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ABSTRACT Horizontal visibility graph (HVG) motifs have been recently introduced to analyze the
dynamical information encoded by biological signals. However, the result of the analysis strongly depends
on the selected window size of the motifs. Different sizes ranging from 3 to 5 have been previously used,
but such small window sizes are insufficient to cope with the complexity of biological systems and often
fail to extract salient features of the encoded information. It is known that larger window size increases the
total number of possible motifs, and it leads to the distribution of the statistics into too many motifs, which
causes each individual motif to contain too little information and make it even more difficult to reliably
detect system dynamics. To resolve this problem, we group the motifs based on the number of edges. Using
the grouped motifs, we propose grouped horizontal visibility entropy (GHVE) to quantify the complexity
based on the probability distribution of the observations within these groups.We apply GHVE to quantify the
complexity of simulated white and 1/f noise. The results reveal that the 1/f noise time series exhibits a higher
complexity than white noise time series, which indicates that the 1/f noise is structurally more complex than
white Gaussian noise. We apply the method for analyzing interbeat intervals time series. The results show
that the proposed GHVE measure is more accurate in distinguishing healthy and pathological subjects than
its non-grouped counter-part HVG. It is, therefore, better suited to detect changes in aging, disease severity,
and activity levels (sleep and wake period).

INDEX TERMS Complex network, HVG motifs, HRV analysis, time series data.

I. INTRODUCTION
The mapping of time series onto complex networks
(graphs) [1], [2] has attained considerable attention in a
variety of fields. It has been applied in the analysis of
financial time series [1], stock market empirical record [2],
electroencephalography (EEG) [3], [4], and interbeat inter-
val (IBI) time series [5], [6]. Complex networks opened up
new possibilities to quantify the dynamics of any time series
by describing the structure at different temporal scales rang-
ing from microscopic to macroscopic levels [2]. A complex
network interprets the system components as nodes and their
interaction as edges [7], [8], which provides a mechanism to
characterize the complexity of the time series from a novel
prospective. Complex network analysis has been applied in

diverse research areas such as financial time series [1], [9],
turbulence [10], and cardiac IBI time series [11]–[14].

Zhang and Small [11] pioneered the construction of com-
plex networks from pseudo-periodic time series, where each
cycle was represented by a single node in the network. They
investigated the statistical properties of the constructed net-
works and found that time series with different dynamics
exhibit distinct topological structures. Yang and Yang [12]
constructed networks by dividing the time series into different
segments to determine edges between the nodes in terms
of the Pearson correlation coefficient. Gao and Jin [15] and
Gao et al. [16] proposed a similar approach to construct
networks from experimental flow signals. They employed
network motifs to quantify the nonlinear characteristics of the
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two-phase flow. The approach uses high value of embedding
dimension to compute the correlation coefficient with low
uncertainty and without the local short-term dynamics, but
resulting in the loss of dynamical information [17].
Visibility graph (VG) is another method that has been used

for efficient construction of networks from a time series [18].
Many VG algorithms have been developed and successfully
applied both to EEG [3], [4] and IBI time series [5]. However,
this approach transforms the time series into a static network
which makes it difficult to extract dynamic behavior of the
system. Luque et al. [19] developed an algorithm to construct
horizontal visibility graph (HVG), which is a geometrically
simpler and more efficient subgraph of VG than the full VG.
The algorithm and the results presented in [19] are suitable
for distinguishing uncorrelated randomness from chaos. Both
VG and HVG have the ability to encode information of
the time series structure and its underlying dynamics [1].
In previous studies [19], [29], window sizes between 3 and
5 were used to compute the probability of occurrence of HVG
motifs, and HVG entropy (HVE) was then used to quan-
tify the dynamical information. However, since physiological
systems contain structures at multiple time scales, smaller
window sizes are not reliable to extract subtle information
about the system dynamics. This is because non-visibility
motifs are more dominant than visibility motifs. Larger win-
dow sizes result in a significant increase in the number of
motifs. For example, the number of distinct motifs increases
from 22 to approximately 7,000 when increasing the window
size from 5 to 10. However, many motifs produced by a larger
window contain very little information about the system
dynamics. The selection of the optimal window size remains
an unresolved problem.

In this work, we compute the probability of occurrence of
the grouped motifs to determine dynamical characteristics of
a network motif system. The number of HVGmotifs depends
on the window size, i.e., the number of nodes involved in an
HVG. We use a large window size to generate large number
of distinctive motifs. However, these motifs are then grouped
based on their structural symmetries. This keeps their proba-
bility distribution more uniform across the motif groups and
allows more accurate analysis. We propose to use grouped
HVG entropy (GHVE) to compute the dynamical informa-
tion. GHVE provides information about short-term dynam-
ical fluctuations that plays an integral role for the detection
of age- or disease-related changes. We experimentally vary
the window size between 3 and 15 nodes. (Please note that
increasing the window size beyond 15 would lead to large
number of motifs having little or no information with zero
probability of occurrence.) Our findings indicate that a larger
window size of 15 provides better separation between healthy
and pathological subjects as compare to smaller windows.

The performance of GHVE is evaluated both using simu-
lated noise signals and IBI time series data from real subjects
with the conditions: normal sinus rhythm (NSR), congestive
heart failure (CHF), and atrial fibrillation (AF) [20]. We
determine the optimal window size for studying the long- and

short-term visibility of the constructed network. A machine
learning technique is used to classify the time series data into
healthy or pathological based on GHVE features and identify
the condition (NSR, CHF, or AF). The results reveal that
features extracted using grouped HVG are good enough for
machine learning models to be able to identify a signal either
as NSR, CHF, or AF subjects. Finally, we compared GHVE
against three existing techniques: sample entropy [21], per-
mutation entropy [22], and bubble entropy [23]. The com-
parison indicates that the GHVE algorithm is more robust
to reveal dynamically accurate information and provides the
best degree of separation between healthy and pathological
subjects.

II. MATERIAL AND METHODS
A. HVG MOTIFS
VG algorithms map time series data to a graph in order to
explore the structure and underlying system dynamics. For a
time series {t(i)}Ni=1 comprising N data points, VG is a planar
graph ofN nodes in which every data point t(i) is mapped to a
node i, and two nodes i and j are connected by an edge if every
data point t(k) in between t(i) and t(j) fulfils the following
criterion of convexity [18]

tk < ti +
k − i
j− i

[
tj − ti

]
∀k : i < k < j. (1)

In case of HVG, the time series is mapped to the graph such
that every data point t(i) is mapped to a node i, and two nodes,
i and j, are connected by an edge if every point t(k) in between
t(i) and t(j) fulfils the following convexity criterion [19]

tk < max
(
ti, tj

)
∀k : i < k < j. (2)

An HVG can be broken into a set of uniquely defined
subgraphs calledmotifs. Eachmotif represents some topolog-
ical properties of the graph including the information about
data relation and temporal ordering in the structure [24].
Fig. 1 illustrates the schematic transformation of an IBI time
series into an HVG.

FIGURE 1. Horizontal visibility indicated by arrows of time series data
of 15 points (top), and the extracted HVG (bottom).

HVG motifs are outerplanar, i.e., their edges do not inter-
sect (Fig. 2). The total number of n-node HVG motifs asso-
ciated with a time series having N data points isM = N − n.
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FIGURE 2. Example of an outerplanar motif where edges do not
intersect (left) and the non-outerplanar alternative (right). HVG motifs are
outerplanar.

An n-node motif can have various configurations. For a
5-node HVG, a total of 22 admissible outerplanar motifs exist
(Table I). If the total number of motifs in a window of n-nodes
is M, then a probability vector Pn can be constructed as

Pn : n ∈ N
[
pn1, p

n
2, . . . . . . .p

n
M
]
∈ [0, 1]M , (3)

where pni is the probability of occurrence of the ith motif
in the graph. The dynamics of the underlying system can
be quantified by calculating the entropy of HVG using the
Shannon entropy [25], as

HVEn =
∑

Pni logP
n
i . (4)

B. GROUPED HVG MOTIFS
Since real data (IBI time series) shows structures at multiple
temporal scales, smaller windows are unable to accurately
capture the system dynamics. While increasing the window
size increases the number of motif types, it also decreases
the information contained in each type. To address this issue,
instead of computing the probability of occurrence of each
motif type, we compute the probability of occurrence of a
group of motifs that have the same number of edges. For
example, the 22 HVG motifs for size n = 5 nodes shown
in Table I can be divided into four groups, g0−3, where the
subscript gives the number of edges present in a motif (g0
thus corresponds to no visibility, g1 to one edge, etc.). If Mg
is the total number of groups labelled from 0 toMg − 1, then
the n-node HVG motif profile Png for a time series having N
data points can be written as

Png : n ∈ N
[
png0, p

n
g1, . . . . . . .p

n
Mg

]
∈ [0, 1]Mg . (5)

Note that Eq. (5) differs from Eq. (3) in that it calculates
the probability of occurrence of a group of motifs and not
individual motif. After calculating the probability vector in

TABLE 1. Possible horizontal visibility graph motifs of size n=5.

Eq. (5), the Shannon entropy [25] can be used to quantify the
dynamics of the system as

GHVEn =
∑

Pngi logP
n
gi. (6)

C. DATASET
We evaluated the performance of GHVE by using synthetic
and clinical datasets. The synthetic data contains both white
Gaussian noise (WGN) and 1/f noise. Both are commonly
used in multiscale entropy analyses [26], [27]. WGN is ran-
domly drawn from a Gaussian distribution and therefore it is
statistically uncorrelated and has a constant power spectral
density. For 1/f noise, the power spectral density is inversely
proportional to the frequency (hence the name 1/f ) and is
equal to the amount of energy octave [28]. For generating
1/f noise, we start with uniformly distributed white noise and
calculate its fast Fourier transform (FFT). The 1/f distribu-
tion is then imposed on the power spectrum before calculat-
ing the inverse FFT [29]. For our experiments, we generate
40 datasets in total, each of which consists of 40,000 data
points.

The clinical data used in this study consists of sev-
eral IBI time series datasets taken from Physionet
(www.physionet.org), which is a well-known resource for
research on complex physiological signals [30]. The data
consists of 72 NSR, 44 CHF, and 24 AF subjects (Table II).
The NSR datasets were obtained from 24-hour holter monitor
recordings. Out of 72 NSR subjects, 54 were taken from the
RR-interval normal sinus rhythm database and 18 from the
MIT-BIH normal sinus rhythm database [30]. There was a
total of 35 men and 37 women, aged between 20-78 years
(mean ±1STD = 54.6 ± 16.2 years). All recordings in the
NSR dataset were sampled at 128 Hz [30].

TABLE 2. Inter BEAT interval time series data for healthy and pathological
subjects.

The time series data of the 44 CHF subjects was also
obtained from 24-hour holter monitor recordings. 29 of
which originate from the RR-interval congestive heart failure
database (128Hz sampling frequency). The remaining 15 are
taken from the MIT-BIH Bidmic congestive heart failure
database (250 Hz sampling frequency). According to the
New York Heart Association (NYHA) functional classifica-
tion system, CHF subjects are typically divided into four
classes [31] based on a patient’s ability to perform physical
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activity. While patients in Class I do not experience any dis-
comfort when carrying out physical activities, the discomfort
increases for Classes II to IV with the latter being unable
to carry out any physical activity at all without experiencing
discomfort (severe disease category).

In this paper, CHF subjects are divided into two categories.
The first group, CHFA (less severe), consists of 12 subjects
with lesser disease severity from NYHAClasses I and II. The
second group, CHFB (more severe), consists of 32 subjects
with high disease severity ordinarily classified into NYHA
Classes III and IV.

AF data used in our study has been taken from the
MIT-BIH Atrial Fibrillation database (AFDB) [30] and com-
prises the RR-interval time series data of 24 AF sub-
jects. Individual recordings have a duration of 10 hours.
The original analogue signals were recorded using ambula-
tory ECG recorders with a typical recording bandwidth of
approximately 0.1 Hz to 40 Hz and sampling frequency of
250 Hz [30].

D. STATISTICAL ANALYSIS
Analysis of variance (ANOVA) is generally used to ana-
lyze differences among group means and their concomi-
tant measures for three or more groups. One-way ANOVA
is an omnibus test based on significant F statistics, which
determines whether the group means differ in a statistically
significant manner. However, ANOVA does not make paired
comparisons but only determines whether a group is signifi-
cantly different from the rest. We use ANOVA for analysis
of the difference among group means and the Bonferroni
post-hoc test for multiple comparisons among the groups.

Our feature set is comprised of GHVE estimates com-
puted using Eq. (6) for each motif group using a sliding
window consisting of 15 nodes using time series data of
NSR young (NSRY), CHF, and AF subjects. Support vector
machine (SVM), k-nearest neighbors (kNN), Random tree
(RT), and C4.5 (J48) classifiers are used, employing 10-fold
cross-validation to evaluate the performance of classification
models. A confusionmatrix is constructed to visualize correct
and incorrect predictionsmade by the classification algorithm
with regard to the actual class labels in the dataset.

III. RESULTS
GHVE is applied to two simulated noise signals. The four
possible motif groups for the 5-node window size are dom-
inated by zero (no visibility) edge group, g0, thus revealing
very little structural information about the system dynam-
ics (Fig. 3). The probability of occurrence of motif groups
and their GHVE values almost overlap for WGN and 1/f
noise signals, rendering both signals nearly indistinguish-
able. When the window size is increased to 10 and 15,
the number of possible motif groups increases to 9 and
14, respectively, providing more structural information about
the system dynamics. The increase in the window size thus
results in the information being distributed among a larger
number of motif groups. As this decreases the probability of

FIGURE 3. Probability of occurrence of group HVG motifs at widow
sizes 5, 10, and 15 for synthetic data.

occurrence of g0, it provides better insights into the system
dynamics. For larger window sizes, both the probability of
occurrence of a motif group and the corresponding GHVE
values are higher for 1/f noise than forWGN noise signals for
g0, g1, and g7 to g10 motif groups (Figs. 3 and 4). The opposite
trend is observed for motif groups g2 to g6, while for motif
groups g11 to g13, the results are very similar. It follows that
both noise signals can only be distinguished if many motif
groups are present, i.e., for larger window sizes.

To test the suitability of GHVE for distinguishing between
healthy and diseased subjects using real IBI time series data,
we evaluated the performance of GHVE at different window
sizes. Results were more accurate and robust using a window
size with 15 nodes (Fig. 5). Compared to CHFB, the NSR
GHVE values are higher for g0 to g4 motif groups and overlap
for groups g5 to g7 and tend to overlap for groups g8 to g13.
Compared toAF, theNSRGHVEvalues are higher for groups
g0 to g7 and lower for the remaining groups. The higher NSR
values show that the complexity of NSR subjects is higher
than either CHFB (g0 to g4) or AF subjects (g0 to g7). When
comparing CHFB and AF subjects, we found that CHFB
subjects have higher GHVE values at g0 to g7 and lower
values for the remaining groups.
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FIGURE 4. Mean± SE of GHVE estimates for distinguishing synthetic data.

ANOVA is used to analyze the differences among group
means and a Bonferroni post-hoc test is used for paired
comparisons between NSRY vs CHF, NSRY vs AF, and
CHF vs AF subjects. The p-value <0.05 is a level of sig-
nificance difference between motif groups. GHVE values
differed in a statistically significant manner for all pairs
and across a wide range of motif groups. The maximum
separation for each pairwise comparison was obtained at:
g1 for NSRY vs CHFB (p-value=1.3×10−06), g4 for NSRY
vs AF (p-value=1.3×10−14), and g6 for CHFB vs AF
(p-value=5.2×10−14). The increase in complexity explains
why it is difficult to assess this dynamical behavior using
traditional approaches on RR-interval time series data. The
distribution of GHVE patterns in NSRY subjects is more
uniform than in pathological (CHF, AF) and elderly subjects
which leads to a larger GHVE value at a wide range of
motif groups (Figs. 6 and 7). Furthermore, complexity clearly
decreases with disease severity and age. These results are in
good agreement with the ‘‘loss of complexity with aging and
disease’’ hypothesis [26], [32], [33].

We evaluated the performance of GHVE to compare
CHFA (low severity) with CHFB (high severity) subjects.
GHVE values were higher for CHFA at motif groups g0 to

FIGURE 5. Mean± SE of GHVE estimates at window size 15 for
distinguishing clinical data. The circles represent mean values and error
bars represent the standard error.

g4 and g9 to g13 and lower for g5 to g8. The maximum
separation between CHFA and CHFB was obtained for g0
(p-value=0.0046). GHVE values were higher for young vs
elderly subjects and for low (CHFA) vs high (CHFB) disease
severity. The decrease in GHVE reflects the loss of complex-
ity with advanced age and disease severity.

We evaluated the performance of GHVE for characterizing
the dynamics of NSRY and NSR elderly (NSRE) subjects
and for investigating the changing dynamics with disease
severity. It is evident that GHVE values are higher for NSRY
at motif groups g0 to g2 and g7 to g13, and lower for
g3 to g6 (Fig. 6). The maximum separation between the
young and elderly subjects was obtained at motif group 13
(p-value =3.7×10−4).

To assess the effects of physical activity, we computed the
complexity of the IBI time series for healthy subjects during
their sleep and wake periods. From the 24-hour IBI time
series data of 72 healthy subjects, the sleep/wake datasets
were obtained by extracting 20,000 consecutive data points
that showed the highest/lowest heart rate. Although GHVE
can distinguish between sleep and wake data at motif groups
g3 to g5 and g7 to g11, only groups g7 to g11 provide
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FIGURE 6. Mean± SE of GHVE estimates at window size 15 for
distinguishing the subjects-based on disease severity and aging.

FIGURE 7. Mean± SE of GHVE estimates at window size 15 for
distinguishing sleep and wake periods.

dynamically correct information, i.e., higher values during
sleep and smaller values when awake (Fig. 7). These results
support the notion that the cardiac dynamics of healthy sub-
jects are more complex under free-running conditions.

By applying GHVE to the IBI time series of the healthy
subjects with and without outliers, where outliers are defined
as having a value greater than 2 seconds, we observed a
total of 30,000 data points whose absolute values were much
higher than normal IBI intervals and therefore classified as
outliers (Fig. 8a). Fig. 8 (b) shows the IBI time series after
having removed artefacts with intervals greater than 2s. The
GHVE curves of the filtered and unfiltered time series over-
lap, indicating that GHVE is still a robust method, even in
the presence of a small percentage of high amplitude outliers
(Fig. 8c).

By examining the classification accuracy (Table III),
we find that all tested classifiers can easily classify NSR,
CHF, and AF subjects using the proposed GHVE measure.
The highest accuracy was obtained by the J48 algorithm.

FIGURE 8. GHVE on interbeat interval time series of healthy subjects
before and after removing artefacts greater than 2s.

We compared the GHVE with other entropy estimates
in terms of dynamical information and their ability to
discriminate different groups (Table IV). In accordance with
the ‘‘loss of complexity with age and disease’’ hypothesis,
healthy/young subjects exhibit higher complexity compared
to pathological/elderly subjects [26], [32], [33]. The dynam-
ical information is accurate if healthy/young subjects exhibit
higher complexity and vice versa.

The more accurate dynamical information is provided
by GHVE, followed by sample entropy, and finally bubble
entropy. Although HVE and permutation entropy provided a
better separation between NSR and AF subjects, the GHVE
results are superior for two reasons: (1) HVE and permutation
entropy provided dynamically inaccurate information sug-
gesting a higher complexity for pathological/elderly subjects
(thus violating the ‘‘loss of complexity with age and disease’’
hypothesis); (2) GHVE not only accurately distinguishes
between NSRY and AF subjects but also provides a better
separation between both NSRY and NSRE and NSRY and
CHF subjects, while HVE and permutation entropy failed to
do so.
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TABLE 3. Classification Accuracy of different machine learning classifiers
in Terms of True positive rate (TPR), False Positive rate (FPR), precision,
recall, f-measure and area under roc (auc).

The smaller p-values and higher AUC provide evi-
dence that GHVE possesses the highest discriminatory
power to distinguish NSRY vs CHF (p-value=9.65×10−13),
NSRY vs AF (p-value=1.10×10−8), and NSRY vs NSRE
(p-value=6.27×10−7). Bubble entropy showed a better
separation between NSRY vs CHF (p-value=3.17×10−9),
followed by NSRY vs AF, but did not show a significant
difference between NSRY vs NSRE (p-value=1.00). Sample
entropy performed well in distinguishing NSRY vs CHF and
NSRY vs NSRE but failed with NSRY vs AF. Permutation
entropy failed to discriminate NSRY and CHF while success-
fully separating NSRY vs NSRE and NSRY vs AF. GHVE
is the only HRV measure to provide dynamically accurate
information about different healthy and pathological groups
yielding the better overall classification results.

IV. DISCUSSION
In this paper, we introduced the concept of grouped HVG
motifs to address the issue of small windows (providing
lesser information) and to handle the information content
generated by larger windows due to large increased in the
number of motifs. By using GHVE to estimate the entropy of
simulatedWGNand 1/f noise, we could establish that smaller
window sizes reveal less structural information compared to
large window sizes. For smaller windows, the GHVE values
almost overlap for WGN and 1/f noise signals making the
two signals nearly indistinguishable. An increase in window
size resulted in the distribution of information among a larger
number of motif groups, thereby decreasing the probability of
occurrence of zero visibility edges. GHVE values were higher
for 1/f noise signals at wide range groupedmotifs and the two
noise signals become distinguishable. Higher GHVE values
indicate that 1/f noise contains more complex structures,
a result that is consistent with previous studies [27]. However,
when employing GHVE one needs to consider the window
size and use grouped motifs for a better characterization of
complex signals.

We tested GHVE for its capacity to distinguish between
time series data from healthy (NSR) and pathological (CHF
and AF) subjects and identify age and disease severity-related
changes. The results suggested that GHVE can success-
fully distinguish between healthy and diseased groups with
J48 being the most accurate classifications. For CHF, the dis-
ease dynamics were associated with a loss of variability
(emergence of regular patterns), whereas for AF, the disease
dynamics results in a more random pattern. We found GHVE
values to be higher for healthy compared to pathological
subjects across a wide range of motif groups. GHVE values
were smaller for elderly subjects and lower disease severity.
Higher GHVE values indicate a higher dynamical complexity
of the system. Our approach is in agreement with the ‘‘loss
of complexity with age and disease’’ paradigm. This loss of
complexity can be attributed to the decoupling or degradation
of the cardiac autonomous control. Our study verified this
hypothesis for NSR, CHF, and AF subjects as well as for
elderly subjects. In a recent study by Manis et al. [23] using
bubble entropy to quantify the dynamics of control and CHF
subjects, they found that bubble entropy yielded incorrect

TABLE 4. Comparison of GHVE, bubble entropy, Sample Entropy and permutation entropy for distinguishing NSRY, NSRE, CHF and AF subjects. areas
under ROC (AUC) for optimal separation between healthy, low disease severity and high disease severity (AUC = 0.5 is equivalent to simple guessing and
AUC = 1 is equivalent to perfect separation between classes, P-VALUE shows significant difference at ≤0.05).
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dynamical information about control and CHF subjects for
small embedding dimensions (<8), assigning a lower entropy
to control compared to CHF subjects. For embedding dimen-
sions>8, bubble entropy assigned higher entropies to control
subjects compared to CHF, thus concurring with the ‘‘loss of
complexity with age and disease’’ paradigm.

Our study provides new insights with regard to the dynam-
ical information content and classification capabilities of
GHVE. GHVE provided dynamically correct information
about both simulated and real signals, while HVE failed
to do so. The 1/f noise signals contain complex structures
due to the presence of long-range correlations and are more
complex than WGN. Higher GHVE values indicated that
1/f noise signals are dynamically more complex than WGN.
The complexity of healthy biological systems reflects the
ability to adapt and function in a dynamic environment. Aging
and disease reduce the ability to adapt and function in a
dynamic environment, resulting in a decrease in complexity.
Our results demonstrate that healthy systems are dynamically
more complex than pathological ones. From a classification
perspective, GHVE was able to successfully separate 1/f and
WGN signals. Compared to various entropy-based complex-
ity measures, GHVE proved to be superior in distinguishing,
NSRY vs NSRE, NSR vs CHF, and CHF vs AF subjects.

V. CONCLUSION
In this paper, we proposed GHVE to analyze the dynamics of
biological systems exhibiting complex fluctuations. The per-
formance of GHVE has been evaluated using simulated noise
signals and IBI time series data from healthy and pathological
subjects. We transformed the time series into HVG motifs
and grouped them on the basis of number of edges. Then
we computed the probability occurrence of grouped motifs
and their entropy GHVE. The results showed that for smaller
window sizes GHVE values for WGN and 1/f noise signals
overlapped. 1/f noise had higher values across a wide range
of motif groups compared to WGN revealing that correlated
signals were more complex. The two signals become distin-
guishable once the window size was increased. The higher
GHVE values for 1/f noise across a wide range of motif
groups reveal that correlated signals (1/f ) are more complex
than uncorrelated signals (WGN). The results proved the
effectiveness of our method for distinguishing and classifying
IBI time series into healthy and pathological subjects and to
identify changes due to aging and disease dynamics. Com-
pared to other complexity measures, the GHVE algorithm
showed more accurate dynamical information. It also pro-
vided the best separation between healthy and pathological
subjects of varying severity. In addition, when compared
with other competing methods, it exhibited superiority for
identifying changes related to the subjects’ activity level.
Further possible applications include the dynamics of EEG
signals for detecting epileptic and non-epileptic seizures,
distinguishing focal and non-focal EEG signals, and charac-
terizing dynamics of human unconstrained and metronomic
walking protocols.
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