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ABSTRACT This paper presents a collision-free fuzzy formation control strategy of swarm robotic cyber-
physical systems (CPSs) using a robust orthogonal firefly algorithm (OFA). The classical FA is fused with the
Taguchi method and the ranking mutation process to present a hybrid artificial intelligence. This computa-
tional intelligence is employed with the fuzzy theory to develop optimal cyber and cognition levels in swarm
robotic CPS 5C architecture. With robotic sensors and actuators, the OFA-fuzzy-based cyber and cognition
levels are incorporated with the smart connection, data-to-information conversion, and configuration levels
to design a pragmatic swarm robotic CPS using system-on-a-programmable-chip technology. The broadcast
distributed control strategy and potential field are employed to address the formation control problem of
swarm robotic CPSs with obstacles. In the proposed swarm robotic CPS, the embedded central processing
unit, operating system, networking intellectual property (IP), and robotic custom IPs are integrated into
field-programmable gate array chips. The experimental results and comparisons with other methods show
the merits of the proposed swarm robotic CPS in achieving collision-free distributed formation control.

INDEX TERMS CPS, collision-free, robust, firefly algorithm.

I. INTRODUCTION
To date, CPSs have been of interest in both academia and
industry due to their potentially significant impact. A CPS
is regarded as the next generation of engineering systems
that integrates cyber computation, physical processes and net-
working via sensors and actuators in a feedback loop [1]–[3].
There are many software services, artificial intelligences and
engineering methodologies involved in CPSs to achieve sta-
bility, reliability, performance and efficiency in application
domains [4]. The overall design and deployment of a CPS
can be performed based on the typical 5C architecture: con-
nection, conversion, cyber, cognition, and configuration. This
5-level structure introduced in [5] not only provides a step-
by-step guideline for developing CPS applications, but also
defines the workflow from the initial data acquisition to the
final decision creation [5]–[7].

Among the world-changing applications of CPSs, swarm
robotic systems with multiple robots, advanced sensors,

actuators, processing units and networked communication are
some of the most important 5C CPS categories [8]. This
emerging research area has attracted much attention within
recent years because multi-robot CPSs offer many poten-
tial advantages, including greater flexibility, collaboration
and robustness. With networked communication and robotic
sensors/actuators, this kind of swarm robotic CPS has been
widely applied successfully to many disciplines for accom-
plishing complex tasks [9], [10].

In the increasing number of requests of swarm robotic
CPSs, collision-free formation control is one of the most
important issues and is becoming increasing crucial [8]–[10].
The purpose of a collision-free coordinated control for a
group of robots is to follow a predefined trajectory while
maintaining a specified geometrical pattern. This problem has
been addressed by several studies that consider the robot’s
model and graph theory [11]–[13]. However, consensus based
control using graph topology has the disadvantage of com-
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munication delays in formation control because the flow-
ing links are unidirectional between subsystems. This paper
presents an optimal OFA-fuzzy collision-free formation con-
trol method for a swarm robotic CPS to avoid the delay
problem in consensus formation controllers.

Optimization of fuzzy systems by considering the involved
parameters, such as membership functions and rule bases
has been one of the most investigated problems. Although
there are several studies proposed to cope with this opti-
mization problem [14]–[17], these traditional methods may
be trapped at a local optimum in solving multimodal fuzzy
optimization problems [17]. Among these approaches, evo-
lutionary fuzzy optimization using metaheuristic algorithms
is a new branch for optimizing fuzzy models [18], [19]. Some
popular evolutionary fuzzy systems have been developed for
improving the behavior of conventional fuzzy systems using
a genetic algorithm (GA), particle swarm optimization (PSO)
and any colony optimization (ACO) [18]–[21]. However,
there has been no attempt to present an orthogonal OFA-fuzzy
cyber computing to achieve collision-free formation control
of swarm robotic CPSs.

FA developed by Yang [22] is a recent nature-inspired
metaheuristic algorithm for global optimization. This swarm
intelligence mimics the flashing behavior and attraction char-
acteristics of fireflies in nature [23]. However, the classical
FA has the premature convergence issue for solving com-
putationally extensive engineering problems. Although some
modified and hybrid FAs have been proposed [23]–[25], these
studies neither qualify the FAs using the Taguchi method
nor employ a ranking mutation. This paper employs the
robust Taguchi method and mutation operation to improve
FA searching performance. The proposed orthogonal FA is
then applied to develop an OFA-fuzzy paradigm in the cyber
level to resolve the collision-free formation control problem
of swarm robotic CPSs.

Taguchi method introduced by Genichi Taguchi is a robust
statistical approach to optimize the process parameters and
improve the quality of manufactured components [26]. Based
on successful applications to engineering, marketing and
biotechnology, this approach has been applied to designmeta-
heuristic algorithms, including Taguchi based GA, Taguchi
based PSO and Taguchi based ACO, by using the signal-to-
noise ratio (SNR) and orthogonal array [27]–[29]. On the
other hand, mutation is regarded as a major operation to
explore decision spaces in evolutionary algorithms. Most
algorithms are designed with a fixed mutation probability,
thus leading to a local optimum [30], [31]. In this paper,
the robust Taguchi method and ranking mutation are fused
to design an OFA-fuzzy computing in the cyber level of the
proposed swarm robotic CPS. Moreover, the proposed OFA-
fuzzy online control scheme is realized in FPGA chips to
achieve the collision-free formation control of swarm robotic
CPS using SoPC technology. To the authors’ best under-
standing, the research of SoPC-based OFA-fuzzy collision-
free formation control for swarm robotic CPSs remains
open.

SoPC methodology by means of hardware/software code-
sign has contributed to a major revolution in designing
modern embedded CPSs consisting of processors and cus-
tom logic [32]. Based on the advantages of SoPC, all the
hardware circuits and software components can be realized
in one FPGA chip. This modern design method not only
provides a practical implementation for robotic CPSs, but
also improves the system performance, reliability, and cost
effectiveness [33]–[35]. The custom hardware modules pro-
vide real-time feedback and connection from/to the physical
world using sensors/actuators, and the software executed by
embedded processors offers programmable cyber sophisti-
cated algorithms in CPS 5C levels. This emerging embedded
CPS has attractedmuch attention due to its potential to greatly
accelerate a wide variety of applications.

The rest of this paper is organized as follows.
Section 2 introduces a swarm robotic CPS using OFA-fuzzy
optimization techniques. Section 3 elucidates the procedure
of how to apply the proposed OFA-fuzzy CPS to design
a networked swarm robotic CPS to achieve collision-free
formation control. Section 4 reports the results of several
experiments and comparative works to show the effectiveness
and merits of the proposed methods. Section 5 concludes this
paper.

II. EVOLUTIONARY SWARM ROBOTIC CPS WITH
OFA-FUZZY OPTIMIZATION
A. MODIFIED FIREFLY ALGORITHM
Firefly algorithm is a subfield of computational intelligence
motivated by the flashing pattern behavior of fireflies. When
applying FA to resolve multiobjective complex optimization
problems, an individual is defined as a firefly. The attractive-
ness of one firefly is proportional to the light intensity seen
by adjacent fireflies, which is expressed by

β(r) = β0e−γ r
2

(1)

where γ is the absorption coefficient, r is the distance, and
β0 is the attractiveness at r = 0.
The distance between any two FA fireflies i at xi and j at xj

is measured by the following Cartesian distance

rij =
∥∥xi − xj∥∥ =

√√√√ d∑
k=1

(
xi,k − xj,k

)2 (2)

where xi,k is the k th component of xi. The movement of a
firefly i attracted to another brighter firefly j is determined by

x t+1i = x ti + βe
−γ r2ij

(
x tj − x

t
i

)
+ αtε

t
i (3)

where t is an iteration counter and εti is a random number
vector at t . αt is given by

αt = α0δ
t , 0 <δ< 1 (4)

where α0 is an initial scaling parameter and δ is a cooling
factor in the FA.
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TABLE 1. OFA control parameters and their levels.

During the FA evolution for searching optimal solutions,
mutation is a major process to increase searching diversity
and explore decision spaces. This study adopts a rank-based
mutation strategy to overcome the limitations of the FA,
especially for complex and multidimensional optimization
solving. The mutation probability is determined based on the
individual’s fitness and its rank in the FA population. This
strategy balances the exploration and exploitation of the FA
searching space. In the proposed modified FA, the mutation
probability of each individual Pi with fitness value F(i) is
expressed by

Pi = Pmin +
rank(i)
P

(Pmax − Pmin)
Fave
F(i)

(5)

where P is the population size, and rank(i) is the fitness rank
of individual i in the population. Pmax and Pmin are the max-
imum and minimum FA mutation probabilities, respectively.
Fave denotes the average fitness value.

Parameter setting is an important issue in the design of
evolutionary algorithms. In the proposed modified FA, there
are six parameters, including γ , β0, α0, δ, and P as well
as the number of generations (Nfa). These parameters influ-
ence the FA convergence behavior. This study employs the
Taguchi method to qualify the FA parameters using the
L25(56) orthogonal array and small-the-better characteristic
SNR. Table 1 lists the control parameters and their levels in
the proposed evolutionary OFA computing paradigm.

B. OFA-FUZZY OPTIMIZATION
There are typically four parts in a fuzzy system, including
the fuzzifier, knowledge base, fuzzy inference engine and
defuzzifier. The fuzzy inference engine employs fuzzy IF-
THEN rules to perform a mapping from an input vector x =
[x1, . . . , xn]T ∈ Rn to an output variable y ∈ R. The output y
is computed as the weighted average of the rule consequent

y =

K∑
i=1
βi(x)yi

K∑
i=1
βi(x)

(6)

whereK denotes the number of rules, yi is the output variable,
and βi(x) is the degree of activation of the i th rule:

βi(x) =
n∏
j=1

µAij (xj), i = 1, 2, . . . ,K (7)

FIGURE 1. Structure of the proposed OFA-fuzzy optimization system.

where µAij (xj) is the membership function of the fuzzy set Aij
in the antecedent of Ri. In the proposed OFA-fuzzy optimiza-
tion, the membership function of the fuzzy set has a triangular
shape with the parameters ci and wi, where ci is the center
value of fuzzy sets and wi is the width. Two adjacent fuzzy
sets overlap by half.

Fig. 1 presents the structure of the proposed OFA-fuzzy
optimization system. The performance of such a fuzzy system
is influenced by the membership functions defined by the
center vector ci, width vector wi and the number of rules K .
To construct an optimal fuzzy structure, this tuning problem
is resolved via the OFA to improve the fuzzy performance.
Both the number of fuzzy rules andmembership functions are
considered in this study to evolve an optimal fuzzy system.
This OFA-fuzzy optimization outperforms conventional GA,
PSO and ACO fuzzy optimization methods by exploiting its
strong FA optimization capability.

In the proposed OFA-fuzzy optimization, a firefly is
defined by the fuzzy structure parameters, such that Firefly =
{ci,wi,K }. The initial fireflies of the FA population are ran-
domly generated and the optimal fuzzy model Firefly∗ =
{c∗i ,w

∗
i ,K

∗
} is evolved via the biological FA process. Typ-

ically, the fitness function using SNR is defined by the mean
square error (MSE) with NT sample to evaluate the candidate
solutions:

Fitness_SNR = −10 log

(
1
NT

NT∑
k=1

(
y∗p(k)− yp(k)

)2)
(8)

where yp(k) is the output in the k th sampling data and y∗p(k)
is the predicted output.

C. OFA-FUZZY BASED SWARM ROBOTIC CPS
Fig. 2 presents the realization of the proposed OFA-fuzzy
based swarm robotic CPS to achieve distributed formation
control using the 5C structure and leader-follower strategy.
All the robots communicate with each other via the wire-
less network. Having the advantages of distributed con-
trol approach, each mobile robot is implemented using
an independent 5C architecture. This study includes the
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FIGURE 2. Realization of the OFA-fuzzy based swarm robotic CPS.

four-wheeled redundant mobile robots with Swedish wheels
to construct the swarm robotic CPS.

As shown in Fig. 2, the advanced sensors such as rotary
encoders and ultrasound sensors are considered in smart con-
nection level to ensure real-time data acquisition from the
robotic physical world. The data-to-information conversion
level receives the sensed raw data and then converts it to use-
ful information, including position, orientation and distance.
With the important information from the leader robot and
follower robots, the cyber level performs intelligent analytics
by means of OFA-fuzzy computing and vehicle model. The
cognition level incorporates with the cyber level to make
decisions, and aims to achieve OFA-fuzzy optimal control.
Finally, the configuration level of each robot drives the DC
motors mounted on the omnidirectional wheels to perform
leader-follower collision-free formation control.

III. COLLISION-FREE OFA-FUZZY FORMATION CONTROL
A. MATHEMATICAL MODELING AND MOTION CONtrol
Fig. 3 depicts the geometry of the four-wheeled Swedish
mobile robots in the proposed swarm robotic CPS with 5C
levels. In the cyber level of robot modeling, the mathematical
model of the four-wheeled mobile robot is described by
v1(t)
v2(t)
v3(t)
v4(t)

 =

rω1(t)
rω2(t)
rω3(t)
rω4(t)

 = P(θ (t))

 ẋ(t)ẏ(t)
θ̇ (t)

 ,

P(θ (t)) =


− sin(δ + θ )
− cos(δ + θ )
sin(δ + θ )
cos(δ + θ )

cos(δ + θ )
− sin(δ + θ )
− cos(δ + θ )
sin(δ + θ )

L
L
L
L

 (9)

where δ is π/4; r denotes the radius of the driving wheel;
L represents the distance from the wheel’s center to the
geometric center of the Swedish mobile robot; vi(t) andωi(t),
i = 1, 2, 3, 4 denote the linear and angular velocities of each

FIGURE 3. Geometry of the four-wheeled Swedish mobile robot.

omnidirectional wheel; and [x(t)y(t)θ (t)]T is the pose of the
redundant omnidirectional mobile robot.

In robotics research, robots with four degrees-of-freedom
(DOF) are categorized as redundant robots because the num-
ber of DOF in the moving frame is three. To derive the inverse
kinematics of the mobile robots, it is required to obtain the
inverse matrix of P(θ (t)).Although the transformation matrix
P(θ (t)) in (9) is singular for any θ in this redundant omnidi-
rectional mobile robot system, its left pseudo-inverse matrix
P#(θ (t)) can be determined by means of P#(θ (t))P(θ (t)) = I ,
expressed by

P#(θ (t))

=


−sin(δ+θ )

2
cos(δ+θ )

2
1
4L

−cos(δ+θ )
2

−sin(δ+θ )
2

1
4L

sin(δ+θ )
2

−cos(δ+θ )
2

1
4L

cos(δ+θ )
2

sin(δ+θ )
2

1
4L


(10)

The pseudo-inverse matrix approach copes with the redun-
dant inverse kinematic problem of the four-wheeled mobile
robots. Combining (9) and (10), the following inverse kine-
matics of the redundant robots in multi-robot CPS is obtained ẋ(t)ẏ(t)

θ̇ (t)

 = P#(θ (t))


v1(t)
v2(t)
v3(t)
v4(t)

 (11)

This inverse kinematic model is practical for designing a
motion controller in the cognition level of each robot CPS
using the proposed OFA-fuzzy computational intelligence.

With the derived inverse kinematics model of mobile
robots, the next goal is to develop a motion controller and
prove its stability. By doing so, one defines the current pose
of the mobile robot Y =

[
x(t) y(t) θ (t)

]T and the desired
trajectory of the mobile robot Yd =

[
xd (t) yd (t) θd (t)

]T
.

Hence, the tracking error vector of the four-wheeled omnidi-
rectional mobile robot is expressed by

Ye =

 xe(t)ye(t)
θe(t)

 =
 x(t)y(t)
θ (t)

−
 xd (t)yd (t)
θd (t)

 = Y − Yd (12)
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which gives

Ẏe =

 ẋe(t)ẏe(t)
θ̇e(t)

 =
 ẋ(t)ẏ(t)
θ̇ (t)

−
 ẋd (t)ẏd (t)
θ̇d (t)



= P#(θ (t))


rω1(t)
rω2(t)
rω3(t)
rω4(t)

−
 ẋd (t)ẏd (t)
θ̇d (t)

 (13)

Obviously, the control goal is to find the controlled angu-
lar velocity vector

[
ω1(t) ω2(t) ω3(t) ω4(t)

]T to track the
differentiable trajectory

[
xd (t) yd (t) θd (t)

]T , such that the
closed-loop error system is globally asymptotically stable.
In this paper, the following redundant control law is proposed
to achieve motion control
v1(t)
v2(t)
v3(t)
v4(t)

 = P(θ (t))

−KP
 xe(t)ye(t)
θe(t)

− KI
∫ t0 xe(τ )dτ∫ t

0 ye(τ )dτ∫ t
0 θe(τ )dτ



−KD

 ẋe(t)ẏe(t)
θ̇e(t)

+
 ẋd (t)ẏd (t)
θ̇d (t)

 (14)

where the control matrices are diagonal and positive, meanly
that KP = diag[kxpkypkθp],KI = diag[kxikyikθ i], and
KD = diag[kxdkydkθd ]. Substituting (14) into (13) leads to
the closed-loop error system

Ẏe =

 ẋe(t)ẏe(t)
θ̇e(t)

 =
−KP

 xe(t)ye(t)
θe(t)


−KI

∫ t0 xe(τ )dτ∫ t
0 ye(τ )dτ∫ t
0 θe(τ )dτ

− KD
 ẋe(t)ẏe(t)
θ̇e(t)

 (15)

The asymptotical stability of the closed-loop error system is
proven by selecting the Lyapunov function

V (t) =
1
2

[
xe(t) ye(t) θe(t)

] xe(t)ye(t)
θe(t)


+

1
2

[ ∫ t
0 xe(τ )dτ

∫ t
0 ye(τ )dτ

∫ t
0 θe(τ )dτ

]
KI

×

∫ t0 xe(τ )dτ∫ t
0 ye(τ )dτ∫ t
0 θe(τ )dτ

+ 1
2

[
xe(t) ye(t) θe(t)

]
KD

×

 xe(t)ye(t)
θe(t)

 > 0

and its time derivative is

V̇ (t) = −
[
xe(t) ye(t) θe(t)

]
KP

 xe(t)ye(t)
θe(t)

 < 0

which shows that V̇ is negative definite, andBarbalat’s lemma
implies that Ye approaches zero as time tends to infinity.

TABLE 2. Fuzzy rule base of the OFA-fuzzy redundant controller.

The globally asymptotical stability of the closed-loop error
system is therefore ensured, meaning that Y → Yd as t →
∞. This result indicates that the proposed motion controller
is capable of steering the four-wheeled omnidirectional robot
to follow any differentiable and time-varying trajectory.

B. OFA-FUZZY ONLINE CONTROL
In the cognition level, an OFA-optimized fuzzy con-
troller is developed to online adjust the parameters
KP = diag[kxpkypkθp],KI = diag[kxikyikθ i] and KD =
diag[kxdkydkθd ]. The control matrices in (14) are online
adjusted at every sampling to achieve motion control in each
mobile robot CPS. This OFA online tuningmethod is superior
to conventional offline and hand-tuning approaches.

Considering the position and orientation errors of the OFA-
fuzzy multi-robot CPS with n robots, the objective function
(performance index) using SNR is defined by

Fitness_SNR=−10 log

[
we(

n∑
i=1

|xei|+|yei|+|θei|)+wr
n∑
i=1

Ni

]
(16)

where (xei, yei) and θei are the position and orientation errors
of the i th robot, respectively, and Ni is the number of
rule bases of the i th robot. Once the optimal fuzzy model
Firefly∗ = {c∗i ,w

∗
i ,K

∗
} is obtained via the proposed OFA

computing, this fuzzy optimization in the cyber level is uti-
lized to develop an OFA- fuzzy optimal controller in the cog-
nition level to accomplish formation control. The redundant
controller in the cognition level of each robot CPS online
tunes the control matrices KP,KI ,KD by using the fuzzy
rule bases. Table 2 lists the fuzzy rule base of the proposed
OFA-fuzzy robust motion controller in the cognition level of
the proposed swarm robotic CPS. The linguistic statements
NB (Negative Big), NM (Negative Medium), NS (Nega-
tive Small), ZO (Zero), PS (Positive Small), PM (Positive
Medium) and PB (Positive Big) are included to describe the
fuzzy rule base.

C. LEADER-FOLLOWER DISTRIBUTED FORMATION
CONTROL
Fig. 4 depicts the broadcast leader-follower formation control
of the swarm robotic CPS with three robots. The leader robot
moves along a predefined trajectory and the follower robots
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FIGURE 4. Broadcast leader-follower formation control.

FIGURE 5. Relationship of the leader and follower robots.

maintain the desired formation with respect to the leader
robot. All the robot CPSs are independently steered by using
the control scheme in (14), and the control parameters are
online tuned by means of the OFA-fuzzy paradigm. Note that
each mobile robot is equipped with an independent robotic
CPS in Fig. 2 to perform distributed formation control.

In the proposed leader-follower swarm robotic CPS, it is
very important to derive the relationship between the leader
robot and follower robot. As shown in Fig. 5, the geometrical
relationship is described by

xDL = LDL · cos(θDL)

yDL = LDL · sin(θDL) (17)

where (xDL , yDL , θDL) is the desired position and orientation
of the follower robot in formation control, and LDL is the
distance between the leader and follower in formation con-
trol. Furthermore, based on the coordinates of follower robot
in Fig. 6, one obtains the relationships:

xLF = LLF · cos(θLF )

yLF = LLF · sin(θLF ) (18)

xDF = xDL · cos(ϕ)+ yDL · sin(ϕ)+ xLF
yDF = −xDL · sin(ϕ)+ yDL · cos(ϕ)+ yLF (19)

where (xDF , yDF ) is the desired position of the follower
robot, LLF is the distance between the leader and follower,
(xLF , yLF ) is the position of the leader robot based on the
coordinates of the follower robot, θLF is the orientation of
follower robot with respect to LLF and ϕ = θFO − θLO is

FIGURE 6. Geometry of the leader-follower swarm robotic CPS.

the orientation of the follower robot with respect to the leader
robot. Moreover, it is easy to obtain the following relationship
in world coordinates:

θmF = tan−1
(
xLO − xFO
yLO − yFO

)
θmL = tan−1

(
xFO − xLO
yFO − yLO

)
θLF = θmF − θFO

θFL = θmL − θLO

(20)

where (xFO, yFO) is the position of the follower robot in
world coordinates, (xLO, yLO) is the position of the leader
robot in world coordinates, θFO and θLO are the orientations
of the follower robot and leader robot with respect to world
coordinates, respectively. θFL is the orientation of leader robot
with respect to LLF , θmL is the orientation of leader robot
with respect to the follower robot in world coordinates, and
θmF is the orientation of the follower robot with respect to
leader robot in world coordinates. The relationship of the
orientations ϕ, θLF and θFL is obtained as follows:

ϕ = θmF − θLF + θFL − θmL

= π − θLF + θFL (21)

Note that the orientation and distance are measured by sen-
sors in the connection level and are converted into useful
information in the data-to-information level to perform for-
mation control.

D. OBSTACLE AVOIDANCE USING ARTIFICIAL POTENTIAL
FIELD (APF)
Artificial potential field methods are rapidly gaining popu-
larity in obstacle avoidance applications for swarm robotic
CPSs. In this study, this methodology is combined with the
OFA-fuzzy control scheme to achieve collision-free forma-
tion control in the configuration space. Considering a swarm
robotic CPSwith n robots andM obstacles, the repulsive field
U of robot i is expressed by

U (qi) = U1(qi)+ U2(qi) (22)
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where qi is the configuration of robot i, U1 is the repulsive
potential from other robots and U2 is the repulsive potential
from obstacles, defined by

U1(qi)=


1
2
ς1

 n∑
i=1,i6=j

(
1

ρ(qij)
−

1
ρ0

)2
 , if ρ(qij) ≤ ρ0

0, if ρ(qij) > ρ0

U2(qi)=


1
2
ς2

(
M∑
k=1

(
1

ρ(qik )
−

1
ρ0

)2
)
, if ρ(qik ) ≤ ρ0

0, if ρ(qik ) > ρ0

(23)

where ς1 and ς2 are scalar gains that determine the influence
of the repulsive field, ρ(qij) =

∥∥qi − qj∥∥2 is the Euclidean
distance between qi and qj. qk,obstacle is the configuration of
the k th obstacle and ρ(qik ) =

∥∥qi − qk,obstacle∥∥2 is the dis-
tance between qi and qk,obstacle. ρ0 is the distance of influence
of an obstacle.

The corresponding repulsive force is given by the negative
gradient of the repulsive field,

Fi,rep(qi) = −∇U (qi) = Fi,rep1(qi)+ Fi,rep2(qi) (24)

where

Fi,rep1(qi) =


ς1

n∑
i=1,i 6=j

(
1

ρ(qij)
−

1
ρ0

)
1

ρ2(qij)
qi − qj
ρ(qij)

, if ρ(qij) ≤ ρ0

0, if ρ(qij) > ρ0

Fi,rep2(qi) =


ς2

M∑
k=1

(
1

ρ(qik )
−

1
ρ0

)
1

ρ2(qik )
qi − qk,obstacle

ρ(qik )
, if ρ(qik ) ≤ ρ0

0, if ρ(qik ) > ρ0

(25)

where Fi,rep1(qi) and Fi,rep2(qi) are the repulsive forces of the
i th robot due to other robots and obstacles in the configura-
tion space, respectively. The ultrasound sensors are mounted
on each mobile robot to detect the distance between the robot
and obstacles in CPS Level 1. These signals are then con-
verted to useful distance and APF force information using the
embedded CPU in CPS Level 2. With the formation control
scheme (14) and APF (22), the proposed OFA-fuzzy motion
controller in Level 4 determines the optimal commands to
steer the mobile robots to achieve collision-free formation
control.

E. SoPC REALIZATION
This subsection aims to implement the proposed networked
swarm robotic CPS in FPGAs using SoPC technology.
Fig. 7 presents the structure of the distributed leader-follower
swarm robotic CPS. In this distributed computing system,

FIGURE 7. Structure of the distributed swarm robotic CPS.

each mobile robot has an independent CPS and is imple-
mented in one FPGA chip. All the robotic CPS 5C levels are
integrated into one chip to provide close interaction between
cyber and physical worlds.

As shown in Fig. 7, each robotic CPS is a specialized
embedded system under real-time conditions. The embedded
CPUs act as central units in the 2nd conversion level, 3rd
cyber level and 4th cognition level to perform sophisticated
algorithms in cyber space, including OFA-fuzzy optimiza-
tion, robot modeling and redundant control. The CPS 1st
connection and 5th configuration levels bridge the physical
and cyber worlds, and they are realized by Verilog hard-
ware description language (HDL) and synthesized in the
same FPGA. This hardware/software codesign methodology
offers flexible software design and high-performance hard-
ware design in one chip.

This study utilizes an inexpensive DE1-SOC development
kit to implement the mobile robot CPS. This FPGA kit
presents a robust hardware design platform built around the
Altera system-on-chip (SoC) FPGA, which combines the
latest dual-core Cortex-A9 embedded cores with industry-
leading programmable logic for ultimate design flexibility.
The hard-core processor (hard processor system,HPS) is inte-
grated into each mobile robot CPS to perform complex com-
puting in the cyber, cognition and configuration levels. The
advanced microcontroller bus architecture advanced extensi-
ble interface bridge (AMBA AXI) interfaces tied seamlessly
with the peripherals and memory.

Fig. 8 presents the FPGA realization of each mobile robot
CPS in the proposed OFA-fuzzy swarm robotic CPS. The
Verilog HDL based robotic hardware IPs have been devel-
oped to interface with the cyber and physical worlds, such as
digital filters, QEP (Quadrature Encoder Pulse), PWM (Pulse
Width Modulation) and ultrasound modules. The QEP and
ultrasound modules convert the received signals from rotary
encoders and sonar sensors to perform data-to-information
conversion. The PWM module serves as the CPS 5th config-
uration level, and receives the output decisions made by the
cyber world computing to steer mobile robots in the physical
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FIGURE 8. FPGA implementation of each mobile robot CPS.

world to achieve distributed adaptive formation control. The
phase locked loop (PLL) and clock divider IPs are used to
provide different clock frequency sources in the mobile robot
CPS. The networking lightweight IP (lwIP) and embedded
Linux OS are integrated in the same Altera FPGA chip to
achieve broadcast networked communication.

IV. EXPERIMENTAL RESULTS, COMPARATIVE WORKS
AND DISCUSSION
A. ARCHITECTURE of the SWARM ROBOTIC CPS SYSTEM
Fig. 9 presents the architecture of the FPGA-based hybrid
OFA-fuzzy swarm robotic CPS used to examine the effective-
ness of the proposed methods. There are three four-wheeled
omnidirectional mobile robots with Swedish wheels in the
leader-follower multi-robot CPS architecture, including one
leader-robot and two follower robots with the parameters:
L = 0.25m, r = 0.0508m. In the proposed SoPC-based
swarm robotic CPS, each robot is equipped with a battery,
an FPGA development kit, DC motors, sonar sensors and
Swedish wheels under wireless networked communication.
This embedded realization using hardware/software codesign
provides a cost-effective hybrid OFA-fuzzy optimization for
designing swarm robotic CPSs.

B. FORMATION CONTROL WITH OBSTACLE AVOIDANCE
The following experiment was conducted to verify the effec-
tiveness of the proposed OFA-fuzzy distributed formation
control with obstacle avoidance. Fig. 10 depicts the exper-
imental setup of the formation control. The desired cir-
cular trajectory is expressed by

[
xd (t) yd (t) θd (t)

]T
=[

1.5 cos(ωit)m 1.5 sin(ωit)m π /2 rad
]T
, ωi = 0.35rad/sec.

for the leader robot, and an obstacle is placed in the working
space. The two follower robots aim to maintain the triangular
formation while the leader robot tracks the desired trajectory.

Fig. 11 presents the experimental results of OFA-fuzzy
collision-free formation control. The three mobile robots
are initially set at different poses. The leader robot in the
swarm robotic CPS tracks the collision-free path and the two

FIGURE 9. Architecture of the OFA-fuzzy multi-robot CPS.

FIGURE 10. Experimental setup for the OFA-fuzzy distributed formation
control.

FIGURE 11. Experimental results of OFA-fuzzy formation control.

followers maintain the triangular formation. The tracking
error of leader robot is depicted in Fig. 12. The formation
errors of the swarm robotic CPS are presented in Fig. 13.
The two follower robots maintain the shape while the leader
robot avoids the obstacle. These experimental results demon-
strate that the proposed FPGA-based hybrid OFA-fuzzy
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FIGURE 12. Tracking error of the leader robot in the multi-robot CPS.

FIGURE 13. Formation errors of the follower robots.

optimization is capable of accomplishing collision-free for-
mation control via the 5C levels of swarm robotic CPSs.

C. COMPARATIVE WORKS
The comparative works are utilized to present the merits of
the proposed OFA-fuzzy metaheuristics over other conven-
tional methods in designing formation controller of swarm
robotic CPSs. Compared with the offline computing, the pro-
posedOFA-fuzzy optimization in the cognition level ofmulti-
robot CPSs reveals the advantage of real-time online tuning.
In particular, this study adapts SoPC technology to imple-
ment such an intelligent robotic system, thus presenting an
inexpensive distributed swarm robotic CPS. Furthermore, the
broadcast networked communication strategy circumvents
the difficulty of the delay problem in conventional consensus
formation control of multi-robot CPS.

Moreover, in order to demonstrate the superiority of
the proposed cyber OFA-fuzzy computing over conven-
tional evolutionary methods in designing multi-robot CPSs,
this approach has been compared with the performance of
GA-fuzzy and PSO-fuzzy paradigms for the same task.
Fig. 14 compares the performance for achieving collision-
free formation control using GA-fuzzy, PSO-fuzzy and

FIGURE 14. Comparative work of the OFA-fuzzy optimization and
conventional methods to achieve collision-free formation control.

OFA-fuzzy computing methods with the same fitness func-
tion in (16). Fig. 14 shows that the proposed cyber OFA-fuzzy
optimization is superior to the GA-fuzzy and PSO-fuzzy
approaches because it converges to the optimummore quickly
and avoids the premature convergence. Through these exper-
imental results and comparative works, the proposed hybrid
metaheuristic OFA-fuzzy optimization outperforms the con-
ventional methods for designing swarm robotic CPS to
achieve collision-free formation control.

V. CONCLUSION
This paper has presented a collision-free fuzzy formation
control method of swarm robotic CPSs using the robust
OFA computing. The bio-inspired OFA-fuzzy computing is
utilized to develop optimal cyber and cognition levels in
swarm robotic CPS 5C architecture.With the physical signals
from/to robotic sensors/actuators, the OFA-fuzzy based cyber
and cognition levels are incorporated with smart connection,
data-to-information conversion and configuration levels to
design a pragmatic multi-robot CPS using SoPC technology.
The proposed broadcast robotic CPS avoids the communica-
tion delay in conventional consensus multi-robot CPSs under
a directed network topology. Experimental results and com-
parativeworks demonstrate themerits of the proposed FPGA-
based OFA-fuzzy swarm robotic CPS to achieve distributed
collision-free formation control.
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