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ABSTRACT The designated verifier signature (DVS), introduced by Jakobsson et al., has the property that
only the designated verifier can verify the generated signature. In order to prevent an eavesdropper to get
the signature on-line before the designated verifier receives it, they also proposed strong designated verifier
signature (SDVS). In this paper, according to an efficient SDVS proposed by Saeednia et al., we present a
post-quantum SDVS in the random oracle model based on lattice assumption. The unforgeability is based on
the hardness of the average-case hard problem R−SISq,n,m,β , which is at least as hard as worst-case SVPγ
over ideal lattices. In addition, compared with existing lattice-based SDVS schemes, our scheme cuts by
more than 50 percent repetitions and the size of signature is shorter with 256 bits security.

INDEX TERMS Designated verifier signature, lattice, post-quantum, SIS problem.

I. INTRODUCTION
With the development of digital signature schemes, more and
more signature schemes with special characteristics are con-
sidered, such as blind signature, ID-based signature, group
(ring) signature etc. In the cases of private bidding and auc-
tions, secret ballot elections etc, there is a question that how
to solve the contradiction between reliability and privacy.
Designated verifier signature scheme provided the answer.

In 1996, the designated verifier signature (DVS) was first
introduced by Jakobsson et al. [1]. It needs to satisfy a
particular property that only designated verifier can verify
the generated signature. Although the designated verifier can
produce a simulated signature which is indistinguishable with
the signer’s, he can’t convince others that the signer is the real
producer for some signatures.

Unfortunately, the first proposed DVS scheme can’t pre-
vent an on-line eavesdropper to get the signature before it is
received by designated verifier. And the signature is able to be
verified by a third party. Thus, a definition called strong des-
ignated verifier signature (SDVS) against this attack was also
proposed in [1]. In a SDVS scheme, verification step needs
the private key of verifier, hence no one except designated
verifier can verify it.

A. RELATED WORK
1) SDVS SCHEME BASED ON DISCRETE LOGARITHM
PROBLEM
In [1], Jakobsson et al. provided two feasible techniques for
making DVS to be a SDVS in transcripts. One way is to use
a probabilistically encrypted with the public key of intended
verifier; the other is to choose the symmetry encryption of
a session key. However, the latter one inevitably brings an
additional complex operation. In 2003, Saeednia et al. (SKM,
for short) [2] designed the first efficient SDVS which was
based on a merged applications of the Schnorr signature [3]
and the Zheng signcryption schemes [4], without using any
encryption or other operations. Thus, this scheme becomes a
basic framework in designing SDVS schemes.

Then many other SDVS were provided [5]–[9].
Specifically, in 2004, Laguillaumie and Vergnaud [9] gave
some new security definitions including unforgeability,
untransferability and privacy of signer’s identity (undele-
gateability). In 2007, Li et al. [8] showed undelegateability
of [9] was so strong that no SDVS existed and maybe it
was a controversial definition. Hence we don’t consider
this property in our scheme until a standard definition for
protecting privacy of signer’s identity is developed.
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Unfortunately, the schemes described above are based on
discrete logarithm problem, which can’t resist against quan-
tum adversaries. Hence more and more cryptographers begin
to design post-quantum cryptographic schemes.

2) LATTICE-BASED SIGNATURES WITH GAUSSIAN SAMPLING
AND UNIFORM SAMPLING
Generally speaking, the post-quantum cryptography sys-
tems mainly include lattice-based, code-based, multivariate
cryptosystems and homology-based on supersingular elliptic
curves cryptography.

Among of them, lattice-based cryptography has been
widely studied. In recent years, many efficient lattice-based
signature schemes were proposed [10]–[12]. From the view-
point of improvement tendency, cryptographers focus on how
to shorten the size of signature and times of rejection sam-
pling. They usually use compression technique to shorten
the signature size, where one can sign a message with high
bits of a random number. In order to lower the repetition,
people mainly utilize rejection sampling lemma and filtering
technique.

Rejection sampling lemma (see [12]) was first provided
in 2012, and the author gave a signature scheme with Gaus-
sian sampling. In addition, the rejection probability was
defined by min(f (z)/Mgv(z), 1), where f , g were gaussian
distribution, and v, z,M ∈ R. It is easy to see a low rejection
probability is depended on a small M . In 2013, Ducas et.al.
proposed bimodal gaussian (see [11]) to reduce the num-
ber M .

However, in 2016, it has been proved that, with discrete
Gaussian sampling technique, these schemes could lead to a
lot of potential side-channel attacks, even complete leakage
of private key [13], [14]. Although, one can design almost
perfect implementations to protect against some side-channel
attacks (see [15]), the intricacies make it an area where one
can easily make mistakes.

To make schemes resist above attacks, one may use filter-
ing techniquewith uniform sampling (see [16], [17]). The aim
of rejection sampling aspect is to protect the secret key. The
idea is the signer can select to output signatures by simply
checking whether those signatures fall in a fixed range or not.
Simply speaking, if we want to get a special number c =
a + b which can’t reveal anything about a secret number
a ∈ [−B,B] (here B presents a non-negative bound ), where
b ←R [−5B, 5B] is uniformly chosen, the range of c must
satisfies c ∈ [−4B, 4B]. Otherwise, we refresh b to make
the distribution of c independent on a. Rückert (see [18])
extended it to polynomial rings and gave a reject aborting
equation e1/8, where 8 ∈ N+. In a concrete scheme, 8 is
related to the size of signature more or less. Hence, determin-
ing its value needs to balance both of them.

3) LATTICE-BASED SDVS SCHEMES
As far as we know, The first lattice-based SDVS scheme [19]
was proposed by Wang et.al. in 2012. According to the
framework of SKM, they utilized the Bonsai trees and

pre-image sampling function primitives to construct the
SDVS. Its unforgeability and nontransferability were based
on SIS problem and LWE problem respectively, which were
proved in the random oracle model.

In 2013, Li et al. proposed a post-quantum SDVS [20]
according to lattice-based signature scheme [21]. The secu-
rity is based on SIS problem in the standard model,
and they also use pre-image sampling function. In 2016,
Noh and Jeong [22] provided a SIS-based SDVS scheme fol-
lowing from [19], and its security was reduced to the same
hard problems with [19]. It is proved in the standard model.

However, all of these schemes have several disadvantages
listed as follows:

• Gaussian sampling was used in their schemes, which is
unusual to resist side-channel attack.

• They were designed in regular lattices instead of ideal
lattice. Hence, this will inevitably bring larger size of
public key and signature.

• They used pre-image sampling function and Bonsai
trees, which will result in having fairly complex oper-
ations and large parameters.

• Since they focused on pure theoretical research, they
didn’t provide specific parameters of a real implemen-
tation in their schemes. In addition, no detailed com-
parisons were shown with other lattice-based SDVS
schemes.

B. OUR CONTRIBUTION
In this paper, we put forward a new efficient SDVS scheme
that is based on R−SISq,n,m,d problem in ideal lattice with
uniform sampling. Notice that our design is totally different
from above lattice-based SDVS in the aspect of constructions
of hard problem and sampling methods. In addition, we pro-
pose a new lemma (Lemma 1) to support the correctness of
our design and proof.

• Lower repetition and shorter size of signature. The
repetition of our scheme is 1.28 and the size of the sig-
nature is 42721 bits (16448 bits can be done using the
technology in [10]) with 256-bit security. Obviously, our
scheme has shorter signature size and repetition. There
are several reasons for this:

1) Our scheme is the first SDVS over ideal lattice
(R−SIS problem), and we don’t use Bonsai trees
and pre-image sampling. Hence we reduce the size
of pk , signature and communication cost.

2) We use a similar Fiat-Shamir framework [23]
which is always used in many lattice-based signa-
ture schemes [10]–[12], [16], [17] to improve their
efficiency. So our SDVS is efficient based on this
framework.

• Resisting side-channel attacks. We utilize uniform
sampling instead of Gaussian sampling which can effec-
tively resist side-channel attacks [13]–[15].

• Giving detailed parameters. We provide the detailed
parameters to show the lower size of pk , signature
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and communication cost in our SDVS. Moreover,
we also give comparisons with above lattice-based
SDVS scheme.

C. ORGANIZATION OF THE PAPER
We firstly introduce some definitions of SDVS, describe the
major design ideas of SKM lattices briefly and provide some
necessary hard problems and lemmas in Section II. Then we
show our detailed lattice-based SDVS scheme, its security
proof and comparisons of parameter in Section III. Finally
we present a conclusion and further work in Section IV.

II. PRELIMINARIES
A. STRONG DESIGNATED VERIFIER SIGNATURE
A SDVS scheme consists of four algorithms between signer
(Alice) and a designated verifier (Bob). The specific defini-
tion is as follows:
Definition 1: Given an integer n, a SDVS with security

parameter n is defined by the following:
• Setup: it is a probabilistic algorithm which takes n as
input. The outputs are the public parameters (PKa, SKa)
and (PKb, SKb) which belong to signer and designated
verifier respectively;

• Sign: it is a probabilistic (deterministic) algorithm
which takes a triple (µ, SKa,PKb) containing amessage,
a signing sk and a verifying pk as inputs. The output is
a designated verifier signature σ of message µ;

• Verify: it is a deterministic algorithm which takes
a quadruple (σ,µ,PKa, SKb) containing a bit string,
a message, a signing pk and a verifying sk as inputs, and
tests whether σ is a valid designated signature of µ with
the keys (PKa, SKa,PKb, SKb).

• Simulation: it is a probabilistic algorithm which takes
a quadruple (µ,PKa, SKb,PKb) as inputs. Anyone and
generate an indistinguishable signatures form those gen-
erated by the triple (µ, SKa,PKb).

A SDVS must satisfy the following secure properties.
1) correctness: a properly formed designated verifier sig-

nature must be accepted by the verifying algorithm.
That is, for all valid (PKa, SKa,PKb, SKb) and a mes-
sage µ, the equation holds:

VerifyPKa,PKb,SKb (SignPKa,PKb,SKa (µ)) = accept.

2) unforgeability: here we give a brief game of existential
unforgeable against adaptive chosen message attack
(EUF-CMA) [8] between a polynomially bounded
adversary A and a challenger C.
• The challenger C constructs valid pk and sk ,

(PKa,PKb, SKa, SKb)← setup(1n),

where n is the security parameter. Then C sends
(PKa,PKb) to the adversary A.

• A queries the signing oracle qs times (which is
polynomially bounded in n) at any time for mes-
sage µi. The challenger C answers his queries by
providing σi = Sign(PKa,PKb, SKa, µi).

• At the end of the game, we say that the adversary
is success if he outputs a new signature σ ∗ for
message µ∗ satisfying correctness equation and
µ∗ 6= µi.

For any polynomial time adversary A running above
game in time t , we say that a SDVS scheme is (t, ε)
EUF-CMA secure (unforgeability) if the below equa-
tion holds:

Pr[VerifyEUF−CMASDVS,A (σ ∗, µ∗) = accept] ≤ ε,

where ε > 0 is a negligible function of secure parame-
ter n.

3) untransferability: we also provide a game involving a
challenger C and a distinguisherD. C provides Sign and
Simulation algorithms to simulate the attack environ-
ment for the distinguisherD, thenD tries to distinguish
that a given output comes from the signer or designated
verifier.
• The challenger C produces valid pk and sk ,

(PKa,PKb, SKa, SKb)← setup(1n),

where n is the security parameter. Then C sends
(PKa,PKb) to D, and the left keys are kept secret.

• The distinguisher D queries the signatures for any
message µi. The challenger C answers them by
providing σi = Sign(PKa,PKb, SKa, µi).

• The distinguisher queries a new message µ∗.
C tosses a coin b ←R {0, 1}. If b = 0,
he runs Sign algorithm and returns σ ∗ =

Sign(PKa,PKb, SKa, µ∗). Otherwise, he runs Sim-
ulation algorithm and returns σ ∗ = Simulation
(PKa,PKb, SKb, µ∗).

• After receiving the challenging signature σ ∗, D
can query new messages expect for µ∗.

• At the end of this game,D outputs a bit b′ and wins
it if b = b′.

The advantage of D is defined as:

AdvCMASDVS,D = |Pr[b = b′]− 1/2|

We say that a SDVS scheme is untransferability against
a (t, qs) adaptively chosen message distinguisher D
if the value of the above equation is negligible after
querying qs signatures in time t .

In our paper, we will prove our scheme satisfies all of the
above secure properties according to these formal definitions.

B. SKM DESIGNATED VERIFIER SCHEME
The SKM scheme is based on DL problem, they assume: a
large prime pwith a prime factor q of p−1, a generator g ∈ Z∗p
with order q and a hash function h with values in Zq. And
all the initially common parameters are shared between the
participants Bob and Alice.
Each participant i chooses his secret key xi ∈ Zq and

publishes the corresponding public key yi = gxi mod p.
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1) SIGNATURE GENERATION
To sign amessageµ for Bob, Alice selects two random values
k ∈ Zq, t ∈ Z∗p and computes

c = ykb mod p,

r = h(c, µ),

s = kt−1 − rxa mod q.

The triple (r, s, t) is the signature of the message µ.

2) VERIFICATION
Bob checks the correctness of equation
h((gsyra)

txb mod p, µ) = r .
Obviously, the above verification equation contains the

private key of Bob, then only he can verify it. In addition, even
if anyone else who gets this secret key can behave the same
way as Bob to calculate the equation, he cannot show or prove
the signature actually comes from Alice. Apparently Bob is
able to produce indistinguishable transcripts.

3) TRANSCRIPT SIMULATION
Bob has the ability to simulate the signature. For example, he
selects s′ ∈ Zq, r ′ ∈ Z∗q at random and computes

c = gs
′

yr
′

a modp,

r = h(c, µ),

l = r ′r−1modq,

s = s′l−1modq,

t = lx−1b modq.

These values are substituted in the expression
(gsyra)

txb mod p to calculate c and get h(c, µ) = r .

4) SECURITY
If an adversary can generate a valid signature without
Alice’s or Bob’s secret keys, then he will have the ability
to solve Diffie-Hellman problem gxaxb in polynomial time
(see [2]).

C. LATTICES
Notation:We choose the quotient ringRq = Zq[x]/(xn+ 1),
where q is a polynomial-size prime number, n is a power
of 2 and elements in ring Zq are the integers in the range
[−q/2, q/2]. t−1 represents an invertible element inRq. The
statement x ←R D shows that x is chosen uniformly at
random from the finite set D. We will write Dk to denote
all elements ω ∈ Rq such that ‖ω‖∞ ≤ k . Particularly,
Bk means ω ∈ {−1, 0, 1}m such that ‖ω‖1 ≤ k . We
denote two random variables X ,Y over a discrete domain D,
and define the statistical distance of them as 1(X ,Y ) =
1/2

∑
a∈D |Pr[X = a]− Pr[Y = a]|.

The bold capital letters are matrices and bold small letters
are vectors, while normal fonts for integers and real. All vec-
tors are column-vectors unless otherwise noted. For a vector
v (a matrix S ), we denote by vT (ST ) its transpose, by ‖v‖

its Euclidean norm (`2 norm), and by ‖v‖∞ its infinity norm.
We let the `2 norm of the matrix is ‖S‖ = max ‖si‖ instead
of the minimum of eigenvalue [24], where si is each column
vector in S. h : {0, 1}∗→ {−1, 0, 1}m is a cryptographic hash
function hashing onto Bk (see [10], [12]).

Lattices are formally defined as discrete additive sub-
groups of Rm. We often represent them as L = BZn, n 6 m,
where B is a basis. In cryptography, integral lattices, i.e.
subgroups of Zm are usually considered.
One of the most common hard problems about lattice is

shortest vector problem (SVP). In fact, there are three variants
of SVP, depending on whether find the shortest vector (search
SVP), compute its length (optimization SVP), or decide if it
is shorter than some given number ( decisional SVP). And the
three above variants are essentially equivalent.

Particularly important to lattice cryptography is approxi-
mation problem SVPγ .
Definition 2: Given a basis B of n-dimensional lattice and

γ = γ (n), γ 6= 1, find v ∈ L(B) such that ‖v‖ ≤ γ ·

min‖v‖, which is called search approximate shortest vector
problem (SVPγ ).
Similarly, approximate problems also have three versions.

However, they are not equivalent, and whether the search
version is not harder than the optimization version is an
open question. Usually, the decisional version is denoted
GapSVPγ . The security of our scheme can be reduced to the
decision version.

D. HARD PROBLEMS IN OUR SCHEME
1) HARD PROBLEM OVER RING
Generally speaking, lattice-based cryptographic schemes
have large keys sizes, which mainly because the private
and public keys matrices have large dimension and every
entry in them is independent. Hence, People are beginning to
think about ways to reduce this independence. For example,
the matrix A ∈ Zn×mq can be generated by choosing its first
column a0 uniformly at random form Znq and the left n − 1
columns, a1, . . . , an−1 are the coefficient representation of
the polynomial a0xi in the ringZq[x]/(xn+1). The generation
of column an is the same as the first one. Repeat the previous
process and get the final matrix.

The ring Rq is also considered as the sub-ring of anti-
circulant square matrices where each ring element r ∈ Rq
can be regarded as a linear transformationx 7→ r · x over the
coefficient embedding ofRq. By constructing A like this, As
is equivalent to polynomial multiplications and additions in
the ring Zq[x]/(xn + 1). In 2006, references [25] and [26]
introduced a ring variant of SIS independently.

2) SPECIFIC HARD PROBLEM OVER RING
The construction of our scheme is based on R−SISq,n,m,d
which is a variant of R−SISq,n,m,β problem (see [12]).
Always we supposem ≥ 2n, then a randommatrixA ∈ Zn×mq
will contain n linearly independent columns over Zq with
high probability which is up to e−�(n) when q is a prime of
size at least 2m. First we give definition of R−SIS problem.
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Definition 3 [11]: LetR be some ring andK be some dis-
tribution over Rn×m

q , where Rq is the quotient ring R/(qR).
Given a random matrix A ∈ Rn×m

q following the distribution
K, find a non-zero vector v ∈ Rm

q such that Av = 0 and
‖v‖ ≤ β, which is denoted R−SISKq,n,m,β problem.
Then R−SISKq,n,m,d problem has a limitation s ∈

{−d, . . . , 0 , . . . , d}m such that As = t. Lyubashevsky [12]
has proven the decision SISq,n,m,d problem is harder with
increase of d , and there exists a polynomial-time reduction
from SISq,n,m,d decision problem to the `2−SISq,n,m,β prob-
lem under conditions m = 2n and 4dβ ≤ q.

In [26], it was shown that if the ring Rq = Zq[x]/(xn +
1), where q is a polynomial-size prime number, n is a power
of 2, then average case R−SISKq,1,m,β problem is as hard as
the worst case Õ(

√
nβ)−SVP problem for all lattices that are

ideals in R where K is the uniform distribution over R1×m
q .

In order to make our constructing correct and efficient,
we provide a new lemme in the next part.

E. A NEW LEMMA FOR THE DESIGN OF OUR SCHEME
Here, we give the below lemma to show the conclusion over
ring R2×m

q still holds. We provide the following lemma to
ensure the security of our scheme. Nowwe show the necessity
of constructing it, and then give a proof in detail.
• The design of square matrix is necessary. Since there
are operations of matrix multiplication in our scheme,
we need to design a square matrix to support multiplica-
tive property.

• The efficiency must kept. We don’t want to increase
the computation with the increase of its dimension.
Hence, we fill a general matrix A1 with zero matrix to
get a square form directly. Notice that doing like this,
the actual calculation isA1V1, and the expected result is
attained.

• The security must be ensured. By proving the lemma,
we can easily see that there is no change of the problem
itself. Furthermore, the norm of new solution to SIS
problem is equal to the original one. It means that this
special square matrix doesn’t impact on our security
assumption.

Lemma 1: If the ring Rq = Zq[x]/(xn + 1), where q is a
polynomial-size prime number, n is a power of 2 andm = 2n,
then R−SISKq,2,m,β problem is as hard as the Õ(

√
nβ)−SVP

problem for all lattices that are ideals in R where K is the
uniform distribution over R2×m

q .
Proof: We suppose A1 ∈ R1×m

q and v1, · · · , vn ∈ Rm
q

satisfy A1vi = 0 mod q, ‖vi‖2 ≤ β(i = 1, · · · , n). We
denote

A =
[
An×m
1

0n×m

]
, Vm×n

1 =
[
v1, · · · , vn

]
,

and

V =
[
Vm×n
1 , 0m×n

]
,

then, we verify that the value of AV mod q is zero
matrix or not. According to the multiplicative principle of

block matrices, we get

AV =
[
An×m
1

0n×m

] [
Vm×n
1 , 0m×n

]
=

[
(A1V1)n×n 0n×n

0n×n 0n×n

]
.

Since we have the known condition A1vi = 0 mod q, then
we get

A1
[
v1, · · · , vn

]
=
[
A1v1, · · · ,A1vn

]
= A1V1

= 0 mod q

Hence, AV = 0 mod q holds. By definition, ‖V‖ =
max ‖vi‖, where i = 1, · · · , 2n. However, according to the
construction of V, the values of i from n + 1 to 2n are 0.
Then we have ‖V‖ = max ‖vi‖ = ‖V1‖ = β. Since it
doesn’t change the length of the shortest vector, its security
also can be reduced to Õ(

√
nβ)−SVP problem without a loss

of problem gap. We finish our proof.
With the above proof and analysis, the unforgeability of

our scheme can be reduced toR−SISq,n,m,d problem, which
ensures the problem our design based on is also hard.

F. FILTERING TECHNIQUE OVER RING
In our scheme, we use uniform distribution over ring, and
the rejection sampling aspect is simply check whether the
individual coefficients of signature fall in a fixed range.
Lemma 2: [18] Let m = �(n), a,b ∈ Zm with arbitrary

a ∈ {v ∈ Zm : ‖v‖∞ ≤ A} and random b ←R {v ∈
Zm : ‖v‖∞ ≤ B}. Given B ≥ 8mA for 8 ∈ N+, we have
Pr[‖a− b‖∞ ≤ B− A] > 1

e1/8
− o(1).

This lemma tells us that if we choose random vector b
appropriately, the norm of a− b is constrained in a expected
range with high probability. Thus it can protect the secret vec-
tor (usually a). In our scheme, there is an important signature
process z = Sar+ kt−1, in which the signature z can be fell
within a range to hide the secret key Sa, as long as kt−1 is
reasonably assigned.

Besides, the final probability inequation in this lemma is
actually a formula of repetitions. If we want get a secure
domain for the signature z, we must repeat this process
e1/8 times. In addition, the value of 8 affects the size of
signature, thus how to determine it is an emphatic problem
(see Fig.1).

III. OUR CONSTRUCTION
In this section, we firstly go into details about our post-
quantum protocol in which it contains key-generation, sign-
ing, verification, simulation algorithms. Then we provide the
security proof according to our formal security definitions.
Finally, we list the parameters in our scheme.

Particularly, in the key-generation phase of our scheme,
we need construct a square matrix public key A, which can’t
add extra calculations. Hence, we use a obvious method that
is filling the square matrix with A ∈ Rn×m

q and 0n×m.
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Furthermore, the security of this structure is still proved
(see detailed Lemma 1). In signing and verification phases,
we using filtering technique (Lemma 2) over ring to get an
efficient scheme, which can resist side-channel attacks and
has lower repetition 1.28.

In order to shorten the signature size in Table 1, we uti-
lize a form of Module-SIS problem, then the final result is
16448 bits.

A. OUR SCHEME
1) KEY GENERATION
We now briefly sketch the key generation algorithm of our
designated verifier signature scheme. Here we firstly give
a description on regular lattice, then show a ring setting
on ideal lattice. There are two secret matrices Sa, Sb ∈
Dm×md (D = Z) with small coefficients. The reason we
choose such high dimensions (m × m) is that it can keep
matrix multiplications running smoothly. The public key
consists of the matrices A,Ya,Yb ∈ Zm×mq such that
ATSa mod q = Ya, ASb mod q = Yb respectively. Notice
that A is also a square matrix, and other schemes always
choose uniformly at random A ∈ Zn×mq . Nevertheless,
this will not increase the actually computational capacity
by the proof of lemma 1. In ring variants of our scheme,
we have A ∈ R2×m

q ,Si(i = a, b) ∈ Rm
q . In the following

algorithm, KeyGen, SigKey, VerKey, and RO represent key
generation, signing key, verification key and random oracle
respectively.

KeyGen:
SigKey: Si←R {−d, . . . , 0, . . . , d}m×m(i = a, b)
VerKey: A←R Zm×mq , Ya← ATSa,Yb← ASb
RO: h : {0, 1}∗→ {r : r ∈ {−1, 0, 1}m, ‖ r ‖1≤ η},

η is the Hamming weight of r.

(Sa,Ya) is Alice’s secret key and (Sb,Yb) belongs to Bob.

2) SIGNATURE GENERATION
Let β be a integer such that ‖Sar‖∞ < β with high probabil-
ity over the choices of Sa← Dm×md and r← Bη. Then Alice
computes

Sign:
1. t←R Dmγ (γ ≤ q)
2. if t is not reversible, then goto 1.
3. k←R Dmγ
4. c = YT

b kmod q
5. r = h(c, µ)
6. z = Sar+ kt−1

7. if ‖ z ‖∞≥ γ − β or ‖ Sar ‖∞> β, then goto 3.
8. output the signature (r, z, t) of message µ.

Notice that there are two rejecting steps, step 2 and step 7.
We now compute the probability step 2 and step 7 will not
result in a restart.

About step 2, we will refer to [27] for the invertibility of
parameter t. We give a simple description

Input : parameters N , σ, q and Bγ
Output : t
1. t← T (σ + 1, σ )
2. if t is not invertible mod q then goto step 1 end if
3. if ‖ t ‖1≥ Bγ then goto step 1 end
4. return t

Here, T (σ + 1, σ ) is a trinary polynomials of degree less
than N , where there are σ + 1 positive coefficients and
σ negative coefficients. If σ = 205, γ = 40, the above
process can be completed in 48.9ms (see [27]). Hence we
do not consider the probability of repetition in this step any
longer.

About step 7, the probability ‖z‖∞ ≥ γ − β(γ > 1/2)
can be computed by considering each coefficient separately.
Suppose each coefficient of Sar is δ, then the corresponding
coefficient of z will fall within −γ + β + 1 and γ − β − 1
when the coefficient of kt−1 falls within −γ + β + 1 − δ
and γ − β − 1 − δ. The size of this range is 2(γ − β) − 1
and the coefficient of kt−1 have 2γ − 1. Thus, the prob-
ability that every coefficient of kt−1 is in the good range
is

(
2(γ − β)− 1

2γ − 1
)m = (1−

β

γ − 1/2
)m ≈ e−mβ/γ

About β in step 7, ‖Sar‖∞ ≤ dη, then β ≤ dη. And by
the lemma 2, β must satisfy the inequations 8mβ ≤ γ .

3) VERIFICATION
Bob verities the equations

Verify:
1. h(c, µ) = h(STb (A

T z− Yar)tmod q, µ)
2. ‖z‖∞ ≥ γ − β

It is easy to see that the private key of Bob makes the
verification equation can be computed by him only.

4) TRANSCRIPT SIMULATION
Bob simulates the signature as follows. He randomly chooses
z′ and r′. Let

STb (A
T z− Yar)t = c = STb (A

T z′ − Yar′)mod q

We get equations

z = z′t−1,

r = r′t−1.

Compared to SKM designated verifier scheme, an impor-
tant part of the constructed signature, (z, r), doesn’t contain
Bob’s secret key here. Even so, it does not affect Bob’s ability.
Rather, we can see that anybody who gets the value of t
may produce a distinguishable view with Bob’s. This way,
it satisfies strong designated verifier scheme requirements
defined above.

VOLUME 7, 2019 3943



J. Cai et al.: Efficient SDVS Based on R−SIS Assumption

B. SECURITY
1) CORRECTNESS
Suppose Bob gets the signature σ = (r, z, t) formAlice, if the
condition ‖z‖∞ ≥ γ − β holds, then he computes

STb (A
T z− Yar)t = STbA

T zt− STbYart

= STbA
T zt− STbA

TSart

= STbA
T (z− Sar)t

= YT
b k mod q. (1)

Hence, the below equation holds,

VerifyYa,Yb,Sb (SignYa,Yb,Sa (µ)) = accept.

2) UNFORGEABILITY
Theorem 1: If an adversary A can generate a new valid

signature σ ∗ by the game of EUF-CMA in time t , then hemay
have the ability to solve theR−SISq,n,m,d search problem in
polynomial time.
Proof:We now prove that our scheme is (t, ε) EUF-CMA

secure (unforgeability).
Assume a PPT attacker A has an ability to produce a

signature σ ∗ = (r∗, z∗, t∗) which can be correctly verified
at the end of the EUF-CMA game, then he can compute the
following equation.

STb (A
T z∗ − Yar∗)t∗ = (STbA

T z∗ − STbYar∗)t∗

= (YT
b z
∗
− STbYar∗)t∗ modq (2)

As a matter of fact, the attacker can continue to calculate the
above equation, i.e.,

(YT
b z
∗
−STbYar∗)t∗(t∗)−1−YT

b z
∗
= YT

b z
∗
−STbYar∗−YT

b z
∗

= −STbYar∗modq, (3)

In fact, he can simplify −STbYar∗ further to −YT
b Sar

∗.
We note W = −YT

b Sar
∗ mod q, and so long as ‖Sar∗‖ ≤

β (0 < β < dη is polynomial in n), thereupon, he gets a
solution forR−SISq,n,m,d search problem.

To further discuss security, the Lemma 1 provides the
possibility which is polynomial-time reduction form this
average-case hard problem to the worst-case hard problem.

Summing up the above analysis, we get

Pr[VerifyEUF−CMASDVS,A (σ ∗, µ∗) = accept]

= Pr[W = −YT
b Sar

∗ mod q | ‖Sar∗‖ ≤ β]

≤ ε.

3) UNTRANSFERABILITY
Theorem 2: The above scheme is untransferability against

a (t, qs) adaptively chosen message distinguisher D, where
qs is the times of querying signatures in time t from
challenger C.

Proof: According to the definition of untransferability
game between the distinguisher D and challenger C, we now
prove the advantage of D is negligible. That is the equation
AdvCMASDVS,D = |Pr[b = b′]− 1/2| < ε holds.

Suppose distinguisher D has adaptively queried qs signa-
tures, then he queries a newmessageµ∗. C tosses a coin b←R
{0, 1}. If b = 0, he runs Sign algorithm and returns σ ∗ =
Sign(PKa,PKb, SKa, µ∗). Otherwise, he runs Simulation
algorithm and returns σ ∗ = Simulation(PKa,PKb, SKb, µ∗).
After receiving the challenging signature σ ∗, D can query
new messages expect for µ∗.
At the end of game, we will compute the advantage

of b = b′. Firstly, we prove the following distributions
are identical. Then we give the result. We let the left of
vertical bar represent the case b = 0 (Sign algorithm),
and the right part is the case b = 1 (Simulation algo-
rithm). Then we compute the probabilities of these cases:
k, t ∈ Dmγ z′, r′ ∈ Dmγ
r=h(YT

b kmod q, µ) r=h(STb (A
T z′ − Yar′)mod q, µ)

z=Sar+ kt−1 z=z′t−1

t=r′r−1

Let (r̃, z̃, t̃) be a randomly chosen signature in the set where
all valid signatures. Then we have the following probability
distribution equations:

Pr[(r, z, t) = (r̃, z̃, t̃)]

= Pr
k;t6=0

 r = h(YT
b kmod q, µ) = r̃

t = t̃
z = Sar+ kt−1 = z̃


=

1
γm(γm − 1)

(4)

Pr[(r, z, t) = (r̃, z̃, t̃)]

= Pr
z′;r′ 6=0

 r = h(STb (A
T z′ − Yar′)mod q, µ) = r̃

t = r′r−1 = t̃
z = z′rr

′
−1
= z̃


=

1
γm(γm − 1)

(5)

which means that both distributions of probabilities are the
same.

Since the probability is the same in the two case, we can see
distinguisher D can’t distinguish the signature query about
message µ∗ at the end of this game. That is to say, the below
equation holds.

AdvCMASDVS,D = |Pr[b = b′]− 1/2| < ε.

C. PARAMETERS
1) PARAMETERS OF OUR SCHEME
We let m = 2n to ensure that there exists a polynomial-
time reduction from solving the SISq,n,m,d decision problem
to the `2−SISq,n,m,β problem. η satisfies 2η · Cηm ≥ 2256

for which main reason is that (generally) one only needs
random oracle output λ bits for obtaining signatures with
λ bits security. According to the signature size discussion,
smaller 8 is better, but it can increase the repetitions. Thus,
taking into consideration of these characteristics, we set8 =
4. A simple analysis is given in appendix I later (see, Fig. 1).
Since η = 31, β ≤ dη, we let d = 1 so that making the
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TABLE 1. Parameters for 256 bits security.

value of β small enough, and then the signature size is also
sufficiently small.

The sizes of secret key and public key are in regular lattice
of our scheme, and if the secret key and public key are chosen
in ideal lattice, they exactly are m log(2d + 1) and mlog q.
See the table below for more details. Apparently the signature
size of our scheme is a little larger than the other general
lattice-based schemes in ideal lattices because of an extra
parameter t .

2) IMPROVED PARAMETERS
From Table 1, we can see the sizes of the sk, pk and signature
in our scheme typically rely on the parameter n. Notice
that our scheme doesn’t use module lattices or any other
compression techniques. If we utilize compression method
of [10], the signature length is small enough to use in practice.
Ducas et al. [10] presented the Module-SIS problem, where
k, l ≥ 1 (k, l ∈ Z) and Rq = Zq[x]/(xn + 1) (they choose
k = l = 4, n = 256 which is similar with the ring case
k = l = 1 and n = 1024) to ensure the same security
with 256 bits. Our construction is actually based on the case
k = l = 1. Ultimately, the signature length is 16448 bits
which is small enough, and the approximate value of pk is
213.5 bits.

We state any method which can reduce the size of param-
eter n under a certain security must reduce the sizes of the
sk, pk and signature in our scheme.

3) THE COMPARISONS
The size of our scheme is clearly larger than SKM based
on discrete logarithm problem. That is because lattice-based
schemes basically need choose a large parameter to ensure
security. Thus we don’t give a contrast of sizes for those
parameters anymore.

Additionally, since SDVS schemes [20], [22] are proved
the security in standard model which include more complex
operations, here we only show comparable parameters except
repetition in the following table with them.

Actually, in SDVS schemes Wang et al. [19], Li et al.[20],
and Boyen [21] must choose large parameters to use pre-
image sampling function and Bonsai trees with Gaussian

TABLE 2. Performance comparisons with 256 bits security.

FIGURE 1. Acceptation probability and repetition functions.

sampling. For example, they need to choose m � 2n,
which result in large signature size. In addition, we know that
as signature size increases, the repetition M also increases
with Gaussian sampling (see [11]). Since our scheme is
based on R−SIS assumption with uniform sampling, our
results of signature size and repetition are better than
others.

IV. CONCLUSION AND FURTHER WORK
Conclusion: In this paper, according to the first SDVS scheme
(SKM), we show an efficient lattice-based designated verifier
signature. Our scheme has shorter signature size and lower
repetition compared with other known lattice-based SDVS
schemes.
Further Work: We are certain that the sizes of parameters

in our scheme can be as short as existing lattice-based ones.
However, there are several meaningful points that need to be
focused on in the design aspect.

1) The generations of pk for Alice and Bob are a little
different, ATSa mod q = Ya, ASb mod q = Yb respec-
tively. We want to design them in the same form if we
can.

2) The definition of strong designated verifier scheme is
only qualified in SKM and ours. The privacy of sign-
ers identity (non-delegate-ability) is also a meaningful
definition SDVS (see [9]). We find the latter is actu-
ally show a description of witness indistinguishable of
knowledge for the signer. In the next stage we will
constructs a lattice-based witness indistinguishable of
knowledge protocol to reach the aim.

3) If the above failed, we continue to explore new frame-
works to design SDVS. And we try to give a proof
that one SDVS based on a combination of a signature
protocol and signcryption can not possibly satisfy the
above requirements.
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APPENDIX
We show the acceptation probability and repetition functions
in Fig. 1. Without loss of generality, we denote x and y
represent independent and dependent variables respectively.
We can see that the probability y is decreased first, and then
increase with increased x (repetition is opposite). If you just
see it from probability and repetition, the value of x is as
bigger as better. And in that case, probability and repetition
are close to 1.

Nonetheless, the size of our signature increases with the
increase of variable x. The expression can be simplified
log(22055x−25). Of course, people want to x, the smaller the
better, in order to shorten the size. For above reasons, wemust
make a trade off. So we only consider the part in which y is
more than 0.75 and less than 1.5. At this point, x need satisfy
condition x ≥ 4 and x = 4 should be most appropriate.
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