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ABSTRACT Meteorological satellite can monitor the weather conditions in large scales effectively; some
solutions and researches have been raised for cloud types identification in satellite cloud image analysis.
Extracting the features of the satellite image and designing effective classifier play important roles in
implementing cloud types identification system. Since different features describe the characteristics of the
cloud image in different perspectives, the collaborative utilization of the different features help to improve
the accuracy of cloud classification. This paper proposed a new method to identify cloud types from
meteorological satellite image using multiple sparse representation classifiers via decision fusion. First,
followed by different types of features extracting, multiple sparse representation-based classifiers were
trained respectively. Then, the strategy of decision fusion was introduced to fuse the outputs of multiple
classifiers. In order to bring about a reasonable fusion rule, the fusionweights were determined by an adaptive
iterative procedure, and the iterative procedure was constructed according to the performance of each sub-
classifier. Finally, an adaptive weighted fusion was implemented to determine the cloud type according to the
outputs of sub-classifiers and their corresponding weights. The experimental results on FY-2G satellite data
demonstrate that the proposed method gains higher recognition accuracy than each separated sub-classifier,
which suggests that the strategy of decision fusion can take advantage of each sub-classifier. Moreover,
the proposed method achieves competitive results when compared with the other state-of-the-art methods.
The computation efficiency of the proposed method is also analyzed briefly.

INDEX TERMS Atmospheric remote sensing, cloud classification, decision fusion, satellite cloud imagery,
sparse representation-based classifier.

I. INTRODUCTION
About 1/3-1/2 of the earth’s surface is covered by different
types cloud; meteorological satellite imagery provides cloud
distribution information in wide spatiotemporal scale. Since
cloud plays a crucial role in weather system and climate
change, the specific weather phenomenon is always closely
related to the distribution of clouds [1]–[3]. It is of great
significance to improve the accuracy of satellite cloud classi-
fication so as to enhance the effectiveness of meteorological
monitoring and even establish a scientific climate model.
Currently, manual interpretationmethods are still widely used
in satellite cloud imagery analysis, these methods not only

affected by cognitive orientation and judging experience of
interpreters but also face challenges to cope with massive
cloud data [4], [5]. Therefore, computer aided cloud analysis
has become a rapidly expanding field of research [6].

At present, the common cloud classification methods can
be roughly divided into three categories [7]: 1) unsuper-
vised methods; 2) supervised methods; 3) artificial neural
networks (ANN) methods. The representative unsupervised
methods are threshold method, histogram method, and clus-
ter analysis method, etc. [7]–[11]. Threshold method was
firstly proposed for cloud detection, and then developed
to identify clear sky, translucent clouds/broken clouds, low
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clouds, medium clouds, and high clouds, etc. However, due
to the error of radiation inversion value of cloud image,
together with the changed temperature of earth’s surface by
geographies and seasons, it is of great difficulty to deter-
mine the threshold. As a consequence, unreasonable thresh-
old often bring about unsatisfactory classification results.
In order to determine reasonable threshold, histogram-based
cloud classification method has come into being. By ana-
lyzing the statistical characteristic of two or three dimen-
sional histogram of the whole or part of the satellite image,
the gray distribution of various clouds is obtained, and then
the appropriate threshold can be chosen to realize cloud
type identification. However, the high quality and preci-
sion of satellite image is the big prerequisite for success-
ful application of this method, and satellite cloud image
usual cannot guarantee this [12], [13]. As for cluster anal-
ysis method, it classifies samples into different cloud types
according to the principle of minimum distance. Amuer [6]
used K-means clustering to classify different clouds in satel-
lite imagery of METEOSAT. By using standard deviation
limited adaptive clustering (SDLAC), Berendes et al. [14]
realized the cloud classification of MODIS satellite imagery.
SDLAC adjusts the standard deviation threshold and clus-
tering center via iterative processing to generate the new
cloud type. As for supervised methods [7], it mainly includes
near neighbor, maximum likelihood estimate (MLE) and
support vector machine (SVM), etc. Generally, on the near
neighbor method, a kind of distance measurement is used
to classify different clouds. Christodoulou et al. [15] used an
improved K-Nearest Neighbor method to classify the data of
METEOSAT 7, and the classification accuracy can be sig-
nificantly improved. The MLE method used the probability
distribution of features to identify different types cloud, and
Li et al. [16] used MLE to classify the clouds in MODIS
imagery, which improved the overall accuracy of cloud clas-
sification, except for the medium and low cloud. Based
on Structural Risk Minimization and Vapnik-Chervonenkis
Dimension, the SVM is an efficientmachine learningmethod,
which is used to mine the intrinsic characteristics of training
samples, and then it tries to find the best compromise between
learning ability and complexity of model, thus achieving
better generalization ability in cloud classification [17], [18].
The ANN is a term used for one type of machine based
algorithms that can be used in cloud classification. These
algorithms classify regions of interest using a methodology
that performs similar functions as the human brain, such as
understanding, learning, solving problems and taking deci-
sions [19]–[22]. Liu et al. [23] used the ANN to realize the
cloud classification of FY-2C satellite imagery, this method
not only can effectively distinguish cloud region from cloud-
less region, but also has high accuracy for various cloud types.

The most recent research indicates that sparsely is the
intrinsic properties of signal, giving an appropriate dictionary,
a natural signal can be represented as a sparse linear combi-
nation of some few dictionary atoms, that is to say, sparse
representation is a concise way to represent information.

According this theory, sparse representation-based classifi-
cation (SRC) has been widely used in pattern recognition
recently [24]–[27]. As for feature extraction, its essence is to
use a small number of coefficients to describe the most infor-
mation of image, so sparse representation will be conducive
for feature expression. Furthermore, due to the complexity
and multiplicity of spectral properties coming from various
cloud types and their underlying surface, a single pixel is usu-
ally the comprehensive reflection of different clouds and sur-
face features. We can believe that it is a linear combination of
several components of cloud system in picture, which exactly
coincide with the idea of sparse representation that treats
the image as a linear combination of multiple atoms. Thus,
introducing sparse representation into cloud image analysis
is expected to improve the accuracy of cloud classification.
Our team has proposed an algorithm of cloud classification
in satellite imagery using over-complete dictionary via sparse
representation (CCSI-ODSR) [28], which improved the accu-
racy in most weather systems. In CCSI-ODSR, the K-SVD
is used to train an over-complete dictionary for sparse rep-
resentation of cloud samples, then the sparse representation
coefficient matrix is decomposed by SVD to generate a series
of subspaces, finally, cloud classification can be realized by
subspace projection. Since CCSI-ODSR construct the dictio-
nary simply utilize spectral features of clouds, it doesn’t make
full use of the other discriminant features, and the accuracy of
cloud classification is still to be improved. Because different
features have their own advantages in cloud classification,
the comprehensive utilizing different types of features will
achieve higher cloud classification accuracy [29], and deci-
sion fusion is an effective way to realize this purpose.

At present, decision fusion has been widely used in fields
such as remote sensing data processing, medical image pro-
cessing, and speech signal processing and so on [30]–[32].
Mazher et al. [33] proposed a land cover classification
method based on multi-sensor fusion of correlated probabili-
ties (MFCP). This method uses the output probability of mul-
tiple SVM classifiers to realize land classification (cultivated-
land, bare-land, wood-land etc.) via decision fusion. The
experimental results show that the accuracy ofMFCP is better
than other methods. In order to perform the classification for
urban remote sensing images, Fauvel et al. [34] constructed
multiple posterior probability based sub-classifiers by using
neural network, and the final results of the classification
were obtained by fusing the output of each sub-classifier via
certain fusion criteria. Prasad et al. [35] proposed a robust
multi-classifier decision fusion framework for classification
hyper-spectral, multi-temporal images by extracting features
in multi-modal data space and combining linear discriminant
analysis. Experiments show that this method can improve
the classification accuracy of hyper-spectral, multi-temporal
remote sensing images.

Inspired by the above ideas, this paper proposed a new
method to identify cloud types for meteorological satellite
image using multiple sparse representation classifiers via
decision fusion (MSRC-DF). In MSRC-DF, the minimum
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reconstructed residual of the traditional SRC is used to
calculate the maximum a posteriori (MAP) of a certain
sample for the specific class. Then the advantages of
different sub-classifiers can be taken by decision fusion,
thus higher accuracy than that of any sub-classifier can be
achieved. MSRC-DF provides a new scheme for satellite
cloud classification.

The rest of the paper is organized as follows: Section II
briefly introduces the cloud feature extracting and cloud
classification system for satellite imagery; Section III gives
a detailed of proposed MSRC-DF for cloud classification;
Section IV presents the experiment results; the conclusion is
presented in Section V.

II. SATELLITE DATA AND CLOUD
CLASSIFICATION SYSTEM
Satellite imagery provides distribution information of cloud
with large spatiotemporal scale; it is an important tool for
weather forecasting and climate monitoring. This paper con-
centrating on developing a new cloud classification method
on FY-2G satellite cloud imagery. The following sub-sections
will briefly present the cloud features extracting and describe
the classification model for cloud type identification.

A. CLOUD FEATURE EXTRACTION
FY-2G satellite is positioned over the equator 105◦E, the vis-
ible and infrared spin scan radiometer carried by FY-2G has
5 imaging channels, which includes two infrared long wave
channels (IR1, IR2), one water vapor channel (IR3), one
infrared medium channel (IR4), and one visible spectrum
channel (VIS). The imaging channels and their spatial res-
olution of FY-2G are shown in Table 1.

TABLE 1. The imaging channels of FY-2G satellite.

The 5 imaging channels of FY-2G reflect atmospheric
physical information from different aspects. Split window
(IR1, IR2) can discriminate underlying surface and cloud
area, and also reflect the top brightness temperature accu-
rately. The water vapor channel (IR3) can indicate the absorp-
tion property of infrared radiation by water vapor. Since the
more water vapor the atmosphere contains, the more infrared
radiation will be absorbed, and this makes the correspond-
ing area whiter in water vapor imagery. Generally, clouds
of different heights contain different moisture content, thus,
water vapor imagery can help to classify different cloud types.
The IR4 is sensitive to objects with higher temperature. It is
usually used for the estimation of underlying surface temper-
ature and the detection of fog and low-level clouds. The VIS

channel can discriminate land surface, water and various
clouds, but it is unable to obtain VIS imagery at night.
To ensure the generality of proposedmethod, the satellite data
of IR1 ∼ IR4 are used for cloud classification. Moreover,
to take the advantages of each channel, we extract five types
of features from cloud imagery to form training samples.
Based on this, five sparse representation-based classifiers
were been trained to implement cloud classification via deci-
sion fusion. The details of the five types of features are
described as follows:

1) Grayscale (GS) features. The grayscale features are
composed by the gray values of satellite cloud images
of different channels together with the gray differ-
ences between different channels. Grayscale of four
channels (IR1 to IR4), are denoted as GIR1, GIR2,
GIR3, and GIR4, respectively, The grayscale differ-
ences of IR1-IR2, IR1-IR3, IR1-IR4 and IR2-IR3 are
denoted as GIR1-GIR2, GIR1-GIR3, GIR1-GIR4 and
GIR2-GIR3, respectively. They form 8 dimensional
grayscale features.

2) Brightness temperature (BT) features. The brightness
temperature features are composed by brightness tem-
perature of the four channels (IR1 to IR4) and the
brightness temperature differences of them. The bright-
ness temperatures of the four channels (IR1 to IR4) are
denoted as TIR1, TIR2, TIR3 and TIR4, respectively.
The brightness temperature differences of the IR1-IR2,
IR1-IR3, IR1-IR4, and IR2-IR3 are denoted as
TIR1-TIR2, TIR1-TIR3, TIR1-TIR4 and TIR2-TIR3,
respectively. They are combined to form 8 dimensional
BT features.

3) Texture (TT) features. The mean value, standard devia-
tion, smoothness, 3rd-moment, uniformity and entropy
of the four channels (IR1 to IR4) cloud images are used
to form 24-dimensional TT features.

4) Time difference (TD) features. We calculate the differ-
ence of the gray value and brightness temperature of
four channels (IR1 to IR4) at time t1 and t2 to form
8-dimensional TD features. In this paper, the interval
of t1 and t2 is 1 hour.

5) Gabor (GB) features. Results of 2 scales Gabor trans-
form in 3 directions of the four channels (IR1 to IR4)
are extracted to form 24-dimensional GB features.

The above five types of features can reflect the essential
characteristics of clouds from different perspectives: the gray
value (GV) and bright temperature (BT) of each channel can
directly reflect the distribution of clouds in different regions.
In infrared cloud images (IR1, IR2, and IR4), the most dark
areas often indicate the highest temperature areas, such as
clear land, followed by clear water such as lakes, and oceans
in terms of temperature. Clouds usually have a relatively low
temperature, so the bright white areas in infrared imagery
often indicate different types of clouds. Thewater vapor chan-
nel (IR3), is a special infrared band; the water vapor imagery
can help to estimate the water content of different clouds.
Since different cloud types contain different water content,
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the water vapor imagery also helps to classify different cloud
types.

At the same time, in order to improve the accuracy of
cloud classification, it is necessary to block out the inter-
ference of underlying surface effectively and highlight the
information of cloud layer to the greatest extent. Considering
that most of the clouds are located in the lower troposphere,
and the infrared split-window channels IR1 and IR2 reflect
the characteristics of ground surface and cloud layer respec-
tively; therefore, the differences of grayscale and brightness
temperature between IR1 and IR2 can eliminate the inter-
ference of ground surface radiation, which help identify cir-
rus clouds and cumulonimbus clouds. Water vapor channel
IR3 represents the characteristics of the upper troposphere,
so the differences between IR1/IR2 and water vapor channel
IR3 can further enhance the information of cloud layer; the
experiments on cloud classification also show that the dif-
ference of IR1 and IR3 had a positive correlation with the
top height of convective clouds and the difference of IR2 and
IR3 had strong ability to express water content in cloud layer.
As a near-infrared channel, the band of IR4 is in the energy
range of solar radiation, the difference between IR1 and
IR4 can alleviate the influence of solar radiation on IR1,
and it is helpful to distinguish different cloud systems using
the height of cloud layer. Therefore, we utilize the grayscale
and brightness temperature differences of IR1-IR2, IR1-IR3,
IR1-IR4 and IR2-IR3 as the features of cloud classification,
other channel differences, such as IR3-IR4 were not applied
due to they lack definite atmospheric physical meaning and
had little contribution to cloud classification [23], [28], [29].

As for the texture features, they can describe the smooth-
ness, sparsity, and regularity of cloud imagery [6], [29].
Satellite cloud imagery contains rich texture information, for
example, the texture of stratus is smooth and uniform, and
the texture of cumulus is corrugated and has some spots,
the cirrus contains texture with fibroid shape. Thus extracting
discriminative texture will help to improve the accuracy of
the cloud classification. Since the gray distribution in image
often reflects the spatial repeated cycle of local structure, and
the texture with larger cycle is rougher than that with smaller
cycle. Feature extracted by histogram statistical technique
can show the thickness of texture. Thus, in texture features
extraction, histogram statistical technique is used; the mean
value, standard deviation, smoothness, 3rd-moment, unifor-
mity and entropy that extracted to form the texture features
of satellite cloud imagery. In actual weather systems, various
clouds are changing all the time and may develop into each
other.

While the time difference (TD) features can indicate
the change regulation of various clouds in terms of time
changing. TD features of satellite cloud imagery are
also commonly used in cloud detection and precipitation
prediction [29], [36].

In order to depict the multi-scale and multi-directional
information of cloud imagery, we construct 6 Gabor fil-
ters in 2 scales and 3 directions to extract 6-dimensional

Gabor (GB) features of each pixel. We choose 2 scales and
3 directions for two reasons: (1) Extracting Gabor features
at different scales and directions is helpful to depict the
scale and direction characteristics of cloud images [37], [38];
(2)Gabor convolution is computationally expensive, too
many scales and directions not only increase the computa-
tional complexity of the algorithm but also increase the redun-
dancy of Gabor features. We choose 2 scales and 3 directions
to achieve compromise between feature richness and algo-
rithm complexity.

Due to different types of features have their own virtues;
combining above five types of features in variety of strate-
gies is the most intuitive way to improve the performance
of cloud classification. However, features combination typ-
ically result in very high dimensional feature spaces, this
adversely affects the performance of classification systems
because a large feature space dimensionality necessitates a
large training database to accurately model the statistics of
class features. One obvious way to alleviate this problem
is to train multiple classifiers using each type features, and
then design an appropriate decision fusion system ‘‘fuses’’
these individual classifiers results into a final classification
for cloud image. In this work, we focus on multi-classifier
decision fusion framework rather than design combinations
of the five types of features for alleviating the adversities of
high dimensionality of feature vectors.

B. CLOUD CLASSIFICATION SYSTEM FOR
SATELLITE IMAGERY
The satellite cloud images, recorded by infrared and visible
channels, mainly reflect the spectral information, brightness
temperature and albedo information of clouds. In general,
each pixel of cloud image is a comprehensive reflection of
different clouds and underlying surface, thus it is hard to
achieve an accurate classification for satellite cloud imagery
using routine methods. Now, following the international com-
mon practice of cloud classification, according to their height
and vertical development, clouds are mainly divided into
four families as high cloud, medium cloud, low cloud, and
heap cloud [7]. The four families are subdivided into several
categories: the high cloud is subdivided into cirrus, cirrostra-
tus, and cirrocumulus; the medium cloud is subdivided into
altostratus and altocumulus; the low cloud is subdivided into
cumulus, stratus, stratocumulus, and nimbostratus; and the
heap cloud mainly refers to cumulonimbus with exuberant
vertical development.

According to the above analysis and the specific require-
ments of satellite cloud image classification for meteorolog-
ical services, in this paper, each satellite cloud image pixel
is classified as one of the following six types: clear land,
clear water, heap cloud, high cloud, medium cloud and low
cloud. In this classification system, some low level clouds
such as cumulus, stratus, nimbostratus, and stratocumulus
are all classified as low clouds, since they are mainly made
up of water drops and bring continuous rain frequently.
Similarly, altostratus and altocumulus are just classified as
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medium clouds. Meanwhile, cirrus, cirrostratus, and cirrocu-
mulus are generally made up of ice crystals, with the height
of cloud base usually over 5000 m, and which generally
do not bring precipitation, are classified as high clouds [7].
As regards heap cloud, it usually composed by cumulonim-
bus, its cloud top may extend to the scope of a medium-
level or even high-level cloud, which reflects a strong updraft,
and they usually incur severe convection weather as thunder-
storms or heavy rainfall, so cumulonimbus attracts attention
in meteorological monitoring.

III. CLOUD CLASSIFICATION USING DECISION FUSION OF
MULTIPLE SPARSE REPRESENTATION CLASSIFIERS
In recent years, sparse representation has been widely used in
pattern recognition [24]–[28]. Research shows that, the brain
visual cortex of primate consists of a large number of neurons
that constitute a complex network, but when it receives exter-
nal stimulus, only a small number of neurons are activated
to complete the response process. Due to the neurons in
different regions have their own functions, they work together
to accomplish different perceptual task [28]. This mechanism
is coincides with the idea of sparse representation, and pro-
vides a biological foundation of sparse representation based
pattern recognition. To mimic this biological property, this
paper introduces sparse representation into cloud classifi-
cation. By converting the minimum reconstructed residual
of sparse representation based classifier into the maximum
posterior probability; a new cloud identification method is
designed. In the method, the cloud samples with different
features are used to train multiple sparse representation-based
classifiers, which can output maximum posterior probability.
Then, an adaptive iterative is performed to determine the
fusion weights of sub-classifiers according to the perfor-
mance of each sub-classifier. Finally, a cloud classification
method that based on decision fusion is proposed.

A. SPARSE REPRESENTATION CLASSIFICATION (SRC)
MODEL BASED ON POSTERIOR PROBABILITY
In traditional SRC, test sample is classified by the mini-
mum reconstructed residual of sparse representation, while
this scheme makes it difficult to realize the decision fusion
for multiple sub-classifiers. In this paper, the reconstructed
residual is converted into the posterior probability, thus the
possibility that test sample belongs to a certain class can be
judged intuitively. By adopting maximum posterior probabil-
ity, the collaborative work mechanism of information percep-
tion by different neurons in the visual cortex of brain can be
imitated. Then the decision fusion model of multiple sparse
representation classifiers can be constructed to improve the
accuracy of cloud classification.

Denote X = [X1,X2, . . . ,XK ] as the training sample set
of K cloud types, Xi = [xi,1, xi,2, . . . , xi,ni ] ∈ <

m×ni is the
subset of the i-th type(i-th class), ni is the number of training
sample of i-th class, m is the feature dimension of each
sample, xi,j ∈ <m is the j-th sample in Xi, i = 1, 2, . . . ,K ,
j = 1, 2, . . . , ni, the total number of training samples is

l =
K∑
i=1

ni. Here, let X ∈ <
m×l as the dictionary for

SRC, xi,j is an atom of the dictionary. According to sparse
representation, for a test sample y ∈ <m which belonging to
the i-th type, y could be expressed as a linear combination
of those atoms xi,j from the i-th sub-dictionary Xi, i =
1, 2, . . . ,K , this can be expressed as,

y = αi,1xi,1 + αi,2xi,2 + · · · + αi,nixi,ni (1)

where αi,j are the coding coefficients. If y is represented as
a linear combination of the entire dictionary X , ideally, only
those coefficients corresponding to sub-dictionary Xi will be
nonzero, and the sparse coding coefficients can be obtained
by solving the following model [24]:

min
α
||y− Xα||2s.t.||α||0 ≤ E (2)

where α = [α1,1, . . . α1,n1 , . . . , αi,1, . . . αi,ni , . . . , αK ,1, . . .
αK ,nK ]

T is the sparse coding coefficients of y,E is a
sparse threshold. The solution of (2) is a NP-hard prob-
lem, and it is usually approximated by the following
`1− minimization [24],

min
α
||α||1 s.t. ||y− Xα||2 ≤ ε (3)

where ε is an optional error tolerance. To calculate the sparse
coding coefficients α, (3) can be rewritten as the following
general Lagrangian model:

α = argmin
α
{||y− Xα||22 + λ||α||1} (4)

where λ is a positive constant, and a homotopy algorithm [39]
can be used to solve the `1− minimization problem. δi(·) is
an operator that is introduced to extract the i-th sub-dictionary
associated entries of α, such as δi(α) = [αi,1, αi,2, . . . , αi,n]T ,
then, the test sample y can be reconstructed as follows:

ȳi = Xiδi(α) (5)

Here Xi is the i-th sub-dictionary. The reconstructed resid-
ual between y and ȳi is:

ri(y) = ||y− ȳi||2 (6)

which indicates how well the i-th sub-dictionary Xi rep-
resent y. According to the traditional sparse representation
methods, the smaller the value of ri(y), the more likely y
belongs to the cloud type i. So the test sample y can be
assigned to the object cloud type i whose ȳi has the min-
imal residue with y. Since it is difficult to fuse the results
of multiple classifiers by this hard partition method, in this
paper we try to convert the residual of y and ȳi into the
maximum posterior probability of y belongs to the i-th cloud
type, in order to construct the decision fusion model. Specific
details are as follows:

Denote the inverse of residual of y and ȳi as:

ϕi =
1

||y− ȳi||2
(7)
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Then the maximum posterior probability of y belongs to
the i-th cloud type can be defined as:

Pi(y∈ i− th type |ϕi)=
ϕi

ϕ1+ϕ2+. . .+ϕi+. . .+ϕK
(8)

Actually, according to sparse representation theory, if y
belongs to the i-th type, ȳi and y are very similar, that is
y ≈ Xiδi(α), and ri(y) will be smaller, then ϕi computed by (7)
will be larger. Thus the possibility Pi(y ∈ i− th type|ϕi) will
be high, so the cloud type of y can be determined as:

identity(y) = argmax
i
{Pi(y ∈ i− th type |ϕi)} (9)

where i = 1, 2, . . . ,K , denote different cloud types. Based
on this model, a soft classification scheme can be offered to
design multiple sparse representation classifiers for imple-
menting decision fusion.

B. DECISION FUSION OF MULTIPLE SPARSE
REPRESENTATION CLASSIFIERS
The traditional sparse representation-based classifier uses
minimum residual to classify test sample, this often leads
to serious misclassification in cloud analysis. This paper
training multiple sparse representation-based classifiers
using different type features of cloud image, then the final
classification result of test sample can be obtained via deci-
sion fusion. The decision fusion scheme mimics the coopera-
tive mechanism of different neurons in the visual cortex of the
brain. Lam and Suen [40] have proved that, if the accuracy
of each sub-classifier is higher than 0.5, the accuracy of
decision fusion result will be closed to 1.0 as the number of
sub-classifiers increases; if the accuracy of each sub-classifier
is lower than 0.5, the accuracy of decision fusion result will be
worse than that of the single sub-classifier; if the accuracy of
each sub-classifier is equal to 0.5, the accuracy of the fusion
result will not be changed. Therefore, as long as the accuracy
of each sub-classifier is greater than 0.5, it is possible to
use decision fusion to improve the overall accuracy of cloud
classification.

In order to achieve the best fusion effect, how to confirm
every classifier’s weight is very important. The tradition
method is to fix weight by every classifier’s classification
performance. Owing to the specific classifiers constructed
by different types of features have their own advantages in
cloud classification; the fixed-weight is not effective in some
complex conditions. Therefore, it is necessary to determine
the adaptive weights for multi-classifiers decision fusion.
In this paper, five types of features (GV, BT, TT, TD and GB)
that described in section II.A are grouped to constructs the
training sample set X ,

X = [X1,X2, . . . ,XK ] (10)

where K is the number of cloud types, Xi ∈ <m×ni is the
subset of the i-th cloud type, xi,j is the j-th sample of Xi,
i = 1, 2, . . . ,K , j = 1, 2, . . . , ni, ni is the number of training

sample ofi-th type, and xi,j is defined as follows:{
xi,j = [xGVi,j ; x

BT
i,j ; x

TT
i,j ; x

TD
i,j ; x

GB
i,j ] ∈ <

d

xGVi,j ∈<
d1 , xBTi,j ∈<

d2 , xTTi,j ∈<
d3 , xTDi,j ∈<

d4 , xGBi,j ∈<
d5

(11)

where d1, d2, d3, d4 and d5 are the dimensions of five types of
features respectively, and d = d1+ d2+ d3+ d4+ d5. Then,
using these five types of features, five sub-classifiers based on
sparse representation are trained respectively. Table 2 shows
the corresponding feature and feature dimension of five
sub-classifiers.

TABLE 2. Feature and Feature Dimension for Five Sub-classifiers.

In order to achieve classification performance more accu-
rately, adjusting multi-classifier weight by adaptive method
is becoming the key for improving recognition rate. The next
sub-section will give a detailed description to determine the
weights for sub-classifiers.

C. THE DETERMINATION OF WEIGHTS
FOR DECISION FUSION
The basic principle in object recognition is to train classifier
using labeled samples and then judge which class the new
test sample belongs. In this paper, five sparse representation
based sub-classifiers are designed using the five types of
features respectively, because each classifier produces poste-
riori probabilities that the test sample belong to each cloud
type, we design an adaptive iterative method to determine
the fusion weights of five sub-classifiers according to the
performance of respective sub-classifier.

Assuming that training samples of the i-th cloud type form
a matrix Xi = [xi,1, xi,2, . . . , xi,ni ] ∈ <

m×ni , and denoting ni
as the number of the i-th type samples. We define a matrix
X for the entire training set of all the K cloud types as X =
[X1,X2, . . . ,XK ] ∈ <m×n, where n = n1+ n2+, . . . ,+nK is
the total number of samples in X . To determine the weight
of respective sub-classifier, some labeled cloud samples are
used to form the validation set V = [V1,V2, . . . ,VK ] ∈
<
m×N , and the structure of V is similar to X , m is the feature

dimension of each sample,N is the total number of validation
samples in V .
Before using V to reasonably determine the fusion weights

of sub-classifiers, it is necessary to eliminate the undesirable
consequences of noises or outliers in sample set. According
to the outputs of respective sub-classifier, a methodology that
used to eliminate noises and outliers is summarized as fol-
lows: Firstly, X is used to construct dictionaries for different
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sub-classifiers according to the method in Section III.A and
Section III.B; then, for a labeled validation sample vk ∈ V ,
k = 1, 2, . . . ,N , its label is Label(vk ). We use the five sub-
classifiers to classify vk , and obtain the posterior probability
Psi, here, Psi is the posterior probability that output by s-th
sub-classifier, and it represents the probability that vk belongs
to the i-th type, s = 1, 2, . . . ,M , i = 1, 2, . . . ,K . Then the
classification result of vk respect to s-th sub-classifier will be
acquired as follows:

identity(vk )s = argmax
i
{Psi} (12)

If identity(vk )s 6= Label(vk ) holds for all the sub-
classifiers, s = 1, 2, . . . ,M , it can be considered that vk is
noise or outlier, in this case, we remove vk from V . After all
the samples are exam using the above method, the filtered
validation sample set V̄ ∈ <m×N̄ can be obtained, N̄ is
the total number of validation sample. Then, the validation
sample set V̄ will be used to determine the fusion weight of
respective sub-classifier. The weight for decision fusion of
respective sub-classifier is initialized as follows:

ωs =
1
M

(13)

where s = 1, 2, . . . ,M ,M is the number of sub-classifiers,
in this paper,M = 5. Then, an adaptive iterative algorithm is
designed to optimize the ωs for decision fusion.

Denotes Tm as the maximum number of iterations, and the
iteration count T is set to 1 for the first iteration. For a labeled
validation sample v̄c ∈ V̄ , c = 1, 2, . . . , N̄ , its label can be
indicate as Label(v̄c). X is used to construct dictionaries for
different sub-classifiers according to the method described in
Section III.A and Section III.B. As for the validation sample,
the s-th sub-classifier output the posterior probability P̄si;
here P̄si represents the probability that v̄c belongs to the i-th
cloud type, s = 1, 2, . . . ,M , i = 1, 2, . . . ,K . The classifica-
tion result of v̄c by s-th sub-classifier can be obtained as,

identity(v̄c)s = argmax
i
{P̄si} (14)

In this work, we propose that posteriori probabilities across
the five sub-classifiers corresponding to each class label are
combined using the fusion weights ωs. The cumulative prob-
ability can be computed as follows,

ui =
M∑
s=1

ωsP̄si (15)

The cumulative probability corresponding to each class are
compared to decide the label of v̄c by decision fusion using
maximum posterior probability as follows,

identity(v̄c) = argmax
i
{ui} (16)

If the result of decision fusion is consistent with the actual
label of the sample, that is to say identity(v̄c) = Label(v̄c),
we examining the classification result of each sub-classifier
with the actual label and processing the next sample in case

identity(v̄c)s = Label(v̄c) holds for all sub-classifiers. Other-
wise, if there are l (0 < l < M ) sub-classifiers with clas-
sification results that differ from Label(v̄c), then the weights
of these l sub-classifiers will be decreased by a constant δ;
in this case, we rank all the sub-classifiers in the descending
order according to the posterior probability P̄si (here i refers
to the actual label of the sample, that is i = Label(v̄c)),
then, the weights of the top l sub-classifiers will be increased
by δ. For example, if the results of 2 sub-classifiers are not
consistent with the actual label of the sample, the weights
of these 2 sub-classifiers will be decreased by δ, meanwhile,
the weights of 2 sub-classifiers with the largest and second
largest posterior probability will be increased by δ. In this
way, the sum of the weights can be kept to 1. The updated
weights ω∗s can be formulated as,

ω∗s =

{
ωs − δ, identity (v̄c)s 6= Label(v̄c)
ωs + δ, classifier with larger P̄si

(17)

Here ω∗s satisfies the following condition,

M∑
s=1

ω∗s = 1 (18)

After that, we do the same for next validation sample in V̄ ,
and go on updating the fusion weights. When all the samples
in V̄ are traversed, the current iteration is completed and
set T = T + 1, then, go for the next iteration and go on
updating the fusionweights until the iteration count T reaches
its maximum Tm.

FIGURE 1. Recognition accuracy versus iteration number of decision
fusion.

Fig.1 shows the recognition accuracy versus iteration num-
ber, it can be seen that, as the iteration goes on, accuracy of
decision fusion can be improved at beginning, which means
the fusion weights of respective sub-classifier is optimized to
some extent.

However, when the number of iterations reaches about 20,
the recognition accuracy reaches its peak. If we increase iter-
ations continually, the accuracy of decision fusion decreases
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FIGURE 2. The working flow of MSRC-DF.

TABLE 3. Classification accuracy for different cloud types of 5 sub-classifiers.

gradually, this indicates that the fusion weights are exces-
sively regulated. Therefore, in order to determine reasonable
fusion weights, the maximum number of iteration is set as
Tm = 20 in this paper. When the number of iterations reached
the set value, the optimized weights can be obtained. The
pseudo-code to obtain fusion weights for decision fusion is
summarized as follows,

Once the fusion weights are determined, multiple sub-
classifiers can be used to realize a cloud classification via
decision fusion. Fig.2 shows the working flow of the pro-
posed MSRC-DF.

IV. SIMULATION RESULTS AND ANALYSIS
This section presents the simulations conducted on real satel-
lite data. Experiments were performed on a desktop computer
with 2.9 GHz CPU and 8 GBRAM. 9 daytime FY2G satellite
data containing IR1, IR2, IR3, IR4, VIS channel imagery
with all predefined cloud types are used in our simulations.
Three meteorologists examine the selected cloud images and
identified all the possible cloud types as well as the back-
ground for each pixel based on visual inspection and other
relevant knowledge. We select 600 samples for each defined
classes among the labeled cloud images. 200 of those
labeled samples are randomly drawn for training, and
200 labeled samples of the rest are randomly drawn for
validation, while the rest are used for testing. All exper-
iments in sub-sections IV.A ∼ IV.D use the same training
samples, and feature vectors for each selected sample are
extracted and normalized by `2-norm. For the sake of
experimental comparison, we examined the results generated

by five sub-classifiers, and then we implemented the pro-
posed MSRC-DF by determining the fusion weight for each
sub-classifier and obtain fusion result. In our experiments,
according to the correlative references, we set the regulariza-
tion parameter λ as 0.001 for each sub-classifier and other
SRC based comparison methods. As to the parameter δ in
Eq. (17), it is an empirical parameter, we set it as 0.0002 for
adjusting fusion weights adaptively. Finally, a comparison
with state-of-the-art methods such as ANN [23], SRC [24],
CCSI-ODSR [28], MFCP [33] is presented. The computa-
tional efficiency of our method and the compared methods
is also evaluated in terms of running time.

A. THE FEASIBILITY OF DECISION FUSION FOR
THE OUTPUTS OF FIVE SUB-CLASSIFIERS
In this sub-section, we will verify the feasibility of decision
fusion for the outputs of five sub-classifiers. To test the
accuracy of each sub-classifier, 200 samples for each cloud
type were used for testing. Table 3 shows the classification
accuracy of each sub-classifier.

It can be seen from Table 3 that, the classification accu-
racy of all the five sub-classifiers exceeds 50.00%, which
meets the conditions that Lam and Suen [40] proved for
effective decision fusion. Thus, by fusing the outputs of
the above five sub-classifiers via decision fusion, the pro-
posed MSRC-DF will improve the accuracy of cloud clas-
sification. The performance of the proposed MSRC-DF
and the five sub-classifiers will be compared in the next
sub-section.
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TABLE 4. Confusion matrix of the classification results of different cloud types by MSRC-DF.

Algorithm 1 Iteration to obtain fusion weights for decision
fusions

1: Input:
Training samples X = [X1,X2, . . . ,XK ] and validation
samples V = [V1,V2, . . . ,VK ] for K types of cloud;
2:Normalize the columns of X and V to have unit `2 norm.
Constructing the dictionaries of five sub-classifiers usingX
according to different types of cloud feature; eliminating
the noises and outliers from V and forming validation
set V̄ ;
3: Initialize the fusion weight of each sub-classifier by
Eq.(13): ωs = 1/M (M is the number of sub-classifiers,
in this paper, M = 5). Set the maximum iteration num-
ber Tm; set iteration count T = 1;
4: While T ≤ Tm

For c = 1 to N̄ (N̄ is the sample sizes of V̄ )
Classify v̄c via respective sub-classifier
by Eq.(14);
The outputs of each sub-classifier will be fused
by Eq.(15) and Eq.(16) to identify the identity
of v̄c;
If identity(v̄c) = Label(v̄c)

Validating the output of each sub-classifier
identity(v̄c)s(s = 1 to M) with the actual label
of the sample;
If identity(v̄c)s = Label(v̄c) is true for all
sub-classifiers

Processing the next sample;
c = c+ 1;

Else
Ranking all the sub-classifiers in the
descending order according to the
posterior probability P̄si(i refers to the
actual label of the sample);
Updating weights ω∗s for each sub-
classifiers according to Eq. (17)
Processing the next sample;
c = c+ 1;

End if
End if

End for
T = T + 1;

End while
5: Output The updated weights ω∗s .

B. ACCURACY EVALUATION OF MSRC-DF
AND SUB-CLASSIFIERS
To test the accuracy of the proposed classification scheme,
200 samples for each cloud type were used for testing.

Table 4 gives a confusion matrix of the classification results
of MSRC-DF.

As seen from Table 4, for total 1200 test samples from 6
different cloud types, 1169 samples are correctly classified by
MSRC-DF, which means an overall classification accuracy
of 97.4%.

FIGURE 3. Comparison of the classification accuracy (%) of MSRC-DF and
five sub-classifiers.

Fig.3 gives a comparison of the classification accuracy
of MSRC-DF and the five sub-classifiers. It is clear that
MSRC-DF gets better results than each individual sub-
classifier. Specifically, sub-classifier 1 and sub-classifier 2
are based on GV and TB features respectively, for any type
of cloud, their classification accuracy are relatively stable,
and the overall classification accuracy is around 90.00%;
sub-classifier 3 is constructed on TT features, it achieve
high classification accuracy for low cloud (including cumulus
and stratus, etc.) due to the TT features better characterize
the texture of cumulus and stratus; meanwhile, GB features
can reflect the characteristics of different types cloud in the
frequency domain, which makes sub-classifier 5 achieves
high classification accuracy for clear land and medium cloud;
however, for sub-classifier 4, which trained by time differ-
ence features, it achieves acceptable accuracy just for clear
water, the accuracy for other types of cloud are unsatisfactory.
On the whole, MSRC-DF achieves the highest accuracy for
all types of clouds; these indicate that decision fusion is
effective in cloud classification.

Table 5 lists the fusion weight of each sub-classifier
that used in MSRC-DF. The weight of each sub-classifier
can be initialized by Eq.(13), which is a constant of 0.2.
From Table 5, it can be seen that, after iterative training,
the initial weights of sub-classifiers have been adjusted
adaptively. In particular, the adjusted fusion weight of the
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TABLE 5. Fusion Weight of Each Sub-classifier.

sub-classifier 1 is the largest and the adjusted fusion weight
of the sub-classifier 5 is the smallest, these are almost con-
sistent with the ability of cloud type identification of each
sub-classifier.

C. COMPARISONS WITH OTHER METHODS
Many methods for clouds classification have been put for-
ward nowadays and certain success has been achieved. Here,
the proposed MSRC-DF was compared with four existing
cloud classification methods such as ANN [23], SRC [24],
CCSI-ODSR [28] and MFCP [33]. In the experiment, five
types of features of cloud samples are simply concatenated
to form feature vectors for SRC, ANN and CCSI-ODSR;
the ANN classifier was composed by 2 hidden layers, and
the neurons of the first and the second layer are 9 and
4 respectively. As a typical decision fusion related method,
in the experiment, the MFCP was implemented by fusing the
outputs of five SVM based sub-classifiers, and the feature
vectors of each sub-classifier is similar to those ofMSRC-DF.
As in sub-section IV.A and IV.B, randomly selected 200 sam-
ples from each cloud type were used for training and 200 sam-
ples for testing were selected from the remaining samples.
The confusion matrixes of classification results of the com-
parison methods are shown in Table 6, Table 7, Table 8, and
Table 9 respectively, and the confusion matrix of classifica-
tion results of MSRC-DF is already shown in Table 4 (in
sub-section IV.B). Table 10 tabulates the recognition rates for
different cloud types using SRC, ANN, CCSI-ODSR, MFCP
and MSRC-DF. The overall accuracy for cloud classifica-
tion of SRC, ANN, CCSI-ODSR, MFCP and MSRC-DF are
shown in Fig.4.

From the above experiments, it is clear that MSRC-DF
achieves better results than the other methods for almost
all cloud types, except MSRC-DF is slightly worse than
CCSI-ODSR and MFCP for clear water. For SRC, there are
serious misclassification of different types cloud, the overall
accuracy of SRC is less than 90%, this indicate that SRCwith
concatenated different types features cannot be used for satel-
lite cloud image recognition effectively. ANN has a certain
ability of self-learning and pattern learning, it has reasonable
classification accuracy for clear water and clear land, how-
ever, because of its poor generalization ability, the accuracy
for heap cloud and low cloud are slightly lower. In case of
CCSI-ODSR, for clear water, clear land and medium cloud,
the classification accuracies are almost the same as the cor-
responding one of MSRC-DF, but for heap cloud and low

FIGURE 4. The accuracy for cloud classification of SRC, ANN, CCSI-ODSR,
MFCP and MSRC-DF.

cloud the classification accuracies are still not satisfactory.
As for MFCP, due to it is fuse the outputs of five SVM based
sub-classifiers via decision fusion, its performance of cloud
identification is superior to SRC, ANN and CCSI-ODSR,
especially for clear water, clear land and low cloud. In terms
of the overall accuracy, among the fivemethods, the proposed
MSRC-DF provides the best classification results.

D. BENCHMARKS ON FY-2G SATELLITE DATA
To demonstrate the performance of different methods intu-
itively, in this section, the color-coded cloud classification
results by ANN, CCSI-ODSR, MFCP, and MSRC-DF, are
visualized. In this experiment, four methods are benchmarked
on the FY-2G satellite data obtained at 2 p.m. Beijing time,
on 13 September 2016. From the satellite image of each
channel, we select specific sub-image with spatial resolution
of 512 × 512 pixels cover the main system of typhoon
‘‘Meranti’’ and most of the southeast coast of China, etc.

The IR1 channel image and cloud types labeled image
whose cloud types are identified by meteorologist are shown
in Fig. 5(a) and (b), respectively. In Fig. 5(b), triangle (N)
indicates clear water, inverted triangle (H) indicates clear
land, star (?) indicates heap cloud, circle (•) indicates low
cloud, square (�) indicates medium cloud and cross (+)
indicates high cloud.

The color-coded classification results using ANN, CCSI-
ODSR, MFCP, and MSRC-DF were shown in Fig.6, whereas
the result of SRC was not used for this comparison due to its
poor performance.

It can be seen from Fig.6 that, in most of the classifica-
tion areas, the classification results of ANN, CCSI-ODSR,
MFCP, and MSRC-DF are the same as that of the
meteorologist-marking image. For example, for clear water
and land, the four methods all give relatively reason-
able classification results. As for the spiral cloud band
of super typhoon ‘‘Meranti’’ and cumulonimbus near the
typhoon center, the classification results of these methods
can still be acceptable. Considering to the details of the
classification results, MSRC-DF gives a better result than that
of ANN, CCSI-ODSR and MFCP. For example, in Fig. 6,
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TABLE 6. Confusion matrix of the classification results of different cloud types by SRC.

TABLE 7. Confusion matrix of the classification results of different cloud types by ANN.

TABLE 8. Confusion matrix of the classification results of different cloud types by CCSI-ODSR.

TABLE 9. Confusion matrix of the classification results of different cloud types by MFCP.

TABLE 10. Recognition rates of the comparative cloud classification methods.

compared with the classification results of CCSI-ODSR and
MSRC-DF, ANN misclassify some heap clouds as high
clouds near the region of spiral cloud band. Meanwhile, some
heap clouds around the typhoon center are classified wrongly
as low cloud by CCSI-ODSR. Although the overall perfor-
mance ofMFCP is acceptable, it is still difficult to distinguish
heap clouds from exterior spiral cloud band. According to

the discussion above, in terms of classification accuracy and
visual inspection, MSRC-DF achieves the best performance.

E. COMPUTATIONAL EFFICIENCY ANALYSIS
This sub-section considers the computational efficiency of
SRC, ANN, CCSI-ODSR, MFCP and MSRC-DF. The train-
ing and testing time of the comparison methods are recorded,
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FIGURE 5. Original IR1 image and cloud types labeled image. (a) IR1 image (b) Cloud types
labeled by a meteorologist.

FIGURE 6. Cloud classification results using ANN, CCSI-ODSR, MFCP and MSRC-DF. (a) ANN (b) CCSI-ODSR (c) MFCP (d) MSRC-DF.

TABLE 11. Training time and testing time of different method.

as shown in Table 11. For SRC, no training is needed; its
training time is ignored. For each method, the training time is
the total training cost for all the 6 × 200 training samples,
the testing time is an average for all the 6 × 200 testing
samples.

It is clear that, compared with ANN, CCSI-ODSR and
MFCP, the training time of the proposed MSRC-DF is the
shortest. The reason lies in that CCSI-ODSR consumes a
lot of time to train the dictionary; ANN needs to contin-
uously adjust the network parameters for training network
model, which leads to a longer training time; MFCP takes
some time to find the optimal classification hyper-planes for
each SVM sub-classifier, so its overall training time is still
longer. For MSRC-DF, since the dimension of the feature of
each sub-classifier is relatively small, and the computation

complexity is relatively lower, this leads to shorter training
time. As for testing, several subspaces need to be generated
for CCSI-ODSR in testing stage, and then cloud classification
is realized by subspace projection, the high computation com-
plexity leads to longest testing time. Meanwhile, the testing
cost of MSRC-DF, ANN, SRC and MFCP are in the same
order. According to the above experiments, the proposed
MSRC-DF achieves high classification accuracy with accept-
able time efficiency; MSRC-DF is expected to be applied in
the analysis of actual satellite cloud images.

V. CONCLUSION
Clouds play an important role in the balance of atmospheric
radiation. The distribution of different clouds depicts the
characteristics of atmospheric circulation, and then affects
the effectiveness of weather forecasting and climate monitor-
ing. At present, cloud types identification for meteorological
satellite image are still not mature under complex conditions.
Due to the different types of features can describe the clouds
from different aspects, in order to improve the accuracy of
cloud classification, it is very important to develop a decision
fusion method utilizing the advantages of the different types
of features. In this paper, based on FY-2G satellite images,
five types of features are extracted for constructing five sparse
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representation-based classifiers, and then cloud identifica-
tion were realized by fusing outputs of every sub-classifiers
via decision fusion. This fusion method is effective because
the fusion weights were determined by an adaptive iterative
scheme. Experimental results show that the proposed method
is a better choice than the traditional methods in terms of
accuracy and efficiency.
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