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ABSTRACT Feature selection or attribute reduction is an important data preprocessing technique for
dimensionality reduction in machine learning and data mining. In this paper, a novel feature selection
ensemble learning algorithm is proposed based on Tsallis entropy and Dempster–Shafer evidence theory
(TSDS). First, an improved correlation criterion is used to obtain the relevant feature based on Tsallis
entropy. A forward sequential approximate Markov blanket is then defined to eliminate the redundant
feature. An ensemble learning is employed to achieve approximately optimal global feature selection,
which can acquire the feature subsets from different perspectives. Finally, by fusing all the feature subsets,
the improved evidence theory approach is utilized to gain the final feature subset. To verify the effectiveness
of TSDS, nine datasets from two different domains are used in the experimental analysis. The experimental
results demonstrate that the proposed algorithm can select feature subset more effectively and enhance the
classification performance significantly.

INDEX TERMS Feature selection, Tsallis entropy, Dempster-Shafer theory, feature selection ensemble,
approximate Markov blanket.

I. INTRODUCTION
Machine learning aims to acquire knowledge from data.
In practical application, the data increases both in scales of
samples and features. These large-scale data may include
hundreds even thousands of features, which result in the
curse of dimensionality. Because of containing a mass of
redundant attributes, the performance of classification has
a great impact on machine learning. Therefore, elimination
of insignificant information is increasingly being recognized
as a key element in extracting potential useful information.
Feature selection or attribute reduction is an important data
optimization technique for dimensionality reduction, which
focuses on eliminating irrelevant and redundant attributes
from a dataset. The main purpose of feature selection is not
only to find a suitable subset from original feature space,
but also to retain high classification precision and preserve
original meaning of those features after reduction. A typical

FIGURE 1. The typical feature selection process.

feature selection process (called selector) can be divided into
three steps: subset generation, subset evaluation, and stopping
criterion [1], [2], as shown in Fig.1.

A candidate feature subset is constructed from the orig-
inal feature space according to feature searching strategy
in the subset generation process, whose efficiency is evalu-
ated and compared with the previous one according to the

9032
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-9884-2481
https://orcid.org/0000-0002-7470-3011


Y. Zheng et al.: Feature Selection With Ensemble Learning Based on Improved Dempster–Shafer Evidence Fusion

FIGURE 2. Integration approach of feature selection and ensemble
learning.

evaluation criterion. Subset generation and subset evaluation
are repeated until a given stopping criterion is satisfied.
Fig.1 shows that the evaluation criterion is one of the key
factors in feature selection. According to the evaluation crite-
rion, feature selection algorithms are divided into wrapper,
embedded, and filter methods. Wrapper feature selection
approaches utilize a predefined classification model to eval-
uate the selected feature subset. Embedded feature selection
models focus on embedding the feature selection process into
the classifier construction [2]. A general drawback of these
schemes is high computational complexity in wrappermodels
and embedded models. Besides, the selected feature subset
obtained by these models is associated with the learning
algorithm as well. Compared with these two methods, filter
feature selection algorithms analyze the characteristics of
data and evaluate features independently of any specific clas-
sifier. Features are ranked based on given criteria, and then the
features with the highest ranking are employed to construct
classification models [3], [4]. In filter models, the evaluation
functions are of four broad categories: consistency [5], [6],
distance criterion [7], [8], dependency criterion [9]–[11], and
information metrics [12]–[15].

Over the last few years, many researchers pay more atten-
tion to ensemble learning in classification tasks, which com-
bines the consequence of multiple base classifiers. Similarly,
the principle of ensemble learning can also be utilized for fea-
ture selection. It can effectively incorporate ensemble learn-
ing into feature selection. There are two different integration
strategies, as shown in Fig.2. One is to employ Ensemble
Learning for Feature Selection (ELFS) [16]–[18]. It obtains
an approximate optimal feature subset by combining multi-
ple feature subsets based on the nature of ensemble learn-
ing [19]. The other one is to utilize Feature Selection for
Ensemble Learning (FSEL) [20]–[22]. It utilizes different
feature subsets to construct an ensemble of a diverse-based
classifier [19]. At present, the output of the feature selector is
partitioned into two general types: feature weighting, feature
subset. For the former one, a weight is assigned to each
feature after feature selection process. And then, the aver-
age weight of each feature is calculated in all base feature
selectors. For the latter one, the cumulative number of each
feature appeared in the output of all base selectors is listed in
descending order, just as maximum majority voting.

The aforementioned ensemble strategy does not
embody the uncertain of features. Therefore, evidence
fusion [23]–[25] is utilized to integrate the output of all
base feature selectors. In this paper, a novel feature selection

ensemble algorithm is proposed based on Tsallis entropy
and Dempster-Shafer evidence theory (TSDS). The study has
been started with the view to obtain potentially informative
features, to retain the nature of the original data.

The basic idea is as follows: 1) We utilize the modified
symmetrical uncertainty and the forward searching approxi-
mate Markov blanket to measure the distinguishing ability of
each feature with class label based on Tsallis entropy, which
can effectively eliminate irrelevant and redundant feature to
preserve optimal feature subset approximately. 2) We employ
FSEL to gain the feature subset from different aspects.
3) By combining the credibility degree and Tsallis informa-
tion entropy, the Dempster combination rule is used to realize
information fusion to gain the final feature subset.

In summary, the key contributions of this paper are sum-
marized as follows:
• Correlation criterion: The improved symmetrical uncer-
tainty and forward sequential searching approximate
Markov blanket are proposed to obtain optimal feature
subset by the forward sequential selection.

• Ensemble fusion strategy: The novel evidence fusion
approach based on Dempster-Shafer evidence theory is
proposed to combine the consequence of each feature
selection.

• Effectiveness: To prove the effectiveness of our pro-
posed algorithm, a series of experiments have been
performed to compare with DISR [26], CMIM [27],
JMI [28], MRMR [29], SPFS-LAR [30], QIS [31] and
HANDI [32].

The rest of the paper is organized as follows. Some related
works are briefly reviewed in Section II. The proposed
novel feature selection ensemble algorithm is presented in
Section III. Experimental results and evaluations are given
in Section IV. Finally, the conclusion is given in Section V.

II. RELATED WORKS
Feature selection has attracted a lot of attention in data pre-
processing, for example, data optimization in machine learn-
ing, pattern recognition, and so on. In general, prior works on
feature selection can mainly be categorized into three classes:
wrapper, embedded, and filter methods.

In wrapper models, the feature subset with the highest
assessment value will be chosen as the final subset by a
predefined classifier. For example, Bermejo et al. [33] pro-
posed a NB-based embedded incremental wrapper feature
subset feature algorithm (IWSS). It can be updated when new
features are added gradually. Chen and Chen [34] utilized the
cosine distance to support vector machine to eliminate irrel-
evant or redundant features, namely cosine similarity mea-
sure SVM (CSMSVM). In the CSMSVM framework, feature
selection, SVM parameter learning and low relevance fea-
tures removing are accomplished together by optimizing the
shape of an anisotropic radial basis function kernel in feature
space. Wrapper models perform the classifiers many times in
the feature selection process, which leads to the inadequacy of
computationally prohibitive. Meanwhile, the selected feature
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subset is inevitably biased to the preassigned classification
model.

Embedded approaches incorporate the process of feature
selection as part of the model learning. It is divided twomajor
kinds: pruning method, and build-in mechanism model. The
pruningmethod utilizes all features to train a classifier model,
and then eliminates some features according to pruning strat-
egy while maintaining the classification performance. The
latter method is classifier with a build-in mechanism for
feature selection. For example, Maldonado and López [35]
utilized the embedded strategy to penalize the cardinality
of feature set by using a concave approximation scaling
factors technique. It can effectively enhance performance
in high-dimensionality under a class-imbalance condition.
Tao et al. [36] proposed a robust multi-source adaptation
embedding framework by employing the correlation infor-
mation which combines with joint L2,1-norm and trace-norm
regularization. Chung et al. [37] proposed a new learning
scheme based on fuzzy rule to select useful features with
controlled redundancy. In addition, it can discard derogatory
and indifferent features.

One of the great advantages of the filter models over the
wrapper and the embedded models is that none of classi-
fier learning algorithms is taken into account in the feature
selection process. Therefore, the selected features can rep-
resent the characteristics of the original data. Thus, many
researchers pay attention to utilizing filter models in practical
applications. For example, Nayak et al. [38] presented a filter
feature selection algorithm by employing elitism based on
multi-objective differential evolution. The objective function
takes both linear and nonlinear dependency among features
into account. Lyu et al. [39] advanced both the maximal
information coefficient and gram-schmidt orthogonalization
to address the irrelevant redundancy problem. A novel filter
method based on multi-variable relative discrimination cri-
terion is proposed for text classification in [40]. The doc-
ument frequencies for each term are utilized to estimate
their availability. Furthermore, Hancer et al. [41] elaborated
a novel filter approach which can utilize information the-
ory and evolutionary computation technique to extract the
optimal feature subset. It proposed two different criterions
to construct single-objective and multi-objective algorithms.
Wang et al. [42] proposed a new feature selection approach
to globally minimize the feature redundancy with maximiz-
ing the given feature ranking scores. In [43], F2DDLPP
(fuzzy 2D discriminant locality preserving projections) is
proposed for image feature selection. The fuzzy k-nearest
neighbor is used to calculate the membership degree matrix.
Then, F2DDLPP incorporates the membership degree matrix
into the intra-class scatter matrix and inter-class scatter,
respectively. It can extract discriminative features from over-
lapping samples effectively. Wan et al. [44] proposed a novel
method 2DMED (two-dimensional maximum embedding
difference) which combines graph embedding and difference
criterion techniques for image feature extraction. It extracts
the optimal projective vectors from 2D image matrices and

does not convert the image matrix into a high-dimensional
image vector.Wan et al. [45] proposed local graph embedding
method based on maximum margin criterion for face recog-
nition. Two novel fuzzy Laplacian scatter matrices are calcu-
lated using fuzzy k-nearest neighbor. In addition, maximum
margin criterion is utilized to avoid the problem of small size
sample.

Analysis of ensemble learning models demonstrates that
their performance is better than the result of any single clas-
sifier. Similarly, although with diversity, a number of feature
selection algorithms adopt a single feature selection process.
Li et al. [16] proposed a diversity regularized ensemble fea-
ture weighting framework. The base feature selector is based
on local learning. The feature weighting is converted directly
to a ranking vector. Bolón-Canedo et al. [17] presented a
new feature selection framework for an ensemble of filters
and classifiers with different metrics. The outputs of these
classifiers are combined by simple voting.

The filter approaches mentioned above do not take into
account sample diversity in sampling the training set. They
obtain only one feature subset in the feature selection pro-
cess. Therefore, our work differs from the above-mentioned
approaches in the evaluation criterion for feature selection
and the ensemble fusion strategy based on Dempster-Shafer
evidence theory aspects.

III. TSDS ALGORITHM
An information system can be written as IS = 〈U ,A,V 〉,
whereU = {u1, u2, · · · un} is a nonempty universe of objects
(| U | denotes the number of U ). A is the attribute set, and
V is the domain for attributes. For IS = (U ,A,V ), V can be
expressed as {Vα | α ∈ A}. ∀u ∈ U , α (u) ∈ Vα , Vα means
the value domain with respect to α ∈ A.
Let C denote the conditional attribute set, andD denote the

decision attribute set, if A = C ∪ D and C ∩ D = ∅, then an
information system IS = 〈U ,A,V 〉 is called decision table,
denoted as DT = 〈U ,C ∩ D,V 〉.
Div (U) = {Ui | Ui ⊆ U} denotes the division of U , if and

only if ∀U1,U2 ∈ Div(U ),U1∩U2 = ∅,U = ∪∀Ui∈Div(U)Ui.
For A′ ⊆ A, U/A′ denotes a division of U with respect to A′.
Ui ∈ U/A′ can be called an equivalence class with respect
to A′, if it satisfies ∀Ui ∈ U/A′,∀u, v ∈ Ui,∀α ∈ A′, α (u) =
α (v). Therefore, U/A′ is also known as an equivalence class
cluster with respect to A′. Especially, X = U/C , Y = U/D
denotes an equivalence class cluster with respect to C , D,
respectively.

Furthermore, for ∀Ui,Uj ⊆ U , p (Ui) =
|Ui|
|U | represents

the probability. Similarly, p
(
Ui | Uj

)
=
|Ui∩Uj|
|Uj|

denotes the

conditional probability, and p
(
Ui,Uj

)
=
|Ui∩Uj|
|U | expresses

the joint probability.
The feature selection process is described as follow: for

DT = 〈U ,C ∪ D,V 〉, Fs ⊆ C , we can obtain DT ′ =
〈U ,Fs ∪ D,V 〉 which includes the same information as DT .
It means that the accuracy of classifier constructed by DT ′

is not lower than that obtained by DT . The feature selection
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FIGURE 3. The process of TSDS algorithm.

process is related to two essential problems: how many fea-
tures can be obtained and which features can be gained.

To retain the nature of the original data, we propose a
novel feature selection ensemble learning algorithm based
on TSDS. The process of TSDS is divided into two parts:
1) single feature selection model. 2) evidence fusion model,
as shown in Fig. 3. In this section, we describe these two parts
in detail.

A. SINGLE FEATURE SELECTION
For DT = 〈U ,C ∪ D,V 〉, the feature set can be divided into
three basic parts: 1) strong relevant features, 2) weak relevant
features, and 3) irrelevant features. A feature is said to be
relevant if it is predictive of the decision features; otherwise,
it is irrelevant. A feature is considered to be redundant if
it is highly correlated with other features. The characteris-
tics of an informative feature are not only highly correlated
with the decision features but also highly uncorrelated with
other features. That means an optimal feature subset should
include non-redundant features and strong relevant features.
The correlation evaluation process of feature selection is
shown in Fig.4.

1) CORRELATION MEASURE
In many feature selection approaches, Shannon Entropy [46]
is employed to measure the degree of information uncertainty
and quantify the amount of information contained in the
dataset. With Shannon entropy, features with a high or low
probability have equal weight in the entropy. Therefore,
we utilize Tsallis entropy to evaluate feature importance
which is an extension of the standard entropy [47]. The
formula for Tsallis entropy is defined as

Sq=
1

q− 1

1− ∑
∀Ui⊆Div(U)

p (Ui)q

 , (q ∈ R) and (q 6=1)

(1)

FIGURE 4. The feature correlation evaluation process.

where q is a positive parameter. When q→ 1, Tsallis entropy
converges to Shannon entropy, and when q = 2, Tsallis
entropy is equivalent to the Gini index [48].

With Tsallis entropy, for q > 1, features with high prob-
ability contribute more than that with low probability in
the entropy value. Therefore, the higher is the value of q,
the higher is the contribution of high probability events in the
final result [49].

The main drawback of the approach based on information
entropy is that biases towards the feature with more values.
To making up the bias of information entropy, the sym-
metrical uncertainty is employed to estimate the degree of
association between features and class labels [1].

In our proposed approach, the formula of symmetrical
uncertainty based on Tsallis entropy is defined as

SUq (X ,Y ) =
2×

[
Sq (X)+ Sq (Y )− Sq (X ,Y )

]
Sq (X)+ Sq (Y )

=
2× Iq (X;Y )
Sq (X)+ Sq (Y )

, SUq ∈ [0, 1] (2)

where the formula for Tsallis mutual entropy Iq (X;Y )
[50]–[52] is defined as

Iq (X;Y ) = Sq (X)− Sq (X | Y )
= Sq (X)+ Sq (Y )− Sq (X ,Y ) (3)

where the Sq (X | Y ) and the Sq (X ,Y ) are given by

Sq (X | Y ) = −
∑

∀x∈X ,∀y∈Y

p (x, y)q logq p (x | y) , q 6= 1

(4)
Sq (X ,Y ) = −

∑
∀x∈X ,∀y∈Y

p (x, y)q logq p (x, y) , q 6= 1

(5)
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When SUq = 0, it indicates that X is independent of Y ,
in other words, X is irrelevant with respect to Y .

2) REDUNDANCY ANALYSIS
For DT = 〈U ,C ∪ D,V 〉, C1,C2 ⊂ C are con-
ditionally independent for given class variable D, if
P (D | (C1 ∪ C2)) ≈ P (D | C1). That means there is no
additional information for C1 when C2 is added. Thus C2 is
redundancy.

Let C ′ ⊆ C , then a feature ci ∈ C ′ is redundancy if and
only if ci has a Markov blanket [53] in C ′ − {ci}.
Definition 1 (Markov Blanket): Given a feature ci ∈ C, let

C ′ ⊆ C denote a feature subset, thenC ′ is said to be aMarkov
blanket for ci if and only if P

(
D |

(
C ′ ∪ {ci}

))
= P

(
D | C ′

)
with respect to C − C ′ − {ci}.
According to Markov blanket, it is easy to obtain the

redundant feature in the feature space. However, in case of
high dimension and minuscule sample, the cardinality of the
Markov blanket gives rise to overfitting [54]–[58].

In the proposed approach, to solve this problem,
the Approximate Markov Blanket based on Tsallis entropy
is utilized in forwarding sequential selection.
Definition 2 (Approximate Markov Blanket): Given two

features ci, cj ∈ C (i 6= j), and a feature d ∈ D,
ci is an approximate Markov blanket for cj, if and only
if SUq (U/ {ci} ,U/ {d}) > SUq

(
U/

{
cj
}
,U/ {d}

)
and

Iq
(
U/ {ci} ;U/

{
cj
})
> Iq

(
U/

{
cj
}
;U/ {d}

)
.

B. EVIDENCE FUSION
Dempster-Shafer evidence theory was firstly presented by
Dempster [59], [60]. It is an effective uncertainty reason-
ing method to combine multiple information sources. The
researches indicate that the synthetic consequence of conven-
tional Dempster′s combination rule is frequently contrary to
the reality in the practical applications [61], [62]. Two major
approaches are presented to enhance the accuracy of synthetic
consequence. One is to amend the combination rule. The
other is to alter the original evident resource. In this paper,
we focus on the latter one.

1) CONFLICT MATRIX
The Minkowski distance (also called lp − norm) [63] is
utilized to construct the conflict matrix between evidence.
According to the intension of Minkowski distance, the for-
mula is redefined based on the information system.
Definition 3 (Minkowski Distance): For IS = 〈U ,A,V 〉,

z,w ∈ U. ∀α ∈ A, α (u) ∈ R, the Minkowski distance is
defined as

Dis (z,w) = (
∑

z,w∈U ,∀α∈A

|α (z)− α (w)|ς )
1
ς (6)

when ς = 1 or ς = 2, the Minkovski distance corresponds
to the Manhattan distance(also called l1− norm) [63] or the
Euclidean distance(also called l2− norm) [63], respectively.

Let n denote the number of evidence (also represents
the execution times for single feature selection), mi and mj
(1 ≤ i, j ≤ n) represent two evidence. Integrated with feature
selection, let η =| C |, each evidence is denoted by mi =(
mi1,mi2, · · · ,miη

)
. The Minkowski distance can be utilized

to calculate the conflict distance between mi and mj as

mcij =

γ=|η|∑
γ=1

∣∣miγ − mjγ ∣∣ς
 1

ς

(7)

Then the normalization conflict matrix is defined as
(or simply MC for short)

Matrixconflict=


0 mc12 · · · mc1j · · · mc1n

mc21 0 · · · mc2j · · · mc2n
· · · · · · · · · · · · · · · · · ·

mcj1 mcj2 · · · 0 · · · mcjn
· · · · · · · · · · · · · · · · · ·

mcn1 mcn2 · · · mcnj · · · 0


(8)

2) SUPPORT DEGREE
Evidence support degree indicates the support degree of an
evidence which is supported by other evidence. The higher
similarity with other evidence, the higher support degree it
is, and vice versa. According to Matrixconflict , the following
formula is utilized to calculate the similarity degree between
mi and mj.

sij = 1− mcij, i, j = 1, 2, · · · , n (9)

As a result, we can obtain the following similarity matrix
of all evidence (or simply MS for short)

Matrixsimilarity=


1 s12 · · · s1j · · · s1n
s21 1 · · · s2j · · · s2n
· · · · · · · · · · · · · · · · · ·

sj1 sj2 · · · 1 · · · sjn
· · · · · · · · · · · · · · · · · ·

sn1 sn2 · · · snj · · · 1


(10)

And then, the support degree of each evident is calculated
as

Sup (mi) =
j=n∑

j=1,j 6=i

sij (11)

3) EVIDENT WEIGHT
Credibility degree indicates the credibility of an evidence.
It can be calculated by following formula.

CR (mi) =
Sup (mi)∑n
j=1 Sup

(
mj
) , i, j = 1, 2, · · · , n (12)

Information entropy can be utilized to measure the infor-
mative quantity of evidence in the information fusion process.
Integrated with Dempster-Shafer theory, given an evidence
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mi =
(
mi1,mi2, · · · ,miη

)
, and

∑η
l=1 mil = 1. The informa-

tion quantity of the ith evidence is defined as

InfoSq (mi) =
1

q− 1

(
1−

η∑
l=1

mqil

)
(13)

For information entropy, the larger the uncertainty,
the smaller the weight it is. On the other hand, the smaller
the information entropy, the larger the weight it is. The
method mentioned above can be used to reduce the weight
ratio of the evidence with higher indeterminacy in the fusion
process. Therefore, the weight of each evidence is defined
as

weight (mi) =
CR (mi)

Normalization
(
InfoSq (mi)

) , 1 ≤ i ≤ n

(14)

mi = weight (mi)× mi, 1 ≤ i ≤ n (15)

4) EVIDENCE COMBINATION RULE
Suppose that the feature subsets generated in the previous
chapter are independent, TSDS allows the fusion of infor-
mation coming from different feature subsets. Therefore,
the evidence combination rule is utilized to combine different
weighted feature subsets in a manner that is both accurate and
robustness.

Given DT = 〈U ,C ∪ D,V 〉, mi (i = 1, 2, · · · n), for
∀c ∈ C , the combination rule is redefined as

(m1 ⊕ m2 ⊕ · · · ⊕ mn) (c) =
1
K

n∏
i=1

mi (c) (16)

where K means the conflict between different pieces of evi-
dence, is given by

K =
η=|C|∑
i=1

n∏
j=1

mj (ci) (17)

C. TSALLIS ENTROPY AND DEMPSTER-SHAFER (TSDS)
ALGORITHM
Feature selection focus on obtaining the approximate optimal
feature subset which can preserve the discrimination ability of
the original data. The pseudo-code of our proposed algorithm
of feature selection with ensemble learning is elaborated in
Algorithm1, which is divided into two major parts. One is
to select the feature subset. Each execution of the body of
the feature selection is an iteration. It adjusts the parameter q
of Tsallis entropy automatically in each iteration. Because
each iteration is independent, it guarantees that each feature
subset is diversity (the detailed is shown in Algorithm2). The
other is to fuse Fevidence which obtained from the previous
task (the detailed is shown in Algorithm3). We can fuse each
evidence according to the equation (16) after the weight of
each evidence has been calculated. Furthermore, normaliza-
tion of feature weight can ensure computational efficiency.

Algorithm 1 TSDS_Feature_Selection
Input: U : a set of samples, ϕ: the times of single feature
selection

Output: Ffinal : the final feature subset
1: for i = 1 to ϕ do
2: Ui←random sample from U
3: Ci← GetFeatues (Ui)
4: Di← GetClass (Ui)
5: Fsingle← single_feature_selection (Ci,Di)
6: Fsingle.weight ← Normalization

(
Fsingle.weight

)
7: Fevidence← Fevidence ∪

{
Fsingle

}
8: end for
9: Ffinal ← evidence_fusion (Fevidence)
10: δ← calculate the average weight of Ffinal
11: for each feature f in Ffinal do
12: if fweight < δ then
13: Ffinal ← Ffinal − {f }
14: end if
15: end for
16: return Ffinal

Algorithm 2 Single_Feature_Selection
Input: C : the original feature set; D:the class label set
Output: Fsingle: the feature set of single feature selection
1: Fset ← {∅}, Fsingle← {∅}
2: for each feature c in C do
3: Weightsu← SUq ({c} ,D), according to equation (2)
4: f .weight ← Weightsu
5: Fset ← Fset ∪ {c}
6: end for
7: σ ← calculate the average weight of Fset
8: for each feature f in Fset do
9: if f .weight < σ then
10: Fset ← Fset − {f }
11: end if
12: end for
13: order Fset in descending by weight
14: ffirst ← GetFirst (Fset)
15: Fsingle← Fsingle ∪

{
ffirst

}
16: for each feature fset in Fset do
17: flag← 0
18: for each feature fsingle in Fsingle do
19: if Iq

({
fsingle

}
, {fset }

)
> Iq ({fset } ,D) then

20: flag← 1
21: break;
22: end if
23: end for
24: if flag 6= 1 then
25: Fsingle← Fsingle ∪ {fset }
26: end if
27: end for
28: return Fsingle
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Algorithm 3 Evidence_Fusion
Input: Fevidence: the feature union, each element is a feature
set

Output: Ffusion: the final feature set of evidence fusion
1: massset ← Fevidence
2: nmass← the element number of Fevidence
3: MC ← according to equation (7), use massset to calcu-

late conflict matrix
4: MS ← according to equation (9), use MC to calculate

similarity matrix
5: for each mass m in massset do
6: Supm ← according to equation (11), use MC to

calculate support degree
7: Supset ← Supset ∪ {Supm}
8: end for
9: Suptotal ←

∑n
i=1 Supset (mi)

10: for each mass m in massset do
11: CRm←

Supset (m)
Suptotal

12: qm← Normalization
(
InfoSq (m)

)
13: weightm←

CRm
qm

14: m.weight ← m.weight × weightm
15: end for
16: Ffusion← utilize equation (16) to combination massset
17: return Ffusion

TABLE 1. Data description.

IV. EXPERIMENTAL ANALYSIS
In this section, we make a comparison of the proposed
method with the other existing approaches. Three differ-
ent classification algorithms are employed to evaluate the
performance of all feature selection methods. The classi-
fiers include Support Vector Machine (SVM), Decision Tree
(CART), and Bayes. Nine datasets are used in the experimen-
tal analysis. These datasets are divided into two classes: seven
standard datasets from the University of California Irvine
(UCI) Machine Learning Repository and two gene expres-
sion datasets with high dimension and minuscule sample
from Arizona State University (ASU), as shown in Table 1.
The goodness of given approaches cannot be only measured
in terms of the improvement for the average classification
accuracy. Therefore, we utilize the Friedman test [64], [65]
and Contrast Estimation [66], [67] to evaluate the significant
differences between different algorithms. All algorithms are
executed in Python and run in the hardware environment with
Core i7-7500 2.7GHz and 32.0GB RAM.

A. PARAMETER SETTING
To validate the effectiveness of TSDS algorithm, we com-
pare our algorithm with the following seven feature selection
approaches:

1) DISR [26]: It relies on a measure of variable comple-
mentarity to evaluate the additional information. DISR
criterion combines two properties of feature selection.
One is feature complementarity, which means that a
combination of feature can obtain more information
than the sum returned by each feature individually.
The other is the computation of a lower-bound on the
information of a feature subset expressed as the average
of information of all its subaggregate.

2) CMIM [27]: It mainly utilizes Maximization condi-
tional mutual information. The feature that can obtain
additional information about the predicted class is
selected. In other words, in the process of CMIM,
it does not select a feature similar to each one which has
been picked to the selected feature subset. CMIM takes
the tradeoff between independence and discrimination
into account.

3) JMI [28]: It is the model-independent approach for
feature selection based on joint mutual information.
It is found to be better in eliminating redundancy than
simple mutual information.

4) MRMR [29]: It obtains feature subset by utilizing
minimal redundancy and maximal relevance measure
criterion. This scheme avoids the difficult multivariate
density estimation in maximizing dependency. Mean-
while, MRMR can be combined with other evaluation
criterion such as wrapper to obtain a very compact
feature subset at a lower cost.

5) SPFS-LAR [30]: SPFS-LAR utilizes similarity pre-
serving feature selection framework to preserve fea-
ture. The regularized sparse multiple-output regression
formulation is used in this framework to enhance its
effectiveness. The advantage of SPFS-LAR is that it
does not require parameter tuning in the feature selec-
tion process.

6) QIS [31]: QIS pay attention to the distinguish abil-
ity of each feature which can be used to distinguish
a given sample with other samples. The maximum-
nearest-neighbor is employed to discriminate the near-
est neighbors of samples. To address the problem of
neighborhood parameter selection, the margin of the
sample is utilized to set the neighborhood parameter
value.

7) HANDI [32]: When adding a new feature to the cur-
rent feature subset, HANDI utilizes the conditional
discrimination index to calculate the increment of dis-
tinguishing information. The proposed discrimination
index is computed by the cardinality of a neighborhood
relation.

To compare with the above algorithms, there are some
parameters to be predefined in terms of original papers. The
first four algorithms are related to information entropy, thus
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TABLE 2. Classification accuracies (%) of classifiers with TSDS in different δ value.

TABLE 3. Classification accuracies (%) of CART with different feature selection algorithms.

no additional parameter setting is needed. Since SPFS-LAR
is related to similarity preserving framework, it does not
need additional parameters. For QIS, the neighborhood size
is set as 0.1. According to the original paper, the parameter
is set as 0.001 for low-dimensional data and 0.01 for high-
dimensional data for HANDI.

In the experiment process, TSDS only reserves those fea-
tures whose weights are greater than δ. Table 2 shows the
comparison results of different thresholds δ in the accuracy.
The experiments indicate that each classifier can gain the
highest average classification accuracy when the threshold δ
is set as the mean value. Thus, the mean value is adopted
as δ.

B. EXPERIMENTS ON LOW-DIMENSIONAL DATASETS
To prove the effectiveness of feature selection, the experi-
ments have been performed on the seven UCI datasets to
compare the performance of classifiers constructed by dataset
with TSDS, DISR, CMIM, JMI, MRMR, SPFS-LAR, QIS,
and HANDI. Need to pay attention to it, neither QIS nor
HANDI can process the Connect dataset with running out
of memory. Therefore, these algorithms are divided into
two parts: 1) DISR, CMIM, JMI, MRMR, and SPFS-LAR.
2) QIS, and HANDI. For each dataset, the 10-fold cross-
validation is utilized to estimate the classification accuracy.
Meanwhile, to make the comparative analysis between dif-
ferent algorithms more balanced, this process is repeated ten
times for each dataset. Furthermore, to evaluate the perfor-
mance of different feature selection algorithms in an exper-
iment, we introduce three metrics including classification
accuracy, Contrast Estimation, and Friedman test.

A procedure for Contrast Estimation assumes that the
expected differences between performance of different algo-
rithms are the same across datasets [66], [67]. In this paper,
for every pair of eight algorithms in experiment, the formula
which is utilized to calculate the difference between the per-
formances of the two algorithms in each of the seven datasets

is given as

Di(µν) = κiµ − κiν (18)

where i = 1, · · · ,Ndata represent the index of the datasets,
µ, ν = 1, · · · ,Nalgorithm represent the index of the algo-
rithms. In this paper, we set Ndata = 7 and Nalgorithm = 8,
respectively.

The difference between two algorithms is computed by
ωµ − ων , ωµ is given as

ωµ =

∑|Nalgorithm|
j=1 Zµj

| Nalgorithm |
(19)

where Zµj denotes the median of each set of differences.
Friedman test aims to detect significant differences

between the performances of two or more algori-
thms [64], [65]. It calculates the ranking of the observed
results for the given algorithms, and then order by descending
order. The Friedman test is distributed according to λ2F with
k − 1 degrees of freedom (k denote the algorithms), is given
as

32
F =

12× N
k × (k + 1)

∑
j

R2j −
k × (k + 1)2

4

 (20)

where N represents the number of datasets, Rj =
∑

i r
j
i (r

j
i

denote the algorithm j with k algorithms).
To facilitate experimental comparison, the number of fea-

tures of other approaches is uniformly set to that obtained
by TSDS. Some experiments have been conducted to verify
the TSDS algorithm. The detail of experiments in differ-
ent algorithms are shown in Table 3-5 (boldface represents
the highest accuracy for each dataset in the classification
algorithm). The details illustrate that TSDS can obtain the
highest accuracy for 3,4,3 datasets in CART, SVM, Bayes,
respectively. Fig.5 presents TSDS can achieve the highest
average classification accuracy among the former ones in the
CART, SVM, and Bayes, respectively.
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TABLE 4. Classification accuracies (%) of SVM with different feature selection algorithms.

TABLE 5. Classification accuracies (%) of Bayes with different feature selection algorithms.

FIGURE 5. Average accuracy comparison with different feature selection
algorithms for (a) CART, (b) SVM, (c) Bayes.

The performance analysis of a newmethod is a crucial task
to carry out in research. Furthermore, Contrast Estimation
and Friedman Test are used to estimate the performance of
the given algorithms. Contrast Estimation based on medi-
ans can be employed to evaluate the performance difference
between two algorithms. Friedman test is a multiple com-
parison test approach which is employed to detect the sig-
nificant differences between two or more algorithms. Thus,
Contrast Estimation is employed to estimate the differences
between TSDS and the former ones. The results in Table 6-8
demonstrate that TSDS can outperform the former ones in
terms of classification performance. Then, in the following

FIGURE 6. Classification performance comparison with QIS and HANDI
in CART.

TABLE 6. Contrast estimation of the algorithms with six datasets in CART.

experiment, Friedman test is used to estimate TSDS and
the latter ones. In Table 9, the statistical analysis results
illustrate that TSDS would be more effective than QIS and
HANDI. The detailed experimental comparisons are shown
in Fig. 6-8. Meanwhile, from Fig. 6-8, it is obvious that
TSDS can obtain better overall performance than the latter
ones.

Conventional feature selection algorithms execute
sampling only once, which cannot maintain the diversity
of samples. On the contrary, from the above descriptions,
with multiple ensemble learning based on random sampling,
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TABLE 7. Contrast estimation of the algorithms with six datasets in SVM.

TABLE 8. Contrast estimation of the algorithms with six datasets in Bayes.

FIGURE 7. Classification performance comparison with QIS and HANDI
in SVM.

FIGURE 8. Classification performance comparison with QIS and HANDI
in Bayes.

TSDS can maintain the diversity of samples effectively.
After feature subsets generated, it utilizes the ensemble fusion
strategy based onDempster-Shafer evidence theory to ensem-
ble all feature subsets. The above experiments prove that
TSDS can enhance the classification performance effectively
in low-dimensional datasets.

TABLE 9. Average rankings by applying the Friedman procedure.

FIGURE 9. Classification accuracy vs. number of the selected feature
subset in CART for (a) Colon DataSet, (b) Leukemia DataSet.

C. EXPERIMENTS ON HIGH-DIMENSIONAL DATASETS
To illustrate the scalability of TSDS, another series of exper-
iments are performed. Two datasets, Colon and Leukemia
from different application domains are employed in this part.
In the experiments, these two datasets contain thousands of
features, and many of them could be highly correlated with
others, as shown in Table 1. Similarly, we employ the 10-fold
cross-validation to evaluate the classification accuracy in all
datasets, and the process is repeated ten times for each dataset
to ensure the comparability. According to the intension of
feature selection approaches, approaches for comparison are
divided into two categories: 1) DISR, CMIM, JMI, MRMR.
2)SPFS-LAR, QIS, and HANDI. Then, the TSDS algorithm
will compare with these two categories of feature selection
algorithms in detail, respectively.

To evaluate the classification performance of different
feature selection algorithms, a comparison of the feature
selection algorithms for Colon and Leukemia in the CART,
SVM and Bayes are shown in Fig.9-11. The numbers of the
selected feature subset are taken as {5, 10, 15, 20, 25, 30} for
Colon. The numbers of the selected feature subset are taken
as {5, 10, 15, 20, 25, 30, 35, 40, 45} for Leukemia. We can
see from Fig. 9-11 that the classification results of different
classifiers based on TSDS are in general better than the
former ones.

Fig.12-14 compare the performances of TSDS with
HANDI, QIS, and SPFS-LAR in different classifiers. The
results illustrate that TSDS can achieve superior perfor-
mance with the same feature numbers given by HANDI, QIS,
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FIGURE 10. Classification accuracy vs. number of the selected feature
subset in SVM for (a) Colon DataSet, (b) Leukemia DataSet.

FIGURE 11. Classification accuracy vs. number of the selected feature
subset in Bayes for (a) Colon DataSet, (b)Leukemia DataSet.

and SPFS-LAR. From the above three figures, we have the
following observations. For Colon dataset, in comparison to
HANDI, our proposed TSDS algorithm can improve the clas-
sification accuracy by 0.019, 0.03 and 0.059 for CART, Bayes
and SVM, respectively. Comparing with QIS, the accuracy
can be enhanced by 0.05, 0.342 and 0.03 for CART, Bayes
and SVM, respectively. While comparing with SPFS-LAR,
the improvement of the accuracy is 0.035, 0.085 and 0.102 for
CART, Bayes and SVM, respectively. Similarly, for the case
of Leukemia dataset, TSDS can outperformHANDI, QIS and
SPFS-LAR in terms of classification accuracy.

A goodness of feature selection algorithm may enhance
the performance of classification tasks in that it can elimi-
nate the redundant features and irrelevant features effectively,
and highlight the relevant informative features. However,

FIGURE 12. Classification accuracy compare with HANDI
high-dimensional datasets for (a) Colon DataSet,
(b) Leukemia DataSet.

FIGURE 13. Classification accuracy compare with QIS high-dimensional
datasets for (a) Colon DataSet, (b) Leukemia DataSet.

high-dimensional datasets include excessive redundant and
irrelevant features. The above experiments demonstrate that
TSDS can outperform the compared feature selection algo-
rithms by utilizing the improved symmetrical uncertainty
based on Tsallis entropy and forward sequential with approx-
imate Markov blanket. Meanwhile, these consequences indi-
cate that TSDS can obtain relative optimal feature subset
more stable than other comparing feature selection algo-
rithms on high-dimensional datasets by adopting ensemble
fusion strategy with Dempster-Shafer evidence theory. All
in all, TSDS can achieve competitive performance com-
pared to existing state-of-the-art feature selection approaches
mentioned.
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FIGURE 14. Classification accuracy compare with SFPS-LAR
high-dimensional datasets for (a) Colon DataSet,
(b) Leukemia DataSet.

V. CONCLUSIONS
Feature selection is one of the data optimization techniques
in machine learning and data mining. If the dataset can be
compressed effectively by utilizing feature selection, we can
obtain potential valuable information, and further improve the
performance of the classifier models. In this paper, a novel
feature selection ensemble learning algorithm is proposed
based on evidence theory. The key contribution of TSDS is
to improve correlation criterion and ensemble fusion strat-
egy. The improved symmetrical uncertainty based on Tsallis
entropy and forward sequential approximate Markov blanket
help us to gain more relevant informative features in the
original feature space. Ensemble fusion strategy makes an
algorithm better to obtain optimal global feature selection
approximately. A study of all experiments demonstrates that
TSDS can obtain relative optimal feature subset to construct
a classifier, which can gain a higher classified accuracy than
other comparing feature selection algorithms. To select the
threshold to control the number of selected feature effectively
and automatically and to enhance fusion efficiency will be the
focus of further research.
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