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ABSTRACT The proliferation of network devices and novel bandwidth hungry applications over the existing
network imposes novel challenges in terms of fulfilling the users’ requirements. Dense deployment of small
cells is thought to be a promising solution to fulfill these requirements. However, the user association in
such dense networks becomes challenging and can greatly affect the network performance, as a user in such
dense deployments can be connected to any of the available base stations. Traditionally, the user association
has been performed based on the signal strength, however, such an approach does not apply when taking
into account novel bandwidth hungry applications. Moreover, in recent years, a successful paradigm has
been proposed to handle such bandwidth hungry applications, i.e., caching at small cell base stations. In this
paper, we aim to solve this joint problem of user association and content caching in a dense small cell
setting. To solve this problem, we present a novel iterative scheme that uses matching theory and a learning
approach to find a suboptimal solution of the joint NP hard problem. Note that the user association and
cache placement are strongly coupled, i.e., the association of users at a base station will determine the
cache placement at base stations and the availability of cache at base stations will force the users to change
their associations. Simulation results show that the proposed scheme (i.e., cache aware user association)
significantly outperforms the cache unaware scheme and achieves a performance gain of up to 31% in terms
of normalized utility and saves up to twice the backhaul bandwidth. Moreover, the proposed scheme also
achieves up to 82% of the utility obtained by the optimal solution.

INDEX TERMS User association, heterogeneous networks, matching games, caching, wireless small cell
networks.

I. INTRODUCTION
The mobile data traffic is witnessing unprecedented growth
due to the proliferation and wide acceptance of smart devices
and novel bandwidth hungry applications such as multimedia
streaming and mobile TV [1]–[3]. To cope with the traffic
growth and fulfill these stringent novel applications require-
ments, dense deployment of small base stations (SBSs) is
required to operate in conjunction with the existing macro
base station (MBS) [5]–[7]. Enormous benefits in terms of
network capacity and spectral efficiency can be achieved via
dense deployment of SBSs [8], however, to reap the full
benefits of dense deployment several technical challenges in
terms of backhaul management and user association need to
be addressed.

One promising approach for backahaul management is
caching popular contents at local base stations (BSs) [2], [3].
Enabling caching at the BSs (MBS and SBSs) can signifi-
cantly reduce the amount of re-downloading contents from
the original content servers, which leads to lower backhaul
load [3], [4]. Note that not all contents can be cached at
the BS, as it has limited cache capacity compared to the
amount of total contents. Therefore, each BS should store
only popular contents within its limited cache storage to
efficiently utilize its cache storage. In reality, it is very chal-
lenging to know whether a content is popular or not because
the popularity can temporally and/or spatially vary. Thus,
some assumption is typically used, in which the popularity of
contents follows a distribution (e.g. a Zipf distribution) [9].
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Depending on this assumption, many researchers pro-
posed several caching models and cache decision
algorithms1 to efficiently store popular contents at wireless
edge nodes [9]–[12]. In practice, this assumption can be
invalid because the popularity of contents is dynamically
changing depending on different factors (e.g., events, type of
content, and the lifespan of the content). Therefore, a content
popularity prediction scheme is needed to support to the
cache decision process to be able to efficiently cache the
contents.

User association in a dense BS setting [13] also becomes
very crucial as now a user can be associated with a number of
BSs based on its channel condition parameters, i.e., received
signal strength (RSSI) [12]. Moreover, in a cache enabled
setting, it is more appropriate both for the BS and the user to
be associated to a specific BS which not only provides good
channel conditions, but also has the user’s request cached
locally. This will reduce the backhaul load and enhance the
caching efficiency [14]–[19]. Thus, it is of crucial impor-
tance to devise a user association strategy by taking both
the channel condition and the BSs’ cache into consideration.
Moreover, the introduction of novel 5G applications such
as enhanced mobile broadband (eMBB) and ultra reliable
low latency communication (URLLC) demands that we store
contents for a short period of time opposed to the traditional
long term based caching approach typically used in content
centric networks. Therefore, in this work, we use a small
time-scale for caching contents at the BSs and thus evaluating
the popularity based on short period of caching.

A. RELATED WORKS
Caching in wireless networks has received significant atten-
tion in several recent works in which the primary goal is to
develop an efficient caching decision to improve the cache hit
ratio. Typically, the caching decision can be categorized into
two categories: i) reactive caching and ii) proactive caching.
In reactive caching, MBSs/SBSs make the cache decision
only when the request for a particular content arrives and
cache the content based on its popularity [20]–[23]. In reac-
tive caching, the caching gain is not only dependent on the
content’s popularity prediction, but also on the cache replace-
ment process. The cache replacement process is responsible
to replace old content with new incoming content when the
cache storage of an SBS/MBS is full. Similar to the works
in [9]–[12], Thar et al. [20]–[22] assumed the content’s
popularity followed a Zipf distribution and applied consis-
tent hashing as a foundation of reactive caching decision
to improve the cache utilization. These works ignored the
time varying aspects of popular contents and assumed that
the contents’ popularity will remain unchanged. However,
in a practical scenario, this assumption does not hold. Thus,
Li et al. [23] proposed a caching scheme that learns the
content’s popularity from the dataset. However, the prediction

1Algorithms to decide whether to store the new content or remove the
cached content

process needs high computing resources, which are generally
not available at the low cost small-cell base station.

In proactive caching, MBSs/SBSs pro-actively predict
a content’s popularity based on the user request history
and cache popular content before any user request is
made [24], [25]. For proactive caching, multiple MBSs/SBSs
can jointly cache the popular content to maximize the caching
gain, where the caching gain is reduced depending on pre-
diction errors. Thus, proactive caching may perform worse
than reactive caching when the prediction error is high.
Zeydan et al. [24] investigated proactive content caching with
popularity prediction for wireless networks, in which the
authors applied bigdata analytics tool and machine learning
to get efficient caching decision. Another proactive caching
approach is studied in [25] for the cloud radio access networks
(CRANs) in which the authors applied echo state networks
(ESNs) to predict each user’s content request distribution and
mobility pattern to support cache decision processes. The
usage of ESNs is perfectly fine in the CRANs architecture but
it is not suitable for distributed low cost SBSs, which require
a prediction scheme with low computational complexity.

In this work, we focus on developing a distributed scheme
that can scale with network size for the joint cache place-
ment and user association problem. Some recent works such
as [14] have presented an efficient solution with the aid of
McCormick envelopes and Lagrange partial relaxation for the
joint caching and user association problem in heterogeneous
cellular networks to minimize the access delays. Similarly,
He et al. [15] present an efficient distributed heuristic algo-
rithm for cache placement and user association in hetero-
geneous networks to minimize the power consumption of
the system. Other notable works in heterogeneous cellular
networks that consider the joint caching and user associ-
ation problem can be found in [17]–[19]. Although these
aforementioned works have significantly enhanced differ-
ent heterogeneous network performance parameters such as
access delays, users’ quality of service and energy efficiency,
they did not account for the prediction of content popularity
when making the caching decision. Through the prediction
of contents’ popularity, a more efficient caching decision
can be made that can significantly improve the network’s
performance [16].

Therefore, content popularity prediction plays an impor-
tant role and supports the cache decision process to improve
the cache hit as well as best utilize the limited cache space.
Content popularity can be defined as the ratio of the number
of requests for a particular content to the total number of
requests from users, usually obtained for a certain region
during a given period of time. Predicting the popularity of
video content has been extensively studied in the recent lit-
erature [26]–[33], while few works consider how to integrate
popularity forecasting into caching.

Moreover, various prediction solutions are proposed based
on time series models such as the auto regressive inte-
grated moving average [34], regression model [35] and clas-
sification models [36] without combining with the cache
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decision process. To dynamically adapt the changing popular-
ity of contents, [38], [43] proposed several learning methods.
Blasco and Gündüz [38] investigated the trade-off between
the exploration and exploitation phase of the learning algo-
rithm, which learns the generated data. Tekin and Schaar [43]
proposed a context aware popularity prediction scheme,
which also exploits the similarities among users’ profiles.
Even though those prediction schemes are good at predicting
the content’s popularity, such prediction schemes require a
high computation capacity, which are not suitable to be imple-
mented at small-cell base stations.

B. CONTRIBUTIONS AND ORGANIZATIONS
In this work, we aim to address the joint user association
and cache placement problem for a dense heterogeneous
network.We aim to present a distributed and scalable solution
for the joint problem that can enhance the overall network
performance in terms of the optimal set of users (maximizing
the sum rate) and maximizing the cache hit ratio. We present
a novel two phase iterative approach that can efficiently
address the joint problem. Initially, we consider a random
placement of contents in the cache of each BS that would
be broadcasted in the network. Then, based on this infor-
mation, we apply the two-sided matching game to address
the user association aspect of the problem in phase I. Next,
based on the association, we learn and predict the contents’
popularity by applying the Autoregressive IntegratedMoving
Average (ARIMA) [39], [40], the most common methods for
time series forecasting. ARIMA technique (discussed details
in Sec. III-B.1) provides us to predict the future popularity of
content by examining the differences between values (con-
tent request counts) in the historical time series data. These
contents’ popularity is then used to make a caching decision
at each BS in phase II. Based on the new caching deci-
sion, the users re-associate using the phase I game theoretic
approach. This iterative process is stopped once convergence
is achieved. In summary, our key contributions include the
following:
• First, we formulate the joint problem of the user associa-
tion and cache placement with an objective to maximize
the network sum rate and cache hit ratio subject to the
limited cache space and wireless resources. The formu-
lated problem is a mixed-integer optimization problem
that is challenging and requires exponential computation
efforts to obtain the optimal solution.

• Second, in order to solve this joint problem, we decom-
pose the joint problem into two sub-problems, i.e., user
association and cache placement problems. A novel
algorithm based on two-sided matching theory is
presented to solve the combinatorial user association
problem. Moreover, we also prove the stability and con-
vergence of the proposed solution. To solve the cache
placement problem, we use ARIMA to predict the con-
tent popularity and then make the caching decision.

• Finally, we iteratively solve both of these subproblems
to obtain the solution of our joint problem.Moreover, we

FIGURE 1. System Model.

also prove that the proposed solution achieves a subop-
timal solution for the joint problem.

The rest of this paper is organized as follows. Section II
presents the system model and problem formulation.
Section III describes in detail our solution approach, i.e., how
we decompose and map the proposed optimization problem
into a matching theory setting and how we apply the con-
tent prediction via ARIMA and make the caching decision.
In Section IV, we present the simulation results analysis to
validate the performance of our proposed solution. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider the downlink of a cellular network that consists
of a single macrocell base station (MBS) and a set of SBSs
located under its coverage, as shown in Fig. 1. We represent
the set of base stations by J = {0, 1, 2, ..., J}, where the
index 0 represents theMBS. The set of users (UEs, i.e., macro
and small cell UEs) are denoted by U = {1, 2, ...,U}. In this
model, the spectrum is divided into orthogonal frequency sub-
bands S, and each SBS j is allocated a subband sj of multiple
resources. Moreover, we assume that each subband sj has the
same cardinality, i.e., |sj| =

|R|
|J | , where R represents the total

number of resources2 owned by the operator. Furthermore,
both MBS and SBSs allocate resource from their subband sj
to each associated UE u.

A. LINK MODEL AND ASSUMPTIONS
In our model, we assume that all SBSs and the MBS transmit
using an equal power for every resource. However, the MBS
and SBSs have their own and different power budgets. Thus,
the interference power on each resource is constant such that
the interference from other BSs is absorbed into the back-
ground noise σ 2. For user association optimization, we intro-
duce a binary variable xu,j as follows:

xu,j =
{
1, if UE u is associated to BS j,
0, otherwise.

2One resource corresponds to one subcarrier or subchannel of the
LTE network.
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TABLE 1. Table of notations.

We always set xu,j = 0 for any UE u, which is not
associated with a BS j. Then, the received signal to noise ratio
(SINR) pertaining to the transmission of BS j to UE u over a
resource r with transmit power Prj is:

γ ru,j =
Prj g

r
u,j

σ 2 , (1)

where gru,j represents the channel gain between BS j
and UE u. Note that in the considered model, we con-
sider orthogonal resources at each BS, therefore, we do
not consider inter-BS interference.3 Then, the data rate of
UE u associated with BS j on resource r will be given
by:

Rru,j = W r log(1+ γ ru,j), (2)

where W r is the bandwidth of the resource r .

B. CACHING MODEL AND ASSUMPTIONS
In our caching model, the set of base stations J are equipped
with a cache storage of limited capacity. Let the cache
capacity at each base station be denoted as cj. Thus, each
base station can store limited contents such that the cached
content size is less than its cache capacity. We denote the
total cache capacity of all base stations by C =

∑
j∈J cj.

Moreover, we assume the content server is located at the
core of the cellular system that contains all of the content
chunks represented by the set F = {1, 2, . . . ,F}. Note that,
if a requested content is unavailable at the BS’s local cache,
it needs to be provided by the content server via the backhaul
link. For caching related optimization, we introduce a binary
variable yf ,j as follows:

yf ,j =

{
1, if content f is cached at BS j,
0, otherwise.

Note that, if a content f is not cached at BS j, we set yf ,j = 0.
Thus, the base station j can provide content f from its local
cache storage when yf ,j = 1.
The arriving request for content f can be denoted as rf . For

each arriving request rf , base station j first needs to check if

3We aim to focus on more complicated interference scenarios in our future
work.

the requested content f is present in its cache storage or not.
The base station j provides the content f to the UE directly,
if the requested content f is in its cache storage. Other-
wise, the base station j retrieves the content f from the
content sever. At this point, the base station j also decides
whether to store the content f in its local cache based on
the number of arriving request at time t (which can also
be denoted as the popularity score of content f ). The main
goal of a caching decision process is to select the best con-
tents among the list of contents such that the cache hit is
maximized.
In order to make an efficient caching decision, the future

popularity score of a content f is required for time t + 1 at
the current decision making time t . Therefore, a prediction
scheme can play a crucial role in calculating the future popu-
larity score of a content f for the time t+1.Without prediction
schemes, it is not possible to get the future popularity scores
of the contents. Motivated by the aforementioned challenges,
in this work, we propose a novel approach to predict the con-
tent’s popularity score based on an autoregressive integrated
moving average (ARIMA), which will be discussed in detail
in Section III-B. The popularity score of content f at the base
station j at time t can be denoted as πjf and is calculated
as [22]

π tj,f =
r tj,f∑
f ∈F r tj,f

, (3)

where r tj,f is the number of incoming requests for content f
at base station j at time t and

∑
f ∈F r tj,f is the total number

of arriving requests for all contents at base station j at time t .
Therefore, the predicted popularity score or future popularity
score of content f becomes π̃ tj,f .

C. PROBLEM FORMULATION
Our goal is to design a mechanism that can maximize
the utility of the network in such a way that each SBS
j stores popular contents which can be used to serve the
associated BS UEs. Therefore, we define the utility function
of a BS j as follows:

Uj(x, y) =
∑
u∈U

∑
r∈R

xu,jRru,j + ω
∑
f ∈F

yf ,j, (4)

where the first and second terms denote the data rate
of all associated UEs and the list of contents cached
at BS j, respectively. Here, ω represents the weight param-
eter that characterizes the trade-off between the BS’s sum
rate and cached contents. In order to maximize the util-
ity function given in (4), each BS should select a set
of UEs whose achievable sum rate is higher when associ-
ated to it. Moreover, it should also consider that the con-
tents requested by these associated UEs are mostly present
in the local cache to avoid fetching the contents from
the content server. Thus, our joint optimization problem
involves user association and cache placement decisions.
Furthermore, the cache placement involves the prediction
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of a content’s popularity score and finding best contents to
be cached.

P : maximize:
x,y

∑
j∈J

Uj(x, y) (5a)

subject to:
∑
f ∈F

yf ,j ≤ cj, ∀j ∈ J , (5b)

∑
u∈U

xu,j ≤ |sj|, ∀j ∈ J , (5c)

∑
j∈J

xu,j ≤ 1, ∀u ∈ U , (5d)

xu,j, yf ,j ∈ {0, 1}, ∀f , u, j. (5e)

The objective function here represents the network utility
for all BSs, where the first constraint ensures that the cache
capacity is not violated. The second constraint ensures that
the number of UEs associated are less than the available
resources at the BSs while the third constraint ensures that
a UE can be only associated to a single BS. Finally the user
association and cache placement variables are represented
by the integer constraints. Unfortunately, the aforementioned
mixed-integer optimization problem P is non-trivial due
to the combinatorial nature of user association and cache
placement decision variables [45]. Moreover, obtaining an
optimal solution via exhaustive search will incur heavy
computational overhead and would require a central coor-
dinator. This approach is challenging to adopt for a practi-
cal setting with large numbers of BSs, UEs and contents.
Furthermore, the cache placement decision relies on calcu-
lating the future popularity score of all contents through
a prediction scheme [44]. Applying prediction schemes at
a central coordinator will incur huge message exchanges,
as all BSs would then be required to report to the cen-
tral coordinator. Thus, we decompose the original prob-
lem into two subproblems namely the user association
(UA) and cache placement (CP). Through decomposition,
we can solve our problem in a distributed fashion at
each BS and do not require any central controller. Our
designed distributed approach will be presented in the next
section.

III. JOINT USER ASSOCIATION AND CACHE PLACEMENT
In this section, we present our solution approach for the joint
user association and cache placement problem P. In order
to have a distributed solution, we decompose the joint prob-
lem into two subproblems which would be solved at each
BS. The first subproblem UA will solve the user asso-
ciation (UA) problem for a given cache placement, and
the second subproblem CP will find a solution for the
cache placement (CP) problem given the associated UEs.
Then, we iteratively solve these two subproblems to find a
suboptimal solution of our joint problem P. The subprob-
lem UA for user association at each BS j can be stated

as follows:

UA : maximize:
x

Uj(x, y) (6a)

subject to:
∑
u∈U

xu,j ≤ |sj|, ∀j ∈ J , (6b)∑
j∈J

xu,j ≤ 1, ∀u ∈ U , (6c)

xu,j ∈ {0, 1}, ∀u, j. (6d)

In problem UA, our goal is to maximize the utility by
associating the optimal UEs given the set of contents cached
at BS j. Note that, UA is still combinatorial in nature and
finding a solution for a large set of BSs and UEs would
be challenging [41], [42], [44]. Thus, we adopt a solution
based onmatching theory to solve the above problem because
of its ability to tackle combinatorial problems and achieve
a distributed solution [8], [44]. The benefits of matching
theory come from the distributed nature of control in the
system, which is crucial for designing distributed solutions.
Furthermore, matching theory allows each player to define
their individual utilities depending on the local information.

A. MATCHING THEORY BASED USER ASSOCIATION
In our game there are two disjoint sets of agents, the set
of UEs, U , and the set of BSs, J . Each UE u ∈ U has a
strict, transitive, and complete preference profile Pu of UE
u defined over the BS. Note that, in this game from (6c),
a UE u can only be associated with one BS. However,
a BS j can accommodate a number of UEs based on
its capacity or quota, i.e., (6b). Therefore, the preference
profile Pj of BS j is defined over the set of UEs U . Thus,
our design corresponds to the one-to-many matching given
by the tuple (J ,U , qj,�J ,�U ). Here, �U , {�u}u∈U and
�J , {�r }r∈J represent the sets of preference relations of
UEs and BSs, respectively. Formally, we define the matching
game as follows:
Definition 1: A matching µ is defined by a function from

the set U ∪ J into the set of elements of U ∪ J such that:
(i) |µ(u)| ≤ 1 and µ(u) ∈ J ,
(ii) |µ(j)| ≤ qj and µ(j) ∈ 2U ∪ φ,
(iii) µ(u) = j if and only if u is in µ(j),

where, qj denotes the quota of BS j and |µ(.)| denotes the
cardinality of the matching outcome µ(.). The first two con-
ditions of Definition 1 represent constraints (6c) and (6b) in
the UA problem, respectively, where qj represents the total
quota of BS j, i.e., |sj|. Here, µ(.) = φ means that the agent
is unmatched.

1) PREFERENCES OF THE PLAYERS
In our formulated game, both sides need to rank each other
using the preference profiles. Matching is performed on
the basis of preference profiles that is built by both sides
to rank each other. Then, potential matchings can be per-
formed based on the local information of each player. In our
game, a UE u ranks all BSs based on the following
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preference function:

Uu(j) = Rru,j + ω
∑
f

ỹf ,j, ∀u ∈ U . (7)

Through (7), we can rank all BSs based on the achievable
rate and the number of usable contents cached in it, where ω
represents a weight parameter that quantifies the importance
of cached contents at a BS. Note that ỹf ,j represents the usable
contents for a UE u. Usable contents are those contents which
a UE u will request in the next time slots. Note that this
information is only available at the UEs. The design of the
utility given in (7) reflects that a UE will benefit more from
a BS j that has more contents of interest cached in its local
cache compared to other BS with similar channel conditions.
Similarly, for the BSs side, each BS j also ranks the UEs
according to the following preference function:

Uj(u) = Rru,j, ∀j ∈ J . (8)

From (8), we can rank all UEs based on their achievable rate.
This utility implies that the BSs provides less utility to the
UEs that have a lower achievable rate. Once the preference
profiles of both sides are built, our goal is to seek a stable
matching solution, which is a key solution concept. Note that
to find a stable matching, the deferred-acceptance algorithm
cannot be employed for our game [44]. In our game, a UE can
be allowed a number of resources depending on its demand
and channel conditions. Thus, we have to tackle the additional
challenge of a dynamic quota [8]. Through a dynamic quota,
a BS may allow a variable number of UEs to be associated
until the constraint (6b) is not violated. Therefore, formally
the blocking pair for this game can be defined as:
Definition 2: A matching µ is stable if there exists no

blocking pair (A′, j) ∈ 2U ∪ J with A′ 6= φ, such that,
j �u µ(u), ∀u ∈ A′ and (A ∪ A′) �j µ(j), A ⊆ µ(j), where
µ(u) and µ(j) represent, respectively, the current matched
partners of BSs and UEs.

Definition 2 is based on the following intuition [46]: a pair
(A′, j) will block a matching µ, if BS j is willing to accept
a UE in A′, possibly after rejecting some of its currently
matched UEs in µ(j), i.e., A ⊆ µ(j) and all UEs u ∈ U
prefer j over their current match µ(u). In the formulated
game, it can be ensured that for any stable solution, no
matched BS j would benefit from deviating from their asso-
ciated UEs u with new UEs u′. A matching is stable if no
blocking pair exists. Next, we present our novel matching
based user association algorithm.

2) PROPOSED USER ASSOCIATION ALGORITHM
Next, we present a novel and stable user association
algorithm presented in Alg. 1. The algorithm starts by
using the local information to build the preference profiles
(lines 1-2). At each iteration t , each agent first calculates
its utility build of its respective preference profiles. Then,
each UE u proposes to its most preferred BS j according
to its preference profile Pu (line 5). A proposal also con-
tains the demand of UE u. On receiving the proposal, each

Algorithm 1 UA via Distributed Matching Game
1: input: Pu, Pj, ∀u, j
2: initialize: t = 0, µ(t) , {µ(u)(t), µ(j)(t)}u∈U ,j∈J = ∅,
qres(t)j = qmax

j , Kj
(t)
= ∅, Pu(0) = Pu, Pj(0) = Pj, ∀u, j

3: repeat
4: t ← t + 1
5: for u ∈ U with BS j as its preferred via Pu(t) do
6: while u /∈ µ(j)(t) and P (t)

u 6= ∅ do
7: if qres(t)j ≥ l ju, then
8: µ(j)(t)← µ(j)(t) ∪ {u};
9: qres(t)j ← qres(t)j − l ju;

10: else
11: K′(t)j = {u′ ∈ µ(j)(t)|u �j u′};
12: ulp← the least preferred u′ ∈ K′(t)j ;

13: while (K′(t)j 6= ∅) ∪ (q
res(t)
j < l ju) do

14: µ(j)(t)← µ(j)(t) \ {u′};
15: K′(t)j ← K′(t)j \ {ulp};
16: qres(t)j ← qres(t)j + l ju;

17: ulp← the least preferred u′ ∈ K′j
(t);

18: if qres(t)j ≥ l ju, then
19: µ(j)(t)← µ(j)(t) ∪ {u};
20: qres(t)j ← qres(t)j − l ju;
21: else
22: ulp← u;

23: Kj
(t)
= {k ∈ Pj(t)|ulp �j k} ∪ {ulp};

24: for k ∈ Kj
(t) do

25: Pk (t)← Pk (t) \ {j};
26: Pj(t)← Pj(t) \ {k};
27: until µ(t)

= µ(t−1)

28: output: µ(t)

BS j calculates the required resources (i.e., l ju) to fulfill the
UE’s demand [46]. This can result in either of the follow-
ing two cases. In this first case, a BS j may have enough
resources qres(t)j to accommodate the UE u. This results in a
matching between the proposing UE u and BS j (lines 7-9).
The second case is activated if enough resources are not
available, i.e., qres(t)j < l ju (lines 10). This means the quota of
a BS j is already occupied and full. In this case, the BS j
finds all of its current matched u′ which have a lower ranking
than the proposing UE u according to its preference profile
Pj(t) (lines 11-12). Each least preferred UE ulp ∈ K′j(t)
is then sequentially rejected, and the quota of the BS is
updated, i.e., qres(t)j until either u can be admitted or there
is no additional u′ to reject (lines 13-17). After rejecting all
u′ ∈ K′j(t), if BS j still has an insufficient quota to admit UE u,
then u is also rejected and u is set to the least preferred ulp
(lines 18-22), otherwise it is accepted. All these agents
(i.e., rejected UEs and BS) then update their preference pro-
files and enter into the next iteration (lines 23-26). Through
this process, it is guaranteed that no blocking pair will exist as
we remove any less preferred UEs from the matching, even
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if a BS has sufficient quota to admit it, which is crucial for
the matching stability of our design. In this next iteration, all
rejected UEs again propose to the next preferred BSs. Once
all UEs have either been accepted by a BS or rejected by
all BSs, the matching process will terminate. Note that here,
the matching terminates when the results of two consecu-
tive iterations t remain unchanged (line 27). Moreover, the
output µ(t) of Alg. 1 can be transformed to a feasible user
association vector x of problem UA (line 28).
Theorem 1: Alg. 1 converges to a stable allocation [8].
Proof: We prove this theorem by contradiction. Assume

that Alg. 1 produces a matching µ with a blocking pair (u, j)
by Definition 2. Since UE u prefers BS j over its current
matched BS, i.e., j �u µ(u), UE u must have proposed to
BS j before its current match BS µ(u). In this case, the BS
has rejected UE u due to a quota violation on j (lines 18-20).
When UE u was rejected, then any less preferred UE u′ was
also rejected either before u (lines 13-17), or wasmade unable
to propose because BS j is removed fromUE u′ preference list
(lines 25-26). Thus, u′ /∈ µ(j), a contradiction.
Once the user association phase is over, the next step

is to predict the contents popularity for the next time slot.
Note that content popularity is required to make an effi-
cient content placement decision. We will content popular-
ity prediction and the cache placement scheme in the next
subsection.

B. CONTENT’S POPULARITY PREDICTION BASED
CACHING
The subproblem CP for cache placement at each BS j can be
stated as follows:

CP : maximize:
y

Uj(x, y) (9a)

subject to:
∑
f ∈F

yf ,j ≤ cj, ∀j ∈ J , (9b)

yf ,j ∈ {0, 1}, ∀f , u, j. (9c)

The biggest challenge in solving theCP problem is that all
contents are equally likely to be stored in the caching space.
Thus, we need to predict the popularity of each content so
that we can make an efficient cache placement decision such
that the utility is maximized. Thus, in this section, we use
a prediction scheme that can predict the content’s popularity
for the contents and assist each BS to make a cache placement
decision, i.e., y.
The overview of our prosed content’s popularity prediction

based caching process is shown in Fig. 2, where requests for
each content are the input for the ARIMA model and the
output is the collected future popularity score of each content.
Then, those popularity scores are utilized by a cache decision
algorithm to store the most popular contents among others.
In this section, first, we introduce the content’s popularity
prediction design followed by the proposed cache place-
ment design. Then, we discuss an overview of the ARIMA
models and parameters selections to get the best suitable
model for content popularity prediction. Next, we analyze

FIGURE 2. Learn, predict and cache.

FIGURE 3. Popularity prediction and caching system design.

the ARIMA model that we choose. Finally, we integrate the
ARIMA model based prediction process into cache decision
process.

Fig. 3 shows the system design of the popularity pre-
diction and caching system design, which includes: i) data
collecting module, ii) database iii) preprocessing module,
and iv) cache decision module. The data collecting module
is responsible for collecting data such as receiving content
requests at the base station, and this module keeps those data
at the local database. The pre-processing module extracts
data from database and feeds them into prediction module.
Then, the prediction module produces the predicted future
popularity score of each arriving content and feeds them
into the cache decision module. Finally, the cache decision
module chooses to cache contents based on future popularity
scores.

1) DESCRIPTION OF ARIMA
ARIMA [39], [40] is one of the most common methods
that is utilized in time series forecasting. Also, the ARIMA
model can be fitted to time series data in order to predict
future data points in the series. In ARIMA, there are three
important parameters (p, d , q) used to determine ARIMA
models. p is the auto-regressive part of the model to merge
the effect of historical values into the ARIMA model. d is
the integrated part of the model, which includes terms
in the model that incorporate the amount of differencing
(i.e., the number of historical points to subtract from the
current value) to apply to the time series. q is the moving
average part of the model and sets the error of the ARIMA
model as a linear combination of the error values observed
at previous data points in the past. ARIMA for non-seasonal
usage can be denoted as ARIMA (p,d ,q) and for seasonal
usage can be denoted as ARIMA(P,D,Q)s. The term s is
the periodicity of the time series (4 for quarterly periods,
12 for yearly periods, etc.). In the next section, we discuss
the process of finding the optimal set of parameters of the
ARIMA time series model for user demand prediction.
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FIGURE 4. AIC values based on sets of parameter configurations.

2) PARAMETER SELECTION FOR THE ARIMA MODEL
The most challenging issue when applying the ARIMA
model in any prediction problem is to choose the best param-
eters that optimize the Akaike Information Criterion (AIC)
value [50]. Higher scores of AIC indicate that the model fits
very well with the data points for the case of a large feature
set. On the other hand, lower scores represent the same level
of fitness for a small feature set. Therefore, we are interested
in finding the model that yields the lowest AIC value. In this
paper, we apply a grid search (hyper parameter optimization)
to iteratively explore different combinations of parameters for
model selection for the generated data. The generated data
includes requests for a network of 20 users for 100 simulation
runs, which is generated based on a Zipf distribution with
parameter α = 1. We ran tests using 60 combinations of
ARIMA models and the results of all 60 combinations are
shown in Fig. 4. Among the 60 combinations, we chose the
8th configuration (ARIMA (0,1,0)x(1,1,1,12)) because it has
the minimum AIC value.

Algorithm 2 Cache Placement Decision Algorithm

1: input: List of {π̃ t+1j,1 , . . . , π̃
t+1
j,f };

2: At every time t , check the number of samples to predict;
3: if number of samples > threshold then
4: Popularity score of each content f is predicted;
5: Construct the sorted content list based on predicted

scores of contents;
6: Choose the most popular contents {1, 2, . . . , f } and

cache contents with the condition (9b);
7: else
8: Choose the most popular contents {1, 2, . . . , f } from

time t − 1 ensuring (9b);
9: output: y, ∀j.

3) FITTING AN ARIMA TIME SERIES MODEL
Using grid search, we have identified the set of parameters
(ARIMA (0,1,0)x(1,1,1,12) ) that produces the best fitting
model to our time series data. We then analyze the details of
the ARIMA (0,1,0)x(1,1,1,12) model by feeding generated
data. In Fig. 5, the Kernel density estimation (KDE) line

FIGURE 5. Histogram plus estimated density.

FIGURE 6. Normal quantiles.

follows closely with the normal distribution N (0, 1) with
mean 0 and standard deviation 1. Fig. 6 shows that the
ordered distribution of residuals (blue points) follows the
linear trend of the samples taken from the standard normal
distribution N (0, 1). Thus, this information indicates that the
residuals are normally distributed. These observations led
us to conclude that our model produces a satisfactory fit to
forecast future values [40].

4) INTEGRATING THE ARIMA MODEL BASED PREDICTION
SCHEME WITH THE CACHE DECISION PROCESS
Then, we integrate the ARIMA model based prediction
with cache decision processes. Based on the ARIMA
(0,1,0)x(1,1,1,12) seasonal model, we can obtain the future
popularity score of each content. Then, the contents are sorted
as a list based on predicted scores. Once the popularity scores
are available at each BS, the cache placement algorithm uti-
lizes the content’s popularity list to choose the most popular
contents, where the goal is to improve the cache hit at the base
station.

Alg. 2 shows the proposed cache placement algorithm,
which is run at the end of every time t at each BS j. The input
of this algorithm is the list of predicted popularity scores of
all requested contents at the base station. The output of this
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algorithm is the decision to store the set of contents. At the ini-
tial time t , there is no predicted popularity score information.
Thus, the BS j stores all content until the cache storage is full.
At the end of time t , the BS receives the predicted scores from
the prediction module and makes a cache decision depending
on these predicted scores. In this case, the BS constructs the
sorted list of the contents depending on the predicted scores.
Then, it reduces the list based on the cache storage capacity
and stores the contents with respect to constraint (9b).

C. JOINT USER ASSOCIATION AND CACHE PLACEMENT
ALLOCATION
In this section, we discuss the overall Joint User Asso-
ciation and Cache Placement algorithm for our proposed
problem (P), as shown in Alg. 3. We call it the Cache Aware
user association (CA-UA) algorithm. In the initialization
phase of the CA-UA algorithm, all BSs collect the users’
channel state information (CSI) and broadcast the set of con-
tents available at time slot t̃ . Next, both algorithms, i.e., user
association and cache placement algorithms are iteratively
performed until we obtain a joint solution (i.e., a suboptimal
solution). Fig. 7 shows the process diagram of the proposed
joint algorithm. Note that, the joint algorithm converges when
we receive the same user association for two consecutive
time slots t̃ . This indicates that the users cannot find a better
BS compared to their currently associated BS in terms of
good channel conditions and more usable cached contents.
Formally, we state this as follows [49]:
Theorem 2: CA-UA Algorithm achieves a suboptimal

solution of the original problem in (5).
Proof: This joint CA-UA algorithm is based on an alterna-

tive maximization approach. Since at each iteration (t̃), each
subproblem (i.e., user association and cache placement) does
not decrease the common objective function in a compact set,
Algorithm 3 will finally converge to a sub-optimal solution of
the original problem in (5).

Algorithm 3Cache Aware User Association Algorithm (CA-
UA)
1: BS obtains the CSI of all UEs in its coverage, ∀j;
2: Random placement of contents in each BS;
3: t̃ = 0, x(t̃) = φ, y(t̃) = random;
4: repeat
5: t̃ = t̃ + 1
6: ∀j, Update the user association x(t̃) using Alg. 1;
7: Learn request pattern from time-slot, t̃;
8: Predict request pattern for time-slot, t̃ + 1;
9: ∀j, Update cache placement y(t̃) using Alg. 2;
10: until x(t̃) = x( ˜t−1);

IV. NUMERICAL RESULTS
In our simulations, we consider a downlink transmission of
a cellular system in which a single MBS is deployed at a
fixed location, i.e., the center of the macro-cell with a radius

FIGURE 7. Overview process of the proposed scheme.

TABLE 2. Default simulation parameters [44].

of 500 m. Moreover, we randomly deploy five SBSs and U
UEs following a homogeneous Poisson point process (PPP)
under the macro-cell coverage. In our simulation, we assume
a system bandwidth of 3 MHz, which is shared among all
the BSs. The methodologies developed in this paper can also
be applied to any value of system bandwidth. The motivation
for our choice (i.e., 3 MHz) is to analyze the performance
under a dense environment with peak network traffic and for
the sake of simulation simplicity.Moreover, the bandwidthW
of each channel and weight parameter ω are set to a normal-
ized value of 1. Each UE u has a demand which follows a Zipf
distribution. The main parameters used in our simulations
are shown in Table 2 unless stated otherwise. Note that all
statistical results stated, except for the real-time performance
evaluation (i.e., Fig. 8), are averaged over a large number of
independent runs of random locations of users, small cell base
stations and resource block gains.
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FIGURE 8. Comparison between predicted results and actual results.

A. NUMERICAL RESULTS FOR LEARNING
In this paper, we used a homogeneous cache size for each
BS in the network. Then, we considered how much cache
size should be allocated for the whole autonomous system.
We assigned 15% of the total contents as a cache size for
all BSsJ . To generate user requests, we first considered con-
tent popularity. For the simulation, we assumed the content
popularity follows a Zipf distribution, where the probability
of choosing content f is given by

P(α; s,F) =
1/iα∑F
f=1 1/f α

, (10)

where F is the number of contents, i is the rank of content f
and α is the value of the exponent characterizing the distribu-
tion. To run the simulation, we considered the popularity to
follow a Zipf distribution range (α = 1).
In order to evaluate the performance of the proposed pre-

diction scheme, we first show the comparison of one-step
ahead predicted results with actual data point, in order to eval-
uate how much the proposed scheme deviates from the actual
data points. We used the mean squared error to evaluate the
deviation between the predicted and actual data points. Fig. 8
shows the comparison of prediction results (red line) and the
actual data points (black line), where the actual data points are
generated by utilizing a Zipf distributionwith parameterα at a
value of 1 for 20 users for 100 random simulation runs. It was
observed that the mean squared error of the proposed scheme
is close to 0.16, where we fed 30 data points as historical
data and then started collecting the predicted results from the
next time slot, i.e., 31 to 100. However, for clear illustration,
we reduced the scale of fig. 8 from 31 to 80.

Then, we tested the prediction scheme with different con-
tent popularity profiles, where we evaluated the performance
of the learning scheme under different Zipf distribution
parameters, i.e., an α value from 1 to 0.9, 0.8, and 0.7. For
these three popularity profiles, we also generated 100 data
points for 20 users following the same process. The results
shown in Fig. 9 reveal that our proposed popularity predic-
tion scheme can make accurate predictions even when the

FIGURE 9. Comparison of the prediction error for different popularity
profiles.

popularity profile is changing. However, the RMSE increases
as α decreases.

B. NUMERICAL RESULTS FOR THE CACHE AWARE USER
ASSOCIATION ALLOCATION
In order to evaluate the performance of the Cache Aware
User Association (CA-UA) scheme, first, we show the com-
parison in terms of normalized utility achieved by enabling
the proposed CA-UA scheme under different network sizes
(i.e., the number of users, U ). We investigated the normal-
ized utility under two scenarios by varying the number of
resources in the system, i.e., 1.4MHz (6 resource blocks) and
3 MHz (15 resource blocks). Second, we evaluated the aver-
age time slots required for the CA-UA scheme by varying the
network size under the two different settings of system band-
width. Third, we also investigated the cache hit ratio under the
aforementioned settings. Then, we determined the cache miss
percentage and the reduction of backhaul load in the network
by using the proposed scheme. For comparison purposes,
we compare our proposed approach with a cache unaware
user association approach (CUA-UA). This approach aims to
associate UEs based on the standard association approach,
i.e., received signal strength indicator. Finally, we compare
our solution with the optimal solution.We have calculated the
optimal solution via the exhaustive search method. Note that
the exhaustive search method can only be applied in a central-
ized manner in which all network information are assumed
to be known and available at the centralized controller such
as user demands for contents, user channel characteristics,
cache size and etc. Furthermore, due to the combinatorial
nature of our problem, we cannot apply the exhaustive search
method for a large scale network. Therefore, we have taken
a small scale network to compare our proposed approach
(i.e., CacheAware user association) with the optimal solution.
The new network settings include a maximum of 30 users
(i.e., network size) and a system bandwidth of 1.4 MHz at
each BSs. We assume that the total contents in this new
network setting is 100 whereas the total cache size is 5% of
the total content at each BSs.
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FIGURE 10. Normalized utility vs. network size for the CA-UA and CUA-UA
schemes.

In Fig. 10, the achieved normalized utility is shown
both for cache aware and cache unaware user association
under two different bandwidth settings. For, this simulation,
we increase the network size to evaluate the utility. First,
it can be observed that as the network size becomes suf-
ficiently large, the utility saturates for all schemes. This
is because of the limited bandwidth that is occupied as
the network grows and no new users can be accommo-
dated in the network. Second, we observe that the utility of
CA-UA for 3 Mhz saturates for a network size of 30 users,
whereas the utility of CA-UA for 1.4 Mhz does not saturate
at that point. The main reason is that we have the same cache
size for both the scenarios (i.e., 5 % of the total contents).
In the CA-UA 3Mhz scenario, more users are accommodated
compared to the CA-UA 1.4 Mhz case with different channel
conditions. Thus, the BS considers the requests of a larger
number of users when making a caching decision whereas in
the other case, a smaller number of users with good channel
condition are considered. However, the CA-UA 1.4 Mhz
scheme still achieved 77% of normalized utility of the
CA-UA 3 Mhz scheme. Finally, the CA-UA 1.4 Mhz and
CA-UA 3 Mhz schemes observed a significant gain of up
to 28% and 31% in terms of the normalized utility when com-
pared with CUA-UA 1.4 Mhz and CUA-UA 3 Mhz schemes,
respectively.

Fig. 11 shows the box plot for the average iterations
required for the proposed CA-UA scheme to converge for
two different resource settings. The box plot is generated by
using 100 simulation runs with random SBS and UE loca-
tions. We can see that the convergence time (median value
of the box plot) of our approach is reasonable, i.e., 15 and
50 iterations (TTI) for 1.4 and 3Mhz respectively. More-
over, it can be seen that the number of iterations for the
CA-UA 3Mhz scheme is significantly higher when compared
to the CA-UA 1.4 Mhz scheme. The main reason for higher
convergence time comes from the fact that more UEs are
accommodated in the network, thus, the number of possible
configurations for learning increases, i.e., the cache place-
ment algorithm. Therefore, a larger number of iterations is
observed. However, it can be seen that when the network size

FIGURE 11. Average number of iterations vs. network size.

FIGURE 12. Cache hit vs. network size for different cache sizes.

FIGURE 13. Cache miss of the CA-UA schemes for different cache sizes.

is large enough (i.e., 30 and more) the median of iterations is
almost indistinguishable.

In Fig. 12, we investigate the cache hit ratio for different
cache sizes. We use the box plot to analyze the cache hit
in terms of the percentage. In this simulation, we fixed the
system bandwidth to 3 Mhz. It was observed that the change
in network size does not affect the cache hit ratio. However,
when the cache size changes, a significant change in cache
hit is observed. We observe upto 47% increase in the median
value of the cache hit box plot when the cache size was
increased from 5% to 15% for all network sizes. Fig. 13 also
follows the same trend and shows the cache miss percentage
of both scenarios.
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FIGURE 14. Backhaul load for CA-UA and CUA-UA schemes.

FIGURE 15. Normalized utility vs. network size for the CA-UA and the
Optimal scheme.

FIGURE 16. Cache hit for the CA-UA and the Optimal scheme.

Fig. 14 evaluates the backhaul load both for the CA-UA
and CUA-UA schemes. In this simulation, we use the 15%
cache size setting and 3 Mhz system bandwidth. It can be
inferred that the CA-UA scheme (up to 1Mb for 15 and larger
network sizes) significantly reduces the backhaul load when
compared to the CUA-UA scheme (up to 3.3 Mb for 15 and
higher network sizes) for all network sizes. It saves up to
twice the backhaul bandwidth for large network sizes.

In Fig. 15, the achieved normalized utility is shown both
for optimal solution and CA-UA schemes. For, this simula-
tion, we increase the network size to evaluate the normalized
utility. It can be inferred that the proposed CA-UA scheme
achieves up to 82% of the utility obtained by the optimal
solution for any network size.

A similar trend is also observed in Fig. 16 in which
the cumulative distribution of the cache hit is compared.

In Fig. 16, we compare the cache hit observed by the optimal
solution and the proposed CA-UA solution. For this simu-
lation, we fix the network size to 30 UEs and observe the
cache hit. We see that the average cache hit achieved by the
CA-UA scheme is up to 83% of the optimal solution. Thus,
we can state that our proposed CA-UA approach is close to
the optimal solution.

V. CONCLUSION
In this work, we design a novel cache aware user association
scheme for heterogeneous cellular networks.We have consid-
ered two important aspects in our design; user association and
cache placement.We applied the concepts of matching theory
for addressing the user association aspect and then used an
autoregressive integrated moving average scheme for learn-
ing and predicting the content popularity. The results of the
prediction scheme were then used in the content placement
decision. The proposed cache aware user association scheme
has been shown to achieve a stable, distributed, scalable
and suboptimal solution for the network. Simulation results
reveal that the proposed scheme significantly outperforms
the cache unaware scheme in terms of the network utility
and backhaul load. Moreover, we also have shown the con-
vergence and cache hit ratio of the proposed scheme under
different scenarios. As future work, we intend to enhance the
proposed approach to guarantee the quality of service for the
users.

REFERENCES
[1] K. Hamidouche, W. Saad, M. Debbah, J. B. Song, and C. S. Hong,

‘‘The 5G cellular backhaul management dilemma: To cache or to serve,’’
IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 4866–4879, Aug. 2017.

[2] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, ‘‘Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[3] X. Li, X. Wang, K. Li, and V. C. M. Leung, ‘‘CaaS: Caching as a service
for 5G networks,’’ IEEE Access, vol. 5, pp. 5982–5993, May 2017.

[4] M. J. Piran, S. M. R. Islam, and D. Y. Suh, ‘‘CASH: Content- and
network-context-aware streaming over 5G HetNets,’’ IEEE Access, vol. 6,
pp. 46167–46178, 2018.

[5] C. S. Hong, S. M. A. Kazmi, S. Moon, and N. Van Mui, ‘‘SDN based
wireless heterogeneous network management,’’ in Recent Advances in
Electrical Engineering and Related Sciences—AETA, 2016, pp. 3–12.

[6] S. Moon, T. LeAnh, S. M. A. Kazmi, T. Z. Oo, and C. S. Hong, ‘‘SDN
based optimal user association and resource allocation in heterogeneous
cognitive networks,’’ in Proc. 17th Asia-Pacific Netw. Oper. Manage.
Symp. (APNOMS), Aug. 2015, pp. 580–583.

[7] T. M. Ho et al., ‘‘Network economics approach to data offloading and
resource partitioning in two-tier LTE HetNets,’’ in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM), Ottawa, ON, Canada, May 2015,
pp. 914–917.

[8] S. M. A. Kazmi, N. H. Tran, W. Saad, L. B. Le, T. M. Ho, and C. S. Hong,
‘‘Optimized resource management in heterogeneous wireless networks,’’
IEEE Commun. Lett., vol. 20, no. 7, pp. 1397–1400, Jul. 2016.

[9] I. Psaras, W. K. Chai, and G. Pavlou, ‘‘Probabilistic in-network caching for
information-centric networks,’’ in Proc. 2nd ICN Workshop Inf.-Centric
Netw., Aug. 2012, pp. 55–60.

[10] A. Dabirmoghaddam, M. M. Barijough, and J. J. Garcia-Luna-Aceves,
‘‘Understanding optimal caching and opportunistic caching at the edge of
information-centric networks,’’ in Proc. 1st ACM Conf. Inf.-Centric Netw.,
2014, pp. 47–56.

[11] D. Liu, B. Chen, C. Yang, and A. F. Molisch, ‘‘Caching at the wireless
edge: Design aspects, challenges, and future directions,’’ IEEE Commun.
Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

VOLUME 7, 2019 3483



R. Haw et al.: CA-UA for Wireless Heterogeneous Networks

[12] E. Bastug, M. Bennis, and M. Debbah, ‘‘Living on the edge: The role of
proactive caching in 5Gwireless networks,’’ IEEE Commun. Mag., vol. 52,
no. 8, pp. 82–89, Aug. 2014.

[13] J. Zhang, X. Zhang, Z. Yan, Y. Li, W. Wang, and Y. Zhang, ‘‘Social-aware
cache information processing for 5G ultra-dense networks,’’ in Proc. 8th
Int. Conf. Wireless Commun. Signal Process. (WCSP), Yangzhou, China,
Oct. 2016, pp. 1–5.

[14] Y. Wang, X. Tao, X. Zhang, and G. Mao, ‘‘Joint caching placement and
user association forminimizing user download delay,’’ IEEEAccess, vol. 4,
pp. 8625–8633, 2016.

[15] S. He, H. Tian, X. Lyu, G. Nie, and S. Fan, ‘‘Distributed cache placement
and user association in multicast-aided heterogeneous networks,’’ IEEE
Access, vol. 5, pp. 25365–25376, 2017.

[16] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, ‘‘Match to cache:
Joint user association and backhaul allocation in cache-aware small cell
networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K.,
Jun. 2015, pp. 3082–3087.

[17] H. Chen, Q. Chen, R. Chai, and D. Zhao, ‘‘Utility function optimization
based joint user association and content placement in heterogeneous net-
works,’’ in Proc. 9th Int. Conf. Wireless Commun. Signal Process. (WCSP),
Nanjing, China, Oct. 2017, pp. 1–6.

[18] G. Ren, H. Qu, J. Zhao, S. Zhao, and Z. Luan, ‘‘A distributed user associa-
tion and resource allocationmethod in cache-enabled small cell networks,’’
China Commun., vol. 14, no. 10, pp. 95–107, Oct. 2017.

[19] M. Dehghan et al., ‘‘On the complexity of optimal request routing and
content caching in heterogeneous cache networks,’’ IEEE/ACM Trans.
Netw., vol. 25, no. 3, pp. 1635–1648, Jun. 2017.

[20] K. Thar, S. Ullah, and C. S. Hong, ‘‘Consistent hashing based cooperative
caching and forwarding in content centric network,’’ in Proc. 16th Asia-
Pacific Netw. Oper. Manage. Symp., Sep. 2014, pp. 1–4.

[21] K. Thar, T. Z. Oo, C. Pham, S. Ullah, D. H. Lee, and C. S. Hong, ‘‘Efficient
forwarding and popularity based caching for content centric network,’’ in
Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2015, pp. 330–335.

[22] K. Thar, S. Ullah, R. Haw, T. LeAnh, T. Z. Oo, and C. S. Hong,
‘‘Hybrid caching and requests forwarding in information centric network-
ing,’’ in Proc. 17th Asia-Pacific Netw. Oper. Manage. Symp. (APNOMS),
Aug. 2015, pp. 203–208.

[23] S. Li, J. Xu, M. van der Schaar, and W. Li, ‘‘Trend-aware video caching
through online learning,’’ IEEE Trans. Multimedia, vol. 18, no. 12,
pp. 2503–2516, Dec. 2016.

[24] E. Zeydan et al., ‘‘Big data caching for networking: Moving from cloud to
edge,’’ IEEE Commun. Mag., vol. 54, no. 9, pp. 36–42, Sep. 2016.

[25] M. Chen,W. Saad, C. Yin, andM.Debbah, ‘‘Echo state networks for proac-
tive caching in cloud-based radio access networks with mobile users,’’
IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3520–3535, Jun. 2017.

[26] J. Famaey, T. Wauters, and F. De Turck, ‘‘On the merits of popularity
prediction in multimedia content caching,’’ in Proc. 12th IFIP/IEEE Int.
Symp. Integr. Netw. Manage. Workshops (IM), May 2011, pp. 17–24.

[27] A. O. Nwana, S. Avestimehr, and T. Chen, ‘‘A latent social approach
to youtube popularity prediction,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2013, pp. 3138–3144.

[28] S. He, H. Tian, and X. Lyu, ‘‘Edge popularity prediction based on social-
driven propagation dynamics,’’ IEEE Commun. Lett., vol. 21, no. 5,
pp. 1027–1030, May 2017.

[29] S. Ouyang, C. Li, and X. Li, ‘‘A peek into the future: Predicting the
popularity of online videos,’’ IEEE Access, vol. 4, pp. 3026–3033, 2016.

[30] C. Li, J. Liu, and S. Ouyang, ‘‘Characterizing and predicting the popularity
of online videos,’’ IEEE Access, vol. 4, pp. 1630–1641, 2016.

[31] R. Devooght andH. Bersini. (2016). ‘‘Collaborative filtering with recurrent
neural networks.’’ [Online]. Available: https://arxiv.org/abs/1608.07400

[32] F. Figueiredo, ‘‘On the prediction of popularity of trends and hits for user
generated videos,’’ in Proc. 6th ACM Int. Conf. Web Search Data Mining,
2013, pp. 741–746.

[33] G. Szabo and B. A. Huberman, ‘‘Predicting the popularity of online
content,’’ Commun. ACM, vol. 53, no. 8, pp. 80–88, 2010.

[34] S. Li, J. Xu, M. van der Schaar, and W. Li, ‘‘Popularity-driven
content caching,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[35] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008, pp. 405–416.

[36] R. Kleinberg, A. Slivkins, and E. Upfal, ‘‘Multi-armed bandits in met-
ric spaces,’’ in Proc. 14th Annu. ACM Symp. Theory Comput., 2008,
pp. 681–690.

[37] J. Famaey, F. Iterbeke, T. Wauters, and F. De Turck, ‘‘Towards a predictive
cache replacement strategy for multimedia content,’’ J. Netw. Comput.
Appl., vol. 36, no. 1, pp. 219–227, Jan. 2013.

[38] P. Blasco and D. Gündüz, ‘‘Learning-based optimization of cache content
in a small cell base station,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 1897–1903.

[39] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. San Francisco, CA, USA: Holden-Day, 1970.

[40] W. A. Woodward, H. L. Gray, and A. C. Elliott, Applied Time Series
Analysis With R. Boca Raton, FL, USA: CRC Press, 2016.

[41] S. M. A. Kazmi et al., ‘‘Resource management in dense heterogeneous net-
works,’’ inProc. 17th Asia-PacificNetw. Oper.Manage. Symp. (APNOMS),
Busan, South Korea, Aug., 2015, pp. 440–443.

[42] S. M. A. Kazmi, N. H. Tran, T. M. Ho, D. K. Lee, and C. S. Hong,
‘‘Decentralized spectrum allocation in D2D underlying cellular networks,’’
in Proc. 18th Asia-Pacific Netw. Oper. Manage. Symp. (APNOMS),
Kanazawa, Japan, Aug. 2016, pp. 1–6.

[43] C. Tekin and M. V. D. Schaar, ‘‘Contextual online learning for multimedia
content aggregation,’’ IEEE Trans. Multimedia, vol. 17, no. 4, pp. 549–561,
Apr. 2015.

[44] S. M. A. Kazmi et al., ‘‘Mode selection and resource allocation in device-
to-device communications: A matching game approach,’’ IEEE Trans.
Mobile Comput., vol. 16, no. 11, pp. 3126–3141, Nov. 2017.

[45] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[46] S. M. A. Kazmi, N. H. Tran, T. M. Ho, and C. S. Hong, ‘‘Hierarchical
matching game for service selection and resource purchasing in wireless
network virtualization,’’ IEEE Commun. Lett., vol. 22, no. 1, pp. 121–124,
Jan. 2018.

[47] S. Wang, J. Bi, and J. Wu, ‘‘Collaborative caching based on hash-routing
for information-centric networking,’’ SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 535–536, 2013.

[48] S. Podlipnig and L. Böszörmenyi, ‘‘A survey of Web cache replacement
strategies,’’ ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, 2003.

[49] S. M. A. Kazmi, N. H. Tran, T. M. Ho, A. Manzoor, D. Niyato, and
C. S. Hong, ‘‘Coordinated device-to-device communication with non-
orthogonal multiple access in future wireless cellular networks,’’ IEEE
Access, vol. 6, pp. 39860–39875, 2018.

[50] H. Akaike, ‘‘Information theory and an extension of the maximum like-
lihood principle,’’ in Selected Papers of Hirotugu Akaike. New York, NY,
USA: Springer, 1998, pp. 199–213.

RIM HAW received the B.S. and M.S. degrees
in computer engineering from Kyung Hee Uni-
versity, Seoul, South Korea, in 2008 and 2010,
respectively. He is currently pursuing the Ph.D.
degree in computer science and engineering with
Kyung Hee University. He holds several national
and international patents. His research interests
include ambient intelligent living, advanced wire-
less network protocols, and P2P networks. He is a
member of KIISE.

S. M. AHSAN KAZMI received the master’s
degree in communication system engineering
from the National University of Sciences and
Technology, Pakistan, in 2012, and the Ph.D.
degree in computer science and engineering from
Kyung Hee University, South Korea, in 2017.
Since 2018, he has been with the Network,
Cyber, and Information Security Lab, Secure Sys-
tem and Network Engineering, Innopolis Univer-
sity, Russia, where he is currently an Assistant

Professor. His research interests include applying analytical techniques of
optimization and game theory to radio resource management for future
cellular networks. He received the Best KHU Thesis Award in engineering,
in 2017, and several best paper awards from prestigious conferences.

3484 VOLUME 7, 2019



R. Haw et al.: CA-UA for Wireless Heterogeneous Networks

KYI THAR received the bachelor’s degree in com-
puter technology from the University of Com-
puter Studies, Yangon, Myanmar, in 2007. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineer-
ing, Kyung Hee University, South Korea, for
which he was awarded a scholarship for his gradu-
ate study, in 2012. His research interests include
name-based routing, in-network caching, multi-
media communication, scalable video streaming,

wireless network virtualization, deep learning, and Future Internet.

MD GOLAM RABIUL ALAM received the
B.S. and M.S. degrees in computer science and
engineering, and information technology, and
the Ph.D. degree in computer engineering from
Kyung Hee University, South Korea, in 2017.
He has served as a Post-Doctoral Researcher at
the Computer Science and Engineering Depart-
ment, Kyung Hee University, from 2017 to 2018.
He is currently an Assistant Professor with the
Computer Science and Engineering Department,

BRAC University, Bangladesh. His research interests include healthcare
informatics, mobile cloud and Edge computing, ambient intelligence, and
persuasive technology. He is a member of the IES, CES, CS, SPS, CIS,
ComSoc, and KIISE. He has received several best paper awards from presti-
gious conferences.

CHOONG SEON HONG (S’95–M’97–SM’11)
received the B.S. and M.S. degrees in electronic
engineering from Kyung Hee University, Seoul,
South Korea, in 1983 and 1985, respectively, and
the Ph.D. degree from Keio University, Minato,
Japan, in 1997. In 1988, he joined Korea Telecom,
where he worked on broadband networks as a
member of the Technical Staff. In 1993, he joined
Keio University. He worked for the Telecommuni-
cations Network Laboratory, Korea Telecom, as a

Senior Member of Technical Staff and as the Director of the Networking
Research Team until 1999. Since 1999, he has been a Professor with the
Department of Computer Science and Engineering, Kyung Hee University.
His research interests include future Internet, ad hoc networks, network
management, and network security. He is a member of ACM, IEICE, IPSJ,
KIISE, KICS, KIPS, and OSIA. He has served as the General Chair, the TPC
Chair/Member, or as an Organizing Committee Member for international
conferences such as NOMS, IM, APNOMS, E2EMON, CCNC, ADSN,
ICPP, DIM, WISA, BcN, TINA, SAINT, and ICOIN. In addition, he is
currently an Associate Editor of the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT, the International Journal of Network Management,
and the Journal of Communications and Networks, and an Associate Tech-
nical Editor of the IEEE Communications Magazine.

VOLUME 7, 2019 3485


	INTRODUCTION
	RELATED WORKS
	CONTRIBUTIONS AND ORGANIZATIONS

	SYSTEM MODEL AND PROBLEM FORMULATION
	LINK MODEL AND ASSUMPTIONS
	CACHING MODEL AND ASSUMPTIONS
	PROBLEM FORMULATION

	JOINT USER ASSOCIATION AND CACHE PLACEMENT
	MATCHING THEORY BASED USER ASSOCIATION
	PREFERENCES OF THE PLAYERS
	PROPOSED USER ASSOCIATION ALGORITHM

	CONTENT'S POPULARITY PREDICTION BASED CACHING
	DESCRIPTION OF ARIMA
	PARAMETER SELECTION FOR THE ARIMA MODEL
	FITTING AN ARIMA TIME SERIES MODEL
	INTEGRATING THE ARIMA MODEL BASED PREDICTION SCHEME WITH THE CACHE DECISION PROCESS

	JOINT USER ASSOCIATION AND CACHE PLACEMENT ALLOCATION

	NUMERICAL RESULTS
	NUMERICAL RESULTS FOR LEARNING
	NUMERICAL RESULTS FOR THE CACHE AWARE USER ASSOCIATION ALLOCATION

	CONCLUSION
	REFERENCES
	Biographies
	RIM HAW
	S. M. AHSAN KAZMI
	KYI THAR
	MD GOLAM RABIUL ALAM
	CHOONG SEON HONG


