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ABSTRACT Mid-term load forecasting (MTLF) of power supply unit (PSU) is an essential part of refined
distribution network planning. By analyzing a large amount of historical data accumulated in electric
automation systems, accurate MTLF result can be obtained with the help of big-data and parallel computing
technology. In this paper, a dynamic bayes network (DBN)-based MTLF model is proposed to forecast the
peak power load of next year of each PSU. In the first stage, we improve the accuracy of MTLF model
by using dynamic radius DBSCAN algorithm to determine the optimal state division. In the second stage,
to improve the computation efficiency, the calculations of multiple probability matrixes and the modified
forward algorithm are implemented on an apache spark-based parallel computing platform. The experiment
results indicate that the parallel processing of DBN-based MTLF model has superior performance in
accuracy, efficiency, and versatility.

INDEX TERMS Dynamic bayes network, mid-term load forecasting, Apache Spark, parallel computing.

I. INTRODUCTION
State Grid Corporation of China has promoted, in Jiangsu
Province, distribution network planning, whose approaches
are based on power supply unit (PSU). As the essence of
refined planning, these approaches divide the city into hun-
dreds of PSU, and therefore the weakness of existed distri-
bution networks and the power load development trends can
be evaluated unit by unit. Meanwhile, more accurate and eco-
nomical planning distribution network will come with more
detailed information. In addition, mid-term load forecasting
(MTLF) results are important to PSU-based planning, given
that they represent the future power demand geographically
and determine the necessity of upgrade projects [1]-[2].
Traditional regional load forecasting technologies focus
on utilizing historical load profile and other factors such as
weather, economic indicators and energy policies to predict
the load electricity demand of next days or months. The
MTLF methods can be classified into three main categories:
1) Time series approaches. These methods are more
based on the internal trends of historical data in fore-
casting future load. The usage of time series methods
such as linear regression, autoregressive integrated moving

average (ARIMA), autoregressive moving average (ARMA)
in MTLF are reported in [3]-[6].

2) Artificial intelligence (AI) based approaches. In [7], a
clustering neural network consisting of logic operators is used
in mid-long term load forecasting. A hybrid model based
on dynamic and fuzzy time series for MTLF is proposed
in [8] and proved to be superior to time series approach.
Multiple ANN technologies are widely used because they do
not require functional form of a forecasting model [9]-[11].
SVR is the application form of support vector machine
(SVM), whose usage in load forecasting is reported in the
literatures [12]-[15].

3) Conditional relationship approaches. The socio-
economic factors in addition to other variables are considered
in load forecasting in [16]. In [17], the non-linear influence
of temperature on electricity demand is employed to generate
robust dynamic patterns on the electricity demand-climate
relationship. With no requirement of linearity and seasonality,
conditional relationship approaches directly forecasting load
by incorporating the related variables [18] and [19].

The main difference of PSU MTLF and regional MTLF
resides in the fact that the forecasting range is restricted
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in each PSU, typically including several residential dis-
tricts or industrial parks. Limited user and the consequent
significant load fluctuation. Whereas, the widely installed
smart meters and the implement of advanced metering infras-
tructure (AMI) can make power consumption information
collection system (PCICS) of State Grid Corporation of
China (SGCC) store huge amounts of load data of each
distribution transformer (DT). There are about 20000 DTs
in a medium-sized city in Jiangsu Province, China.
Multi-year and high-frequency annotated data are collected
and stored in PCICS, which annually updates 5 Terabyte
load data. Thus, big data analysis platform and parallel
processing algorithm are needed to guarantee the forecasting
efficiency. Meanwhile, utilizing these high-resolution data,
the conditional relationship approaches based MTLF of each
PSU is necessary [20].

In this paper, we focus on forecasting the peak load of each
PSU in next year with the proposed Dynamic Bayes Network
(DBN) model, which includes time series characteristic and
conditional relationship. The rest of paper are organized as
follows. Section 2 gives the description of observation vari-
ables. Section 3 explains MTLF model’s construction and
proposes a novel approach for state division of observation
variables and forecasting variable. In Section

4, the large-scale historical data are employed to calcu-
late the probability matrixes. The Apache Spark platform
to improve the ability of parallel processing of large-scale
data, and several algorithms to adapt the RDD based lazy
computing. Experimental results and evaluations are shown
in Section 5. Part 6 draws the conclusions.

Il. DATASET AND FORECASTING SCENARIO

A. HISTORICAL LOAD DATA

The historical load dataset used in this work belongs to
SGCC Jiangsu electric power company. Since the smart
meters are generally deployed in recent years, data from
2015 to 2017 are selected to ensure the identical acquirement
frequency.

As shown in Fig. 1, the original data from PCICS consists
of the unique device identifier (UDID) of the DTs, indicator
of phase sequence, failure flags and 96 points floats repre-
senting load sampling value for every 15 minutes. Possible
communication failure, data collecting equipment failure and
backup failure will generate null, zero and abnormal values
in the raw dataset. Thus, the analysis should come after

FIGURE 1. One row of raw load data from PCICS.
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executing the data cleansing process, which normally con-
tains removal of null and zero values, data completion with
Lagrange interpolation formula and elimination of duplicated
rows.

B. HISTORICAL WEATHER DATA

In this paper, we assume that the extreme weather conditions
are related to peak load. Therefore, critical days when peak
load or extreme weather occur are included in the forecasting
model, which will be introduced in section III. The heating
degree (HD) and cooling degree (CD) is employed to repre-
sent the linear relation between load and temperature. With

temperature variables Trff = 26°C and Trgf = 18°, there are

HD (d) = max[T}; — T (d) 0] 1)
CD (d) = max[0, T (d) — T)5] )

In the proposed forecasting algorithm, the critical days are
selected for each PSU based on three standards:

1) The two days when peak load occurs in summer (June to
September) and winter (December to February).

2) The two days when highest and lowest temperature
occur.

3) Manually selected days when major events of weather
extremes occur.

It should be noticed the defined peak load is the peak of
loads summation of all DTs in one PSU. There is

m

Lpsu_i = ZLm (3)

i=1

where Lpgy_j is the summation of all DT load in the ith PSU.

There are dozens of weather stations installed by SGCC
in each city. These stations collect daily humidity, pressure,
wind speed and temperature. Besides temperature, relative
humidity is also an important parameter in load forecast-
ing [19]. Therefore, in the present analysis we used daily aver-
age outdoor temperature taking HD, CD and humidity (%)
as the basic meteorological parameters. The data from the
closest weather station are selected for every PSU.

C. WEEKDAY TYPE

The weekday is transformed from the date field in Fig. 1 with
Zeller formula. The weekday is coded as 0 ~ 6 and 0 indi-
cates Sunday. The public holidays are modified to Saturday,
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including Chinese New Year, National Day and Labor
Day etc.

D. GEOGRAPHIC COORDINATES

The power production system of SGCC stored the geographic
coordinates of each DT, whose functions in our forecasting
are threefold:

1) With geographic coordinates, the DTs can be related to
particular PSU with its margin information.

2) The distances between DTs can be calculated with
geographic coordinates by Mercator projection and are used
as another clustering factor of DTs.

3) The final load forecasting results have to be shown in
a heat map. The geographic coordinates of DTs are used for
renderer.

Ill. DYNAMIC BAYES NETWORK BASED FORECASTING
MODEL

A. THE FORECASTING MODEL

In the MTLF scenario of this work, the load of more
than 10000 DTs need to be forecasted at the same time.
Meanwhile, large though the whole dataset is, the historical
data profiles of each DT at the selected critical days are very
limited. Based on above facts, an ideal model for PSU MTLF
requires

1) The time series of historical load profile and condition
relationship between observation variables and forecasting
variable are both considered.

2) The parameters of the model are pre-calculated to
accelerate the forecasting of large volume of DTs.

3) The structure of the forecasting model of single DT
should be simple. Meanwhile, global dataset is employed to
enhance the forecasting accuracy of individual DT.

4) The model can be realized efficiently on parallel com-
puting platform.

To meet the requirements, a Dynamic Bayes Network
(DBN) based MTLF model is proposed, which is the exten-
sion of BN on the time dimension [21]. The observation
variable in our model refers to Y = {HD, CD, W, H} which
contains heating degree HD, cooling degree CD, weekday
type W and humidity H. The forecasting variable X = {L} is
the load of DT at a certain time.

The target of the BN model is to reckon the probability
distribution of forecasting variable X with certain observation
variable Y. The probability of forecasting variable at certain
state c is

P (X; = c|HD;, CD;, W;, Hy)
_ P(HDy, CD;, Wy, Hi|X; = ¢) - P(X; = ¢)
B P(HD;, CDy;, W,, H,)

“

where X; represents the load at discrete time ¢, Wy, T, H;
are observation variables at the same time.

The denominator of (4) can be further derived with total
probability formula

v
P(HD;, CD;, W;, H;) = ZP(HD,, CD;, Wi, Hi|X; = d)
d=1
PX; =d) (5)

With (4) and (5), we have (6), as shown at the bottom of this
page, where P(HD;|X; = d), P(CD;|X; = d), P(W;|X; = d)
and P(H;|X; = d) are conditional probabilities of HD, CD,
H and W when forecasting variable X is given. P(X; = d) is
the priori probability of forecasting variable.

The BN based forecasting model only considers the causal
relationship between observation variables and forecasting
variables. The development of load between years also fol-
lows certain pattern, and therefore we can take the timing
characteristics of forecasting variable into consideration by
linking different BN models and building a DBN based fore-
casting model. The transition processes between loads in
different years are assumed to be Markovian and causal [22].
Hence, there is

P X1 Xe, Xi—1, ..., X1) = P (Xi411X7) (N

where P (X;41]X;) is the transition probability of forecasting
variable.

In this case, the three-node DBN based MTLF model is
proposed, as shown in Fig.2b. The formation process of the
model is shown in Fig. 3:

1) The critical dates of the PSU are selected according to
the standards described in section II. B. Take the day when
summer load peak occurs for example. If we want to forecast
the peak load of 2018, the observation variable on that day
of 2017 Yp_2017 is first acquired from historical data:

Ysp_2017
={HD =0,CD = 12, W = Tuesday, H = 90%} (8)

2) The absolute values of Y are converted to respective
states. The conversion principles will be discussed in the
next section. The three nodes in DBN model share structure
and observation variables in order to investigate the load
development trend with identical condition.

3) The three BN models BN;DSUi, BN;)E%/" and BNﬁfg"
represent the casual relationships between Y and X in the
forecasting year and prior two years. The links between the
models represent the development probability of load in sub-
sequent years.

4) As shown in Fig.2b, there are three kinds of probability
matrixes to be calculated to realize the forecasting process.

P(HD|X; = ¢) - P(CD;|X; = ¢) - P(Wi|X; = ¢) - P(H;|X; = ¢) - P(X; = ¢)

P (X; = c|HD;, CD;, Wy, Hy) =

v

(6)

Y. P(HD|X; = d) - P(CD:|X; = d) - PWi|X; = d) - P(H|X; = d) - P(X; = d)
d=1
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FIGURE 2. DAG of DBN based load forecasting model with multiple time slices.

FIGURE 3. MTLF process based on DBN model.

First, the priori probability matrixes refer to the probabil-
ity distributions of forecasting variables in different years.
The conditional probability matrixes represent the probability
distributions of forecasting variable with certain observation
variables in different years.

The transition matrixes consist of state transfer probability
of forecasting variable from year ¢ to time ¢t + 1. All the
three probability matrixes can be calculated from large-scale
historical data by parallel processing.

5) With the DBN model, the probability matrixes, the dis-
tribution of load state of PSU; on summer peak load day of the
forecasting year can be derived with modified forward algo-
rithm. The state with maximum probability Sf;,iLV]i is selected
to represent the forecasting result on the summer peak load
day.

VOLUME 7, 2019

6) All the distributions of load states on other critical days
of PSUj can be calculated with same process. The state with
maximum value will be selected as the final MTLF result of
that PSU:

PSU; _ PSU; oPSU; oPSU; oPSU;
eVt = max(SpVt Sl St s )

where Sg,SVU’, Sf:gVU h SZSUi and S;;Ui indicate the maximum
load states on the four critical day}s we introduced.

The proposed three-node DNB model reflects the impact
of observation variables on forecasting variables and the load
development trend from year to year of each PSU. Compared
to traditional multiple regression models, the proposed model
have following advantages:

1) The probability of forecasting variable’s state, rather
than definite value is forecasted. Therefore, the computing
scale of the forecasting algorithm is reduced.

2) The conditional and transition probabilities can be pre-
calculated and reused in MTLF of different PSUs. Therefore,
the real-time computing of a large number of regression
coefficients can be avoided.

3) The model structure is fixed and simple. The parallel
processing of the forecasting algorithm on Apache Spark
platform is efficient.

B. VARIABLES STATE DIVISION WITH DYNAMIC

RADIUS DBSCAN

The observation and forecasting variables of the DBN fore-
casting model are probability based, which means that the
states of the variables need to be determined in advance. The
division of variable states is a trade-off between precision
and computing speed. If the ranges of states are too wide,
the accuracy will be limited, if too narrow, the computing
scale will increase exponentially. An efficient state division
algorithm should divide the states of different variables asym-
metrically according to the density of historical data. In order
to obtain the asymmetric optimal division results, this paper
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proposes a data driven variable state division approach which
is based on density-based clustering algorithm (DBSCAN).

DBSCAN algorithm is a density-based clustering algo-
rithm which considers a cluster as a region with high point
density. The point density is defined as the number of points
in the region around a specific point with pre-set radius. The
points with a density above the threshold are treated as a
cluster.

There are three basic steps of DBSCAN:

Stepl: Select a point p from dataset arbitrarily;

Step2: Calculate the distance between p to all points within
the radius;

Step3: If the number of the points in radius meets the
requirement, a cluster is found.

In our model, the point is defined as the vector of observa-
tion/forecasting variables of a specific day. Take forecasting
variable load as example, the point p on day d is

pa =P ph. . P (10)

The Euclidean distance is applied to measure the distance
between two points of the same variable category

96
. ’ 12
dist (pa1, pa2) = |par—paz|, = Z Py — Pl (11)
u=1
The principles to determine a cluster C include
dist (pai, paz) < Eps (pai1,pa2 € C) (12)
num_C > MinPts

where Eps is the pre-set radius of a cluster, num_C is the
number of points that are density-reachable in cluster C and
MinPts is the minimum required points within Eps. Based on
these two principles, the algorithm can distinguish the noise
from load data and ensure the high density of each cluster.

However, possible high variations in density of training
dataset will prevent DBSCAN from distinguishing amongst
clusters [23], [24]. If the Eps is too large, the resolution
of the densely distributed region in the historical data will
be insufficient, if too little, the less distributed region can
never be clustered. Meanwhile, the geographical information
is also important to the clustering algorithm because neigh-
boring DTs are more likely to share the similar operation and
meteorological conditions. Taken together, a dynamic radius
DBSCAN is proposed with following improvement:

1) The geographical distances between DTs are considered
in clustering algorithm by introducing the maximum radius of
geographical distance between DTs Eps,.

2) If the whole dataset is processed with the Eps and
some load vectors are still not clustered, the initial maximum
radiuses will be added with increments.

The steps of dynamic radius DBSCAN are described in
Algorithm 1.

The clustering result of a DT with 100 historical load
vectors is shown in Fig. 4a. Fig. 4b denotes that the load
vectors with same state share similar modulus ||p||. The key
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Algorithm 1 Algorithm 1. Improved DBSCAN Algorithm
Input:
Eps; : Maximum non-spatial distance value
Eps, : Maximum geographical coordinate distance
value
MinPts : Minimum number of points within Eps; and
Eps, distance
AEpsy, AEps;y: Increment of Eps| and Eps; in each
iteration

Output:
Labels: State division results of load dataset

1: Load daily load dataset of all DTs RDDx and

2: create an empty list Labels

3: Repeat

4: for unmarked point pin RDDx

6: calculate Euclidean distance e; between p and
g(another unmarked point in RDDx)

7 calculate geographical coordinate distance e,
in RDDvy between the two DTs

8: if e < Eps; && ex < Epss

9: append q to the cluster

10: update the scale of cluster: n = n+1

11: end if

12: if n > MinPts

13: mark all points in this cluster with current
cluster label: Lables[points] = n

14: end if

15: end for

16: Epsy < Eps1 + AEps;

17: Epsy < Epsy + AEps)

18: Until all the points are assigned to their cluster

19: Terminate

of variable states division is to distinguish the border between
neighboring clusters. The standard to define the borders is
proposed as follows:

_ =1
Lower border; = ”pdl Paz ” ! ) (13)
Upper border;_1i =12,3, ...
Pl e i=6 _
Upper border; = { [Ipll}pur + (||P||i:,§,]Z — ) (4
ni=1,2,3,4,5

where Lower border; and Upper border; are the lower and
upper borders of cluster i respectively, [|p|,,. is maximum
modulus of forecasting variable in state i, || p||£;§y1l is minimum
modulus of forecasting variable in state i, n is the balance
factor of the gap between two divided state, which is defined

as:

Pl
_ IIPIIZ,:[;C IIPIIﬁ,l, (15)
”p”rnax - ”p”mm

The state division result of forecasting variable with above
standard is shown in TABLE 1.
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(a)

(b)

FIGURE 4. Clustering results of load data by different algorithm. a State
division of load by improved DBSCAN. b Modulus of each state.

TABLE 1. Forecasting variable state division.

State [Pl (MW) State [Pl (MW)
1 [0, 0.23] 4 [0.72,1.30]
2 [0.23,0.40] 5 [1.30,2.28]
3 [0.40,0.72] 6 [2.28,3.32]

C. PROBABILITY MATRIX

As described in previous section, the DBN model consists
of priori, conditional and transition probability matrixes.
The priori probability matrixes are determined by natural
distribution of observation and forecasting variables. For
example, the priori probability of X can be noted as

L count(X = s)
Prioriy = ————— (16)

amount(X)
where count(X = ) is the count of occurrences when
forecasting variable X = s, while amount(X) is the total

number.
A = PHD" : h € XS, s € HDS)

The conditional probabilities in Fig. 2 can be denoted as
following

HD" = P(HD = s|X = h) (17)
CD" = P(CD = 51X = h) (18)
H' = P(H = 5|X = h) (19)
Wi = P(W = s|X = h) (20)

where HD", CD", H! and W" are the conditional probabilities
of observation variables given the state of load X = h.

The conditional probabilities can be calculated from his-
torical data with maximum likelihood estimation (MLE).
For example, the MLE of heating degree given forecasting
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variable is the probability of the existence of HDﬁ,’. With
given historical data set as D, if we defined the state set of
heating degree and forecasting variable as HDSandXS, there
is HD; € HDS and L, € XSL; € LS. The combined state A
is defined as

A =P(HD": h € XS, s € HDS) (21)
The MLE of A is
AMLE — argmaxX (D, HD?) (22)

np
X(D, HD?) = log [H P(HD; = s|X; = h)] (23)
i=1
where ny, is the count of total time intervals of historical data.
By solving the limit of (17), we have

HD? _ count(s, h) 24)
count(h)
where count(s, h) is the count of occurrences when
HD¢ = s and Ly = h and count(h) is when L; = h.
(24) indicates that we can obtain the conditional probability
by querying historical records with certain statements. The
parallel query operations of large-scale historical data are
suitable for big data analysis platform.
The conditional probability matrix is a m x v matrix where
v is the number of states of forecasting variable’s and m
is the number of states of the observation variables. For
example, the definition of heating degree conditional matrix
HDM is

P(|1) P(1]v)

P(HD =s|X =h) : (25)
P(ql1) P(qlv)
In this work, the transition probabilities should reflect the

load development trend between adjacent years. Therefore,
the transition probability is defined as

HDM =

amount (k, h)
TransM =P (X! 4 = kIX!_, 4 = h)= ity @9
where X;_l_d is the load at time ¢ on day d in year y-1, e.g.,
at 9:45 2nd, August, 2016 while X)f_d is the load at the same
time in year y, say, at 9:45 2nd, August, 2017 for this instance.
count(k, h) is the count of occurrence when Xy’,_ | ¢ = hand
X} 4 = k and couni(h) is when X , = k. -

IV. IMPLEMENT OF DBN BASED MTLF ALGORITHM
WITH APACHE SPARK

A. VARIABLES STATE DIVISION WITH DYNAMIC

RADIUS DBSCAN

In this work, the Apache Spark platform is employed to fulfil
the model training and forecasting tasks. As shown in Fig. 5,
the Apache Spark based parallel processing platform is
divided into three layers. The data source layer collects data
from Electricity Information Collection System (EICS) and
Road Weather Information System (RWIS). The raw datasets
are imported into HDFS as data storage layer. In the parallel
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data processing layer, Resilient Distributed Datasets (RDD)
models are built on memory computing framework, which
could save disk I/O operation time [25]. RDD is an abstract
class defined in Apache Spark framework which includes
transformation and action operators. Transformation opera-
tors realize the intermediate processing of the dataset while
action operators trigger the submission of computing jobs on
distributed computing cluster [26].

FIGURE 5. The Apache Spark based parallel processing platform.

Considering the merits of Spark, it is used as the data
processing platform in our application to implement two main
parallel computing tasks:

1) Parallel probability matrixes calculation. As discussed
in section III. C. The elements of conditional and transition
probability matrixes are calculated by filtering and counting
large volume of historical data. The historical data are stored
in DFS and the calculations are carried out on Spark.

2) Paralleled computation of modified forward forecast-
ing algorithm. With DBN based load forecasting model and
probability matrix, the load of thousands of PSU need to be
parallel forecasted with modified forward algorithm, which
is fulfilled on Spark to enhance the efficiency.

B. PARALLELIZATION OF PROBABILITY MATRIX
COMPUTING ON SPARK

In the following experiments, the probability matrixes are
calculated from 88841800 rows of historical load data across
3 years in advance. To handle large-scale model training
task, the calculation needs to be accelerated by Apache Spark
based parallel computing technology.

As shown in Fig. 6, the parallel probability matrixes calcu-
lation process consists of five steps:

1) The raw datasets are imported into Spark from HDFS
as RDD objects. Each RDD object remains original data
structure. For example, the load RDDs contain UDID of
DTs and 96 points of daily load curves. The equipment
RDDs contain UDID of DTs and their parameters, including
geographical coordinates. Meteorological RDDs contain the
historical temperature and humidity data of each PSU.

7594

FIGURE 6. Process of calculating probabilities matrix based on Spark.

2) The load RDDs and meteorological RDDs both contains
the attribute date. Meanwhile, the attribute UDID of DT
is both included in the load RDDs and equipment RDDs.
Avoiding querying data from multiple table can improve the
efficiency of the matrix calculation, and this ask for utilizing
the join transformation operator to generate a unified data
structure RDDynp, which includes continuous time slices of
load, temperature, humidity and date types of each DT joined
with the geographical coordinates.

3) The filter transformation operator is applied to filter out
the desired fields from RDDyny and form multiple RDDpsy
objects according to geographical coordinates of the DTs in
different PSUs.

4) Each RDDpgy is processed with map transformation
operator to handle the load and weather data fields in data
rows and to determine their state according to the pre-set
state division scheme. This process generates RDDs,te Which
contains the state division information.

5) Finally, the reducebykey action is implemented to count
the number of occurrences of different observation vari-
ables Y and forecasting variable X. The Priori probability
matrix, which refers to the probability distribution of X of
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. . PX;=1,Y,Y2,---, 1)
ar()=PX, =ilY1,Y2,--- ., 1) =
P(Y15Y27 7Yl)
n—1 - W.H,T
=nh -y T P K =Y Yo, YD s ]
j=1 v

1

n

= Y T PXo =jIY1, Yo, Yo P(YIX =)

=1

~

(Z P(Y) =y X, = i) - E(Y, = yﬁ")) 27)
k

each state can be figured out by reduce action on RDDsye
with (16). Meanwhile, the conditional probabilities and tran-
sition probabilities matrixes can be calculated according
to (24) and (25) with these statistics.

With the lazy computing strategy of Spark, the prob-
ability matrixes computing tasks are finally triggered by
reduce action operator and are then distributed to different
nodes in the computing cluster based on the data scale and
the system configuration. All the data partition and task
scheduling operations are automatically managed by Spark
platform. Therefore, the algorithm can be implemented in
parallel.

C. IMPLEMENT OF MODIFIED FORWARD ALGORITHM

ON SPARK

With the objective of minimizing execution time of DBN
model, multiple probability matrixes and modified for-
ward algorithm are computed in parallel on Apache
Spark.

At time ¢, the probability of forecast forecasting variable
of state i can be calculated with the modified forward opera-
tor o () which indicates the effect of the previous observation
variable states on the forecasting variable state at time ¢,
as given in (27), shown at the top of this page, where 7/'; is
the transition probability of forecasting variable from state

j to state i, 7' is the transition probability of forecasting

value from state i to state j and 7, is the normalization factor.
With (27), the probability of each forecasting variable state at
t can be figure out.

Using forward algorithm is preconditioned by the fact that
the states of observation variables in critical days are known.
Given thatthe state of observation variables in close dates is
usually shared by the same division, the state divisions of
observation variable on close dates in prior years are applied
to simulate the observation variables in forecasting date. The
outcome of the algorithm is the forecasting variable state with
maximum probability of the forecasting year of a DT on one
critical day. The summation of the forecasting result of all
DTs in a PSU can represent its one possible load development
trend. When the load development trend of all critical days
are calculated, the maximum value can be used as the final
forecasting result.

Since all critical days’ load of each DT are needed to
be calculated separately, the calculation tasks of MTLF are
executed by distribution executor in parallel based on Apache
Spark platform, as shown in Fig. 7.
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FIGURE 7. Parallel process of forward algorithm based load forecasting
on Spark.

V. CASE STUDY

A. EXPERIMENT SETUP

The Spark platform, where all the experiments are performed,
consists of one master node and three slave nodes. Each node
executes in Ubuntu 16.04.2 and has 32 GB memory. All nodes
are connected by a high-speed intranet. Hadoop 2.8.0 and
Spark 2.2.0 are installed on both master and slave nodes. The
algorithm is implemented in Python 3.6.4.

B. FORECASTING ACCURACY EVALUATION
An accuracy analysis is conducted to investigate the perfor-
mance of proposed DBN model on forecasting peak load
of 2017. In our experiments, the historical dataset is split into
two subsets: 1) training set for DBN model (from 2011 to
2016), 2) testing set (maximum load of forecasting objects
in 2017). Algorithms used in latest researches are used for
performance comparison, which include the least squares
multiple linear regression model, ARMA model and feed-
forward neural network (FNN) model. The number of hid-
den layer neurons for FNN is optimized according to [27].
Besides, to validate the proposed DBN model which uses
improved DBSCAN for variables state division, the forecast-
ing results from DBN model which uses symmetric variable
state divisions are also used for forecasting accuracy compar-
ison. The forecasting result is shown in Fig. 8.

Fig. 8a shows the comparison of MTLF results of a typical
DT between proposed model and other three models. It can be
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FIGURE 8. MTLF result of a typical distribution transformer. a MTLF
results of different models. b MTLF results of DBN model with different
variables state division method.

seen that compared with linear regression, ARMA and FNN
model, the DBN model improves the forecasting accuracy
significantly, for both casual relation and development trend
between years are considered in the model. Fig. 85 demon-
strates that DBN model which uses improved DBSCAN for
variables state division outperforms DBN model which uses
symmetric variable state divisions, because the improved
DBSCAN reduces the interval of forecasting variable state
with maximum possibility. However, because most of DTs in
our experiment are light-loaded, there is still a gap between
true value and forecasting result of DBN model. Elimination
of the random errors of single DT will lead to more accurate
result in forecasting the maximum load of PSU. Fig. 9 shows
the MTLF result of a typical PSU with different models.

Table 2 compares the performance of the proposed DBN
based MTLF model in terms of peck load forecasting accu-
racy with four other techniques. All the presented metrics
in the table take the averaged values across all the tested
DTs or PSUs. The results show that improved DBN based
MTLF model outperforms linear regression by 6.951%, FNN
by 5.265%, ARMA by 3.430% and DBN model with sym-
metric variable state divisions by 3.616% in terms of PSUs’
peak load forecasting.

C. PERFORMANCE EVALUATION

In this section, experiments are conducted to evaluate the
performance of parallel processing DBN model. The speed
of parallel processing DBN model is compared with other
algorithms executed on common dataset. The number of
experimental samples is ranging from 1 million to 64 million.
The average execution times of the tested MTLF algorithms
are demonstrated in Fig. 10.
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(a)

(b)
FIGURE 9. MTLF result of a typical power supply unit. a MTLF results of

different models. b MTLF results of DBN model with different variables
state division method.

TABLE 2. Performance comparison.

Forecasting Accuracy Forecasting Accuracy

Algorithm

(%) on DTs (%) on PSUs
Linear Regression

Model 88.329% 89.995%

Feed Forward
Network 90.468% 91.681%
ARMA 93.051% 93.516%
Classic DBN 92.579% 93.330%
Improved DBN 95.669% 96.946%

FIGURE 10. Average execution time of the algorithms for different
datasets.

When the number of experiment samples grows from
1 million to 64 million, the average execution time of
FNN model increases from 5.97 to 621.51 seconds, the aver-
age execution time of linear regression model increases
from 4.05 to 531.51 seconds, the average execution time
of ARMA model increases from 4.82 to 432.83 seconds
while the average execution time of parallel processing DBN
model increases from 3.35 to 113.12 seconds.The probability
matrixes can be re-used, thus, the parallel processing DBN
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model achieves a faster processing speed than FNN, linear
regression and ARMA do. Taking advantage of RDD based
cluster computing, the performance of proposed DBN model
will be more significantwhen the data size increases.

Additionally, the proposed MTLF algorithm is imple-
mented in the stand-alone environment and the Spark plat-
form to evaluate the performance of parallel processing.
Fig. 11 presents the comparison of different computing envi-
ronment analysis with number of experiment samples ranging
from 1 million to 64 million.

FIGURE 11. Average execution time of DBN model in diffierent
environments for different datasets.

When the number of experiment samples grows from
1 million to 64 million, the average execution time of DBN
model in stand-alone environment increases from 5.68 to
402.76 seconds, while that of Spark-DBN model increases
from 3.35 to 113.12 seconds. Hence, it can be seen that DBN
algorithm executed in parallel environment achieves a faster
processing speed than serial computing environment does,
especially when the volume of historical dataset increases.

VI. CONCLUSION

This paper proposes a DBN model based power supply
unit mid-term load forecasting model. And several factors
that affect the load curve are also taken into considerta-
tion.An improved DBSCAN clustering algorithm is proposed
to obtain rational variable state division, and a modified
forward algorithm is employed to optimize the calculation
of probability model. Given that high volume of historical
data of large number of DTs needs to be processed, the paral-
lel processing platform based on Apache Spark is deployed
to improve the forecasting performance and speed. Thus,
the probabilistic matrixes in DBN model and the modified
forward algorithm can be calculated by parallel computing of
RDDs with transformation and action operators. The experi-
ments results indicate that parallel processing of DBN model
for MTLF on Apache Spark shows superiority in terms of
forecasting accuracy and calculation speed.
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