental setup for
comparing the four algorithms.

A. EXPERIMENTAL SETUP
1) Population size is 100.
2) The preset upper bound on the number of support points

L is 100.
3) The dimension D of the problem to be optimized for

seven factors without interactions is 800 (=(7 + 1) × 100).
The dimension for each support point is 8, which includes
the number of factors (i.e. 7) and the dimension of the
corresponding portion of observations taken at each support
point (i.e. 1).

4) The evolution process terminates if and when a design
with at least 99.99% D-efficiency is found. Otherwise,
the process terminates when the maximum number of gen-
erations we specify is met. For all our experiments, we set
the maximum number of generation to be 20000.

5) The maximum number of run is 30.
6) For ‘DE/rand/2/bin’, we set F = 0.5 and CR = 0.9

based on the suggested settings in [13],.
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FIGURE 2. Average best-of-run objective function values of 30 independent runs over generations for X = [−1 1]7, X = [−3 3]7 and X = [0 3]7,
respectively. The nominal parameter is β3.

TABLE 1. Performances of NovDE, NovDE-Bin and six competitors for
finding locally D-optimal designs on [−1,1]7 using 5 sets of nominal
values. In each cell, the numbers in the upper line are the mean and
standard deviation of the values of the objective function over 30 runs,
and the number at the bottom line is its success rate. For each set of
nominal values, the best values of the mean and success rates are in
bold. The entries with an ∗ means that NovDE significantly outperforms
the other algorithm based on Wilcoxon rank-sum test.

7) For ANDE, we follow recommendations in [40] and
generate F1, F2, and F3 from the uniform distribution
on [0, 1]. We select CR accordingly to [40] and set LP to 10%
of the maximum generation.

8) For SaDE and SaDE+MER, we set LP = 20 and initial
value of pk = 0.25 for each strategy. The initialCRm for each
strategy is 0.5 and generate the value of F from the normal
distribution [0.5,0.3] based on [29]. For SaDE+MER, we set
T = 10 based on [38].

9) For JADE, we set p = 0.05, c = 0.1 and set µCR = 0.5,
µF = 0.5 as their initial values indicated in [23].

10) For DDE-AMS, we use 4 sub-populations, and set
Up = 25,T = 80,Dr = 0.3, and φ = 0.05,F = 0.5 and
CR = 0.9 based on [43].

TABLE 2. Performances of NovDE, NovDE-Bin and six competitors for
finding locally D-optimal designs on [−3,3]7 using 5 sets of nominal
values. In each cell, the numbers in the upper line are the mean and
standard deviation of the values of the objective function over
30 multiple runs, and the number at the bottom line is its success rate.
For each set of nominal values, the best values of the mean and success
rates are in bold. The entries with ∗ represent NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-sum test.

11) For NovDE and NovDE-Bin, we set p1 = 0.45, p2 =
0.9 and the sample size is m = 10. Initial CRmeank for
each strategy is 0.7 to encourage the exploration at the start
of evolution. The upper bound of CRmeank is 0.9, and the
lower bound of CRmeank is 0.1. For both ‘DE/rand/2’ and
‘DE/current-to-rand/1’, we set LP = 50, and for the novelty-
based mutation strategy, we set LP = 10. We generate values
of F for both ‘DE/rand/2’ and ‘DE/current-to-rand/1’ from
the normal distribution [0.5, 0.3], and set F = 0.5 for the
novelty-based mutation strategy.

12) We generate each of the nominal values in the vector
of 8 coefficients βT = (β0, β1, β2, β3, β4, β5, β6, β7) in an
additive 7-factor logistic regression model randomly from the
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TABLE 3. Performances of NovDE, NovDE-Bin and six competitors for
finding locally D-optimal designs on [0,3]7 using 5 sets of nominal
values. In each cell, the numbers in the upper line are the mean and
standard deviation of the values of the objective function over
30 multiple runs, and the number at the bottom line is its success rate.
For each set of nominal values, the best values of the mean and success
rates are in bold. The entries with ∗ represent NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-sum test.

interval [−1,1] without loss of generality. In this experiment,
we generate five parameter sets and they are as follows:
β1 = (0.6294, 0.8116,−0.7460, 0.8268, 0.2647,−0.8049,
−0.4430, 0.0938),β2= (−0.6710, 0.8256,−0.9221, 0.8348,
0.0538, 0.8664, 0.9186, 0.7741), β3 = (−0.4926,−0.6280,
−0.3283, 0.4378, 0.5283, −0.6120, −0.6837, −0.2061),
β4 = (−0.4336, 0.3501,−0.8301, 0.3295, 0.0853, 0.5650,
0.0870, 0.1688), β5 = (0.8379,−0.5372, 0.1537,−0.1094,
−0.2925, 0.2599,−0.8201,−0.8402).

13) The program is implemented in MATLAB R2017b.
14) In this paper, the D-efficiency lower bound criterion

is applied to evaluate the optimality of the generated design
ξ and ‘‘DE/rand/1/bin’’ with F=0.5 and CR=0.9 is used to

find the maximum positive value of the sensitivity function θ .
We recall this value is used to compute the D-efficiency lower
bound of the design ξ , which is exp (−θ/k) where k is the
dimension of β. In what is to follow, if a design has at least
95% D-efficiency, we accept the design as close enough to
the optimum.

B. RESULTS AND DISCUSSIONS
We compare the performance of the proposed NovDE with
NovDE-Bin and six competitive DE-based algorithms using
3 different design spaces to validate that NovDE is an effec-
tive DE variant in solving the high-dimensional optimal
design problems. Since the optimal designs of the logis-
tic model under various sets of nominal values and design
spaces are unknown, the average of the objective function
values obtained in 30 runs is considered as one performance
indicator. Since the aim is to maximize the log-determinant,
the larger the objective function values are, the better is the
performance of the algorithm. Another performance indicator
is the success rate, which is the percentage of runs where
the generated design has at least 95% D-efficiency. To judge
whether the proposed NovDE algorithm outperforms each of
the other seven DE-based algorithms in a statistically signif-
icant way, we employ a nonparametric statistical test called
Wilcoxon rank-sum test [45] and the 5% significance level.
For each algorithm, the numbers in the upper line in each cell
represent the mean and standard deviation of the objective
values. The numbers in the bottom line represent the success
rate of the algorithm. The best values of the mean and success
rates are in bold, and entries with ∗ represent NovDE signif-
icantly outperforms the other algorithm based on Wilcoxon
rank-sum test at the 0.05 significance level.

For each design space, there are 5 different settings with
nominal values β1 to β5. Hence, for the three different
design spaces, there are 15 different settings in total. For the
15 different settings, when NovDE compares with the other
seven DE algorithms, NovDE ranks first 9 out of 15 in terms
of the mean of the objective function values. Furthermore,
in these 9 cases, excluding NovDE-Bin, NovDE significantly
outperforms the other six DE algorithms in 6 out of 9. NovDE
also ranks first 10 out of 15 in terms of the success rate.

FIGURE 3. Adaptation behaviors of the median run among the 30 multiple runs of the CRmean values in NovDE for X = [−1 1]7, X = [−3 3]7 and
X = [0 3]7, respectively. The nominal parameter is β3.
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These empirical results suggest that since the novelty-based
mutation strategy combined with the MER crossover has the
advantages of superior capability of exploration [27] and
maintaining the dependent variables structure [38], NovDE
can work well in handling non-separable problems and can
avoid trapping into local optimumwith higher chances. Thus,
NovDE is more effective in generating locally D-optimal
designs compared with the other seven algorithms.

To validate the effectiveness of novelty-based mutation
alone, NovDE-Bin which is the novelty-based mutation with
the conventional crossover-binomial crossover, is involved
for the comparisons as well. For the 15 different settings,
NovDE-Bin ranks first 3 out of 15, and second 8 out
of 15 in terms of the mean of the objective function values.
NovDE-Bin also ranks first 8 out of 15 in terms of the
success rate. These empirical results suggest that the novelty-
based mutation strategy presents better exploration capability
and can prevent solutions from trapping into local optimum,
which is consistent with the advantages of novelty search
methods as illustrated in [27].

To give a clearer picture of the performance difference
between NovDE and the other four DE algorithms, Fig. 2
plots the change of best-of-run objective function values
over generations for each DE algorithm. The plots in Fig. 2
are based on nominal parameter β3 and plots based on
the other 4 sets of nominal values showed a similar pat-
tern. We observe from Tables 1-3 and Fig. 2, both NovDE
and NovDE-Bin clearly outperform ‘DE/rand/2/bin’ for all
of the settings. Although ‘DE/rand/2/bin’ converges faster
than NovDE, ‘DE/rand/2/bin’ has the issue of premature
convergence so that the solutions tend to become close to
each other and its exploration capability is deteriorated. The
better performance of both NovDE-Bin and NovDE validate
that exploration is important to solve our high-dimensional
non-seperable problem which have local optimums. Further-
more,the novel information collected from exploration can
be provided to the individuals generated from ‘DE/rand/2’
and ‘DE/current-to-rand/1’ to enhance both exploration and
exploitation. As shown in Fig. 2, NovDE has the best con-
verged objective function values close to the global optimum
on various design spaces.

Since CRmean can represent the overall CR values of the
individuals under different strategies, it is instructive to plot
the CRmean values versus generations for each design space.
Fig. 3 plots theCRmean values based on the median run using
β3 as nominal values for the same reason explained earlier.
In Fig. 3, we observe that the CRmean values for ‘DE/rand/2’
and ‘DE/current-to-rand/1’ would converge to 0.1, which is
the lower bound of the CRmean in NovDE. The variation
of the CRmean values for novelty-based strategy presents
distinct patterns under different design spaces. When X =
[−1 1]7 andX = [−3 3]7, theCRmeanwould converge to 0.1,
which is the lower bound of the CRmean in NovDE. Under
these two design spaces, the decrease of CRmean values
indicates their exploration capability tends to be restricted as
evolution proceeds; for X = [−3 3]7, the CRmean values

TABLE 4. NovDE-generated locally D-optimal design for the logistic
model with seven variables when the vector of nominal values for the
parameters is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T = (−0.4926,
−0.6280,−0.3283,0.4378,0.5283,−0.6120,−0.6837,−0.2061)T ,
and X = [−1,1]7.

would converge faster. When X = [0 3], the CRmean
converges to around 0.9, which is the upper bound of the
CRmean in NovDE. The increase of CRmean values indi-
cates their exploration capability tends to be enhanced as
evolution proceeds. For different design spaces, the CRmean
for the novelty-based strategy presents its adaptation to the
exploration capability.

Table 4 to Table 6 present the support points of the locally
D-optimal designs when β3 is the set of nominal values.
Interestingly, each support point of these locally D-optimal
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TABLE 5. NovDE-generated locally D-optimal design for the logistic
model with seven variables when the vector of nominal values for the
parameters is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T = (−0.4926,
−0.6280,−0.3283,0.4378,0.5283,−0.6120,−0.6837,−0.2061)T ,
and X = [−3,3]7.

designs has at most one factor level supported at its non-
extreme values. This observation may provide an impetus for
further study using analytical tools.

V. CAR REFUELING EXPERIMENT
We now apply the proposed NovDE algorithm to re-design
a ten factor experiment to test a vision-based car refueling
system [46]. The investigators were interested in finding
whether a computer-controlled nozzle was able to insert into
gas pipe correctly or not implying that the response variable
in the study is binary. Table 7 lists the ten factors. Four
factors are discrete, each with two levels −1 or +1, and
six factors are continuous. Table 7 shows that the range of
values for each continuous factor and they do vary consid-
erably. The proposed NovDE algorithm is applied to find a
locally D-optimal design for this high-dimensional nonlin-
ear model with mixed factors using the vector of nominal
values β = (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)T =
(3, 0.5, 0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1, 2.65, 0.65) from
literature [46].

Design issues for this ten-factor experiment were also
considered in [47] but without interaction terms. In practice,
the binary response is likely dependent on the joint changes in
two or more of the factors, suggesting that interaction terms
should be in the model. To fix ideas, we include five pairwise
interactions into the model and believe that this is the first

TABLE 6. NovDE-generated locally D-optimal design for the logistic
model with seven variables when the vector of nominal values for the
parameters is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T = (−0.4926,
−0.6280,−0.3283,0.4378,0.5283,−0.6120,−0.6837,−0.2061)T ,
and X = [0,3]7.

design work for such a high-dimensional logistic model. Pre-
vious attempts using common algorithms, like multiplicative
and modified Fedorov-Wynn algorithms did not converge.
The vector of nominal values for the model with the five
selected pairwise interactions is β = (β0, β1, β2, β3, β4, β5,
β6, β7, β8, β9, β10, β1,9, β2,5, β3,4, β6,7, β8,10)T = (3, 0.5,
0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1, 2.65, 0.65, 0.01,−0.02,
0.03,−0.04, 0.05)T based on literature [46].

Some of the tuning parameters used to find the locally
D-optimal designs are the population size, maximum number
of generations and maximum number of support points. For
the model without factor interactions, the population size
is 100, and the maximum number of generations is 10000.
The maximum number of support points L is set to 100 so the
dimension D of the problem is 1100 (=(10 + 1) × 100).
The dimension for each support point is 11, which includes
the number of factors (i.e. 10) and the dimension of the
corresponding portion of observations taken at each support
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TABLE 7. Factor types and levels for the car refueling experiment.

TABLE 8. Comparisons of the performance of NovDE, NovDE-Bin and six
competitors for the car refueling experiments without factor interactions.
The best values of the mean and success rates are in bold. The entries
with ∗ represent NovDE significantly outperforms the other algorithm
based on Wilcoxon rank-sum test.

point (i.e. 1). For the model with factor interactions, the pop-
ulation size is 100, and the maximum number of generations
is 20000. The maximum number of support points L is 100 so
the dimension D of the problem is 1600 (=(10+1+5)×100).

Due to the number of factors in this study, it is hard
to construct and visually appreciate the high-dimensional
sensitivity function of the generated design to confirm its
optimality. An option is to generate 1000000 random vectors
within the design spaces and check whether the sensitivity
function is positive at these points. One may repeat this
procedure and if none is found and the sensitivity function
is zero at the support points of the generated design, then
we conclude we have found an optimal design. Otherwise,
we apply ‘‘DE/rand/1/bin’’ with F=0.5 and CR=0.9 to find
the maximum positive value of the function and compute
its D-efficiency lower bound. The lower bound D-efficiency
is defined as exp (−θ/k) where k is the dimension of the
model parameter β. Since the variables of this problems are
mixed, the variation of lower bound D-efficiency is very
large. In what is to follow, if a design has at least 90%
D-efficiency, we accept the design as close enough to the
optimum.

A. WITHOUT FACTOR INTERACTIONS
Table 8 compares the mean of locally D-optimal objective
value and success rate of NovDE with NovDE-Bin and the
other six differential evolution algorithms. Wilcoxon rank-
sum test [45] is also conducted at the 5% significance level.
In Table 8, both the mean of the objective value and the
success rate of NovDE-Bin are the highest. NovDE ranks
the second. Both NovDE-Bin and NovDE significantly out-
perform all the other six algorithms. Thus, our empirical
results validate the effectiveness of novelty exploration in
solving the car refueling experiment. By extension, our work
suggests that the NovDE and NovDE-Bin are effective for
searching locally D-optimal designs for high-dimensional
non-separable problems with mixed variables on various
design spaces. In problems with mixed factors, the design
space is less complex than the design space of the prob-
lems with continuous factors. The solutions obtained from
D-optimal design with mixed factors are more likely to be
close to one another at early evolution stage. Thus, it is more
crucial to handle the premature issue especially for the prob-
lems with mixed factors. NovDE and NovDE-Bin can present
the advantages in handling the premature issue and preserve

TABLE 9. NovDE-generated locally D-optimal design for car refueling experiment without factor interactions.
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TABLE 10. Comparisons of the performance of NovDE, NovDE-Bin and six
competitors for the car refueling experiment with factor interactions. The
best values of the mean and success rates are in bold. The entries with ∗
represent NovDE significantly outperforms the other algorithm based on
Wilcoxon rank-sum tests.

the diversity of the solutions. As a result, NovDE performs
even better than it performs on handling D-optimal design
with continuous factors. Table 9 lists the locally D-optimal
design for the car refueling experiment, and 12 support points
are generated. The design criteria value is -35.9178. A direct
calculation shows that the D-efficiency lower bound for the
generated design is 94.60%. This is not surprising even
though we set the lower bound to be 90% for this problem.
The reason is because the algorithm is not monotonic in
the sense that it does not necessarily produce increasingly
more efficient designs with each iteration. Another reason is
that the higher D-efficiency optimal design may exist in the
continuous design spaces instead of the mixed design spaces.
Based on Table 9, the common rule of the mining knowledge
still satisfies. For each support point, there is at most one

factor value not at the boundary of the design space. This is
consistent with the observation in Section IV.

B. WITH FACTOR INTERACTIONS
It seems realistic that there are factor interactions between
Ring type and Reflective ring thickness, Lighting and Light-
ing angle, Sharpen and Smooth, Gas-cap angle (Z axis) and
Gas-cap angle (Y axis skew) and Car distance and Thresh-
old step value, respectively. The former two interactions are
between a discrete factor and a continuous factor; the third
interaction is between a discrete factor and a discrete factor
and the latter two interactions are between a continuous fac-
tor and a continuous factor. In practice, the researcher uses
content information to specify interaction terms in the model
and implements a parsimonious model. Our conjecture that
interaction terms were ignored in earlier design work for such
a model is to simplify the design construction.

Table 10 compares the mean of locally D-optimal objective
value and success rate of NovDE with NovDE-Bin and the
other six differential evolution algorithms. Wilcoxon rank-
sum test [45] is also conducted at the 5% significance level.
In Table 10, both the mean of the objective value and the
success rate of NovDE is the highest, and NovDE-Bin is
the second highest. NovDE significantly outperforms all the
other six algorithms. We observe that the overall outperfor-
mance of the NovDE and NovDE-Bin algorithms relative
to the other six algorithms are less dramatic than when the
model has no interaction terms, our results still show it is
effective in solving non-separable high-dimensional locally
D-optimal design problems with mixed factors on various
design spaces. In particular, it shows the NovDE is able to
handle premature convergence and non-separable issues well
in complex optimization problems. The proposed NovDE
algorithm can produce optimal designs for a more realistic
situation and so represents an advancement. Table 11 shows

TABLE 11. NovDE-generated locally D-optimal design for the car refueling experiment with five pairwise factor interactions.
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the optimal design for the car refueling experiment with five
pairwise factor interactions. There are 18 support points,
and the design criteria value is -71.4284. The design has a
D-efficiency of 95% or higher. An interesting note is that
Table 11 shows each support point can have one or more fac-
tors supported other than at its extreme values. This violates
the common rule mentioned earlier and serves to show that as
the model gets more complicated, the structure of the optimal
design also becomes harder to characterize and understand.

VI. CONCLUSION
We propose a DE-based algorithm NovDE to search for
locally D-optimal designs for logistic models with multiple
factors and the factors may or may not interact with one
another. We employ a new novelty-based mutation strategy to
explore various regions of the search space so that the diver-
sity of the population would be preserved. The new novelty-
based mutation strategy is collaborated with ‘DE/rand/2’ and
‘DE/current-to-rand/1’ which can balance exploration and
exploitation at early or medium stage of the evolution so
that both convergence and diversity of the population are
enhanced, and premature convergence issues are alleviated.
We have demonstrated that NovDE provides the best objec-
tive function values and success rates compared with four
other DE-related evolutionary algorithms. NovDE also out-
performs the others in terms of finding a highly efficient
D-optimal design for the ten-factor car refueling study where
there are discrete and continuous factors in the logistic model
and some of them interact with one another. Our empirical
results also show that the distribution of the support points for
optimal designs for models with interaction terms are more
complex than those for models without interaction terms.

We focus on logistic models which are the most commonly
used in practice to model binary responses. We expect our
proposed algorithm works for other link functions as well,
including cases when the response is continuous and there
are many mixed factors. Our future study includes testing
the capability of our proposed algorithm for tackling these
problems and multiple-objective optimal design problems.
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