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ABSTRACT Kinematic parameters’ calibration is a powerful method to improve the accuracy of the
robot. This paper proposes an effective kinematic self-calibration method for dual-manipulators based on
virtual constraints to estimate the actual kinematic parameters of the robots. This method only needs a
camera mounted on one robot end-effector (EE) and a calibration target attached to another robot EE.
First, a new calibration error model based on the straight line constraint is established to formulate the
positions’ misalignment error with the kinematic parameters’ error. Then, the particle swarm optimization
algorithm is developed to generate the optimal calibration poses of the robots under the constraints, which
are used to ensure the poses feasible and the measurement errors acceptable. Finally, the kinematic parameter
errors are identified with the Levenberg–Marquardt algorithm. The experiments of the kinematic parameters’
calibration with the dual-manipulators system are designed. The experimental results showed that the high
positional accuracy of both robots can be achieved.

INDEX TERMS Kinematic calibration, dual-manipulators, virtual constraint, PSO.

I. INTRODUCTION
Cooperating manipulators will be applied in more fields in
the future. They are more efficient and allowed to perform
complex tasks that exceed the capability of one robot. With
more applications of the dual-manipulators on contact tasks,
a higher request to the positioning accuracy of the robot is
brought forward. During the cooperation process, even small
poses error could lead to a large contact force between the
robots and environment. For the dual-manipulators, except
for the base frame calibration [1], [2] which is used to
calibrate the relationship between the base frames of the two
robots, improving the absolute positioning accuracy of each
manipulator is extremely important.

Traditionally, the pose of the robot EE is calculated
based on the kinematic model. The accuracy of the robot
is largely depends on the kinematic parameters. However,
the kinematic parameters are not accurate due to the man-
ufacturing and assembly tolerance. The kinematic calibra-
tion methods for the dual-manipulators are usually same
as those for the single manipulator by calibrating each

manipulator respectively. The calibration methods can be
divided into two categories: open-loop and close-loop.

In the open-loop methods, the actual poses of the robot
relative to the base frame are measured by some devices. The
high precision apparatuses were used at first, such as coor-
dinate measuring machines [3], laser tracking interferometer
systems [4], telescoping ball-bar [5] and other customized
fixtures. These apparatuses are expensive, complicated to
operate and time consuming. Moreover, the installation and
operation of these measurement machines are restricted in
some specific environments, such as harsh industry environ-
ment, space [6] and underwater [7].

Nowadays, the vision-based calibrationmethods have been
developed because cameras are cost efficient and easy to
use. The actual poses of the robot are estimated based on
cameras which are attached to the robot EE or located in
the workspace. Meng and Zhuang [8] proposed a vision-
based self-calibration method, only image sequences of
a calibration object and a ground-truth scale are needed.
Du and Zhang [9] designed an efficient and automatic
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approach to estimate the robot poses from the corners posi-
tions of a calibration board. Zhang et al. [10] realized online,
automatic robot calibration by a stereo camera mounted on
a fixed location in the environment and a planar marker
attached to the robot EE. In these vision-based calibration
methods, the accuracy of the camera parameters and/or hand-
to-eye relative poses would have an effect on the robot cal-
ibration result. Additionally, the vision-based robot poses
estimationmethods usually suffer from the inaccurate camera
depth information.

The closed-loop methods are promising methods which
are based on the joint angles only and do not require
the actual endpoint pose measurement. In these methods,
the physical contact constraints, including single endpoint
constraint [11], planar constraint [12], distance and sphere
constraints [13], are imposed on the end of the robot. Then a
closed kinematic chain is formed by the manipulator which is
redundant with respect to its endpoint constraint [14]. How-
ever, these methods suffer from the inaccuracy positioning.
Moreover, it is difficult to ensure that the robot EE fits the
constraints exactly.

In order to improve the calibration methods based on the
physical contact constraints, the concept of virtual constraint
is put forward. Newman and Osborn [15] relied on the vir-
tual straight line constraints which are provided by a laser
beam. The calibration process was done by an optical detec-
tor mounted on the end of the robot centered on the laser
line at sampled positions. An acceptable robot positioning
accuracy was achieved at last. Gatla et al. [16] proposed a
virtual closed kinematic chain method that a laser pointer tool
attached to the robot EE was used to aim at a fixed object.
Yin et al. [17] defined a Tool Center Point (TPC) in the
structural model of a laser sensor, and aligned the TPC to
a reference point to satisfy the endpoint constraint using a
camera attached to the robot EE. Du et al. [18] constructed a
virtual point and sphere constraints to calibrate the kinematic
parameters using two fixed cameras and a position sensitive
device (PSD). The calibration methods based on the virtual
constraints are easy to implement, and the calibrate process
could be executed automatically. Nevertheless, the employ of
multi-tools in these techniques, such as laser device, camera
and PSD, complicates the calibration process.

The dual-manipulators and multi-manipulators system
should be calibrated on-site and the relative location between
the twomanipulators need to bemaintained. Thus somemeth-
ods that need specific calibration environment are not suit
for the dual-manipulators. There are some researches about
improving the accuracy of multi-robots recently. Except
for the base-base calibration of dual-manipulators or dual-
machines [2], [19]–[21], some researches are related to the
kinematic parameters calibration and joint offset calibration.
Bonitz and Hsia [22] introduced a method to determine the
joint offset vector and the transformation matrix between
the two robot base frames. A closed kinematic chain was
formed by bolting calibration plates which are attached to
the two manipulators EE together. Qiao et al. [23] proposed

a calibration method to identify the exact kinematic parame-
ters without using the nominal parameters. Zhao et al. [24]
proposed a united kinematic calibration method for a
dual-machine system in the drilling and riveting tasks. Both
absolute and relative pose accuracies are improved. How-
ever, the current research on the dual-robots calibration is
inadequate. It is extremely needed to come up with a high-
precision calibration method for dual-manipulators which is
inexpensive, easy-to-perform, and only requires few external
devices which are easily available.

In this paper, a new kinematic parameters calibration
method is developed based on the optical axis virtual con-
straints, combining the advantages of vision-based calibra-
tion method and virtual constraints based calibration method.
In the case of the kinematic parameters of both manipulators
are inaccurate, the calibration can be done using a camera
and a common calibration target only. It is inexpensive and
easily available because many robots have equipped with a
camera to perform vision-based tasks. Comparedwith the real
constraint calibration methods, this method is based on con-
tactless constraint. In this way, the calibration errors engen-
dered by structure deformation and contact error could be
reduced. Before the robot kinematic calibration, the camera
intrinsic parameters should be calibrated using the calibration
algorithm [25]. The relative pose between the two manipu-
lators and the rotation matrix between the active robot EE
and camera are approximated roughly. These parameters are
used in the proposed method to make the calibration process
completed automatically.

The major contributions of the proposed method are shown
as follows: (1) a new kinematic error model based on the
straight line constraint is established to formulate the posi-
tions misalignment error with the kinematic parameters error.
The actual poses of the robot are unnecessary in this error
model. (2) The constraints are analyzed to limit the measure-
ment errors related to camera resolution, and optimization
strategy is designed to generate the optimal poses of the two
robots. (3) A position alignment algorithm is designed based
on the visual control method. Then the calibration process can
be accomplished automatically and only need few operator
supervision. (4) The experiments verify that the proposed
method can improve the accuracy of both robots.

The remainder of the paper is organized as follows.
Section II introduces the scheme of the proposed kinematic
calibration method. Section III establishes a new kinematic
error model. The optimal poses generation algorithm is pre-
sented in Section IV. Then Section V describes the poses
alignment method and kinematic parameters identification
algorithm. Section VI evaluates the accuracy improvement
of the dual-manipulators by conducting experiments. Finally,
discussion and conclusion are given in Section VII and
Section VIII respectively.

II. SCHEME OF THE KINEMATIC CALIBRATION METHOD
Figure 1 shows a dual-manipulators system. Simple assistant
devices, a camera and a calibration target, are used to calibrate
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FIGURE 1. The basic configuration for the dual-manipulators during the
calibration process.

the two manipulators. The first calibrated robot is called
passive robot, and the other one is called active robot. The
calibration target is attached to the end of the passive robot.
The center corner of the calibration target is regarded as the
visual feature point fp. The camera is rigidly fixed on the end
of the active robot. The direction of the optical axis lk can
be changed by controlling the pose of the active robot. After
finishing calibrating the passive robot, the roles of the passive
and active robots are exchanged to calibrate the other robot.

The process of kinematic parameter calibration for each
manipulator can be divided into four steps and the scheme
of the proposed kinematic parameter calibration method is
shown in Fig. 2.

1) Kinematics calibration modeling. A new kinematic
error model based on the straight line constraint is
established to formulate the position alignment error
with the kinematic parameters error. The alignment
error is defined as the difference between the nominal
value of the different positions of fp.

2) Desired poses generation. In order to make the poses of
the robots feasible and the measurement errors accept-
able, four constraints related to the robots and camera
are considered. An observation index is used to define
the robot optimal calibration poses. Then the PSO algo-
rithm is developed to generate the optimal poses.

3) Actual positions alignment. Because of the kinematic
parameters error and other errors of the dual-robots
system, the feature point are not strictly on the optical
axis when the two robots both reached the desired
poses. The image-based visual control method is
applied to control the passive robot and make the fea-
ture point move to the optical axis automatically.

4) Kinematics parameters identification. The joint angles
of the passive robot are recorded when the feature point
is on the optical axis. Then the misaligned errors are
calculated. Based on the established kinematic error
model, the kinematic parameters errors are identified
using the LM algorithm.

III. KINEMATIC ERROR MODEL
The kinematic error model is the basis of the kinematic
parameters calibration process. A new kinematic error model
based on straight line constraint is established in this section.

A. KINEMATIC MODEL
The kinematic model for calibration is used to formulate the
relationship between the joint angles and the poses of the
robot EE, which should meet three rules: model complete-
ness, parameter minimality and model continuity [26]. Gen-
erally, the classic DH method is applied for robot kinematic
modeling. In the DH method, however, the kinematic model
is not continuous for the robots which possess parallel or near
parallel joint axes.

Several kinematics models were proposed to solve this
problem. Zhuang et al. [27] introduced a complete and para-
metrically continuous (CPC) model, added two parameters
to make the model complete and continuous. The modified
complete and parametrically continuous (MCPC) model was
proposed to simplify the CPC model [28], while the com-
pleteness and continuity characteristics are retained. Con-
sidering the zero-error and joints angle error separately,
a calibration error model based on the Product of Expo-
nentials (POE) formula is proposed [29], which improved
the calibration accuracy. Hayati [30] proposed an improved
DH model, which is intuitive and simple. An additional
parameter is added to describe the deviation between the
parallel axes. In this paper, the improved DH modeling
method is applied to establish the kinematics error model
firstly, which is sufficient for the robots calibration. The
complicated model transformation could be avoided because
the robot kinematics are mostly established based on the
DH model.

For the N -DOF serial manipulator, the continuous trans-
formation matrix from the base coordinates to the end coor-
dinates can be represented by

0TN = 0T1 ·
1T2 · ... ·

N−1TN =
N∏
i=1

i−1T i, (1)

where i−1T i is the transformation matrix from the i-1th link
coordinates to the ith link coordinates. If the adjacent joint
axes are nearly parallel, the homogeneous transformation
matrix i−1T i is expressed as

i−1T i

=


cθicβi − sθisαisβi −sθicαi cθisβi + sθisαicβi αicθi
sθicβi − cθisαisβi cθicαi sθisβi − cθisαicβi αisθi
−cαisβi sαi cαicβi di

0 0 0 1

.
(2)
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FIGURE 2. The scheme of the kinematic parameter calibration method.

If not, the homogeneous transformation matrix i−1T i is
expressed as

i−1T i =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 0

, (3)

where the joint angle θi, link offset di, link length ai, link twist
αi and rotation angle βi are the kinematic parameters of theith

link.

B. ERROR MODEL BASED ON STRAIGHT
LINE CONSTRAINTS
Define the actual and nominal transformation matrix from
the base coordinates to the robot EE coordinates as 0T ′N
and 0TN respectively. The relationship between them can be
represented by

0T ′N =
0TN +10TN =

N∏
i=1

(i−1T i +1i−1T i), (4)

where 1i−1T i is defined as the error transformation matrix
from the i-1th link coordinates to the ith link coordinates, and
it can be expressed as

1i−1T i =
∂ i−1T i
∂θi

1θi +
∂ i−1T i
∂di

1di +
∂ i−1T i
∂ai

1ai

+
∂ i−1T i
∂αi

1αi +
∂ i−1T i
∂βi

1βi, (5)

where 1θi, 1di, 1ai, 1αi, 1βi are the errors between the
actual and nominal kinematics parameters.

Expanding (4) and ignoring the high-order terms of the
equation’s right side, the error matrix 10TN can be approxi-
mated as

10TN =
N∑
i=1

(0T1 . . .
i−2T i−11i−1T iiT i+1 . . . N−1TN )

=
0TN δ0TN , (6)

δ0TN =


0 −δrz δry δpx
δrz 0 −δrx δpy
−δry δrx 0 δpz
0 0 0 0

. (7)

δpe = [δpxδpyδpy]T and δre = [δrxδryδrz]T are the
translation and rotation errors respectively expressed in the
robot EE frame.

Combining (5), (6) and (7) we can get[
δpe
δre

]
=

[
Mθ

Rθ

]
1θ +

[
Md
0

]
1d +

[
Ma
0

]
1a

+

[
Mα

Rα

]
1α +

[
Mβ

Rβ

]
1β, (8)

where 1θ = [1θ11θ2 · · ·1θN ]T ,1d = [1d11d2 · · ·
1dN ]T ,1a = [1a11a2 · · ·1aN ]T ,1α = [1α11α2 · · ·
1αN ]T ,1β = [1β11β2 · · ·1βN ]T .
Mθ ,Md ,Ma,Mα,Mβ ,Rθ ,Rα,Rβ are 3 × N matrices

related to the nominal kinematic parameters and joint angles.
The linear Equation (8) can be rewritten in Jacobian

notation[
δpe
δre

]
=

[
JP
JR

]
1ϕ,

1ϕ =
[
1θ 1d 1a 1α 1β

]T
,

J =
[
JP
JR

]
=

[
Mθ

Rθ
Md
0

Ma
0

Mα

Rα
Mβ

Rβ

]
.

(9)

The optical axis of a camera is a virtual straight line which
is passing through the lens center and perpendicular to the
mirror surface. Based on the straight line constraint, the kine-
matics error model is developed.

The calibration target attached to the passive robot EE is
seemed as a passive link of the robot, and it is modeled in
the robot kinematic model. fp is supposed as the origin of the
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FIGURE 3. The positions of feature point in different frames.

passive robot EE coordinates. Let P ′(i,k)e be the ith actual posi-
tion of fp which is located on the k th straight line constraint.
The corresponding nominal position is P(i,k)

e , which can be
calculated by (1). From (6) and (9) we can get

1Pe = 0RN · δpe, (10)

δPe = JP ·1ϕ. (11)

From (10) and (11), the position error 1P(i,k)
e can be

written as

1P(i,k)
e = P ′(i,k)e − P(i,k)

e =
0RNJP1ϕ, (12)

where 0RN is the nominal orientation transformation matrix
from the robot base frame to the EE frame.

The actual and nominal positions of the feature point are
shown in Fig. 3. P(k)

c is the original point of the camera
coordinates. P ′(i,k)e and P ′(j,k)e are the two actual positions of
the feature point on the optical axis lk . The corresponding
nominal positions are P(i,k)

e and P(j,k)
e , respectively. P(i,k)

e and
P ′(i,k)e can be expressed as

P(i,k)
e = s(i,k)µk + v

(i,k)
+ P(k)

c , (13)

P ′(i,k)e = s′(i,k)µk + P
(k)
c , (14)

where µk is the vector of the optical axis lk . The transversal
component of P(i,k)

e is v(i,k), which is perpendicular to lk .
The longitudinal component of P(i,k)

e is s(i,k)µk . Likewise,
the longitudinal and transversal components of P ′(i,k)e are
s′(i,k)µk and zero matrix respectively.
Substituting (13) and (14) into (12), we have

(s(i,k) − s′(i,k))µk + v
(i,k)
= −

0RNJP1ϕ. (15)

Define the cross product matrix [µk×] as ∀N ∈ R3
:

[µk×]N = µk×N , and notice that [µk×]µk=0.Multiplying
[µk×] to both sides of (15) we have

[µk×]v
(i,k)
= −[µk×]

0RNJP1ϕ. (16)

We can obtain two equations by writing (16) for two posi-
tions P(i,k)

e and P(j,k)
e on the same optical axis lk . Subtracting

these two equations side by side, we have

[µk×]
(
v(j,k) − v(i,k)

)

= [µk×]
[
0RN (θ )JP(θ )|θ=θ (i,k)m

−
0RN (θ )JP(θ )|θ=θ (j,k)m

]
·1ϕ. (17)

It is obvious that the deviation between the two different
nominal positions of fp is related to the kinematic parameters
error. The deviation E(i,j,k) is called misaligned error, which

is defined in (18). And the deviation J̄
(i,j,k)

is called error
Jacobian matrix , which is defined in (19).

E(i,j,k)
= [µk×]1P

(i,j,k)
= [µk×]

(
v(j,k) − v(i,k)

)
(18)

J̄
(i,j,k)

= [µk×]

×

[
0RN (θ )JP(θ )|θ=θ (i,k)m

−
0RN (θ )JP(θ )|θ=θ (j,k)m

]
.

(19)

Then (17) can be expressed as

E(i,j,k)
= J̄

(i,j,k)
1ϕ. (20)

Suppose that there are q straight line constraints and fp is
expected to align to each optical axis at p sampled positions.
For all the positions of fp we have the following equation

E=81ϕ, (21)

E=
[
E(1,1,1)T ,...,E(p−1,p,1)T ,...,E(1,1,q)T ,...,E(p−1,p,q)T

]T
,

(22)

8=

[
J̄
(1,1,1)T

,...,J̄
(p−1,p,1)T

,...,J̄
(1,1,q)T

,..., J̄
(p−1,p,q)T

]T
.

(23)

Based on the error model in (21), the kinematics parame-
ters error1ϕ can be identified. Note that the nominal position
alignment error rather than the actual position of the feature
point is used in the error model, the actual positions do not
need to be measured. Moreover, the longitudinal component
of the nominal position is not included in the error model.
So the depth information of the camera has no influence on
the parameters calibration result.

IV. GENERATION OF DESIRED POSES
FOR TWO MANIPULATORS
In order to make the calibration poses feasible and improve
the calibration accuracy, four constraints and an optimization
index are considered in this section. Then the PSO algorithm
is designed to get the optimal poses of the two manipulators.

A. CONSTRAINTS ANALYSIS
1) WORKSPACE BOUNDARY
The poses of the robots are infeasible when the robots out
of their reachable workspace. The robots is within their
workspace when all the joints are not beyond the joint limits.
Define a joint limit index IL as

IL=1/min
i<n

(Dθi ), Dθi=min(‖θi−θmin i‖ , ‖θmax i−θi‖),

(24)
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where θi is the angle of the ith joint, θmin i and θmax i are the
minimum and maximum joint angles respectively that the
ith joint can reach.

The larger the index IL , the more infeasible the pose. So the
workspace boundary constraint is defined as

C1 : IL(θ (i,k)) ≤ ILmax, (25)

where ILmax is the maximum acceptable joint limit index.

2) SINGULARITY
In order to make the movement trajectory of the two manipu-
lators continuous, the desired poses should avoid the singular
configurations of the robot. The distance between the robot
pose and the singular configuration is used to quantify the
feasibility of the pose. Define an singularity index IS as

Is = 1/λmin(Jθ ), (26)

where λmin(Jθ ) is the smallest singular value of the Jacobian
matrix Jθ , and it can be used to describe the trend of the
singularity. The pose is close to the singular configurations
when λmin is close to 0.

So the larger the index IS , the more infeasible the pose. The
feasibility constraint is defined as

C2 : IS (θ (i,k)) ≤ IS max, (27)

where IS max is the maximum acceptable singularity index.

3) FEATURE POINT VISIBILITY
The feature point fp should always be visible during the cali-
bration process. The visibility of fp is related to the orientation
and position of the calibration target πf .
The visibility is the best when πf is perpendicular to lk .

Define the orientation visibility index Iv as

I (i,k)v = cos(θ (i,k)v ), (28)

where θv is the visibility angle between lk and the normal
of πf . The visibility is the best when Iv = 1, while the feature
point is completely invisible when Iv ≤ 0.
The orientation visibility constraint is defined as

C3 : 1 ≥ I (i,k)v ≥ Ivmax, (29)

where Ivmax is a constant ranging from 0.7 to 1. It can be
determined from experiments.

Additionally, the distance between πf and the camera
should be long enough to make πf always in the camera’s
view during visual control process.

The distance visibility constraint is defined as

C4 : D(i,k)
=

∥∥∥P(i,k)
e − P(k)

c

∥∥∥ ≥ Dmin, (30)

where D(i,k) is the distance between the feature point and the
original point of camera coordinates, P(i,k)

e is the position of
the feature point, P(k)

c is the original of camera coordinates,
and Dmin is a constant that related to the size of πf and the
camera parameters.

FIGURE 4. The schematic diagram of pinhole imaging.

4) VISUAL CONTROL RESOLUTION
Visual control method is used to control the feature point
move to the optical axis automatically. The performance of
the visual control relies on the resolution of the camera. The
pixel difference (1uf ,1vf ) between the image coordinate of
fp and the optical axis is

(1uf ,1vf ) = (uf , vf )− (u0, v0), (31)

where (uf , vf ) is the pixel coordinate of fp, (u0, v0) is the pixel
coordinate of the center point of optical axis. In the calibration
process, it is regarded that fp has aligned to the optical axis
when (1uf ,1vf ) is within a certain range (1umax,1vmax),
which is the visual control resolution error in the digital
image. The corresponding resolution error in the real world
can be calculated based on the pinhole imaging principle of
camera.

As shown in Fig. 4, 6c is the camera coordinates, and the
direction of z-axis is parallel to the optical axis. Suppose that
the projection of the pixel (1umax,1vmax) on the image plane
51 is ABCD, and the corresponding area in the environment
52 is A′ B′ C′ D′. The position of B in the coordinates 6c is
(x1, y1, z1), where z1 = f is the focal length of camera. The
corresponding position of B′in the environment is (x2, y2, z2).
The relationship between B(x1, y1, z1) and B′(x2, y2, z2) can
be formulated as

x1
f
=
x2
z2
,

y1
f
=
y2
z2
. (32)

In the visual control process, B(x1, y1, z1) is known, which
can be calculated based on the camera parameters and pixel
coordinate (1umax,1vmax). Then (x2, y2) can be obtained
based on (32). For the feature point which is on the optical
axis, z2 is equal to the distance D(i,k) which is shown in (30).
The visual control resolution constraint can be expressed as

C5 : D(i,k)
≤ Dmax,Dmax = zmax = min(

x2maxf
x1

,
y2maxf
y1

),

(33)

where x2max and y2max are the maximum acceptable visual
control errors when fp is on the optical axis. They should be
less than the repeatability error of the robot.
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B. OPTIMIZATION OF THE POSE
The calibration quality of the kinematic parameters depends
on the choice of calibration poses. From the kinematic
error model, we can see that the larger the determinant of
the identification Jacobian matrix J, the smaller the cal-
ibration error. An observability index can be defined to
evaluate the optimality of the calibration configurations.
Joubair and Bonev [31] proved that the observability index
O1 is most likely the best criterion to yield the best calibration
results, which can be expressed as

O1 =
(σ1σ2 . . . σm)1/m

√
m

, (34)

where σi(i = 1, 2 . . . ,m) is the singular value of J, σ1 ≥ σ2 ≥
· · · ≥ σm ≥ 0. Larger value of O1 yields better calibration
result.

C. PSO ALGORITHM DESIGN
The constraints and the observability index considered above
make the selection process of the optimal poses complex
because it is highly nonlinear. It can be formulated as a
constrained optimization problem that the desired poses Pθ
should satisfy all constraints C1(i = 1, 2, 3, 4) and make the
observation index O1 largest

Pθ = {θ (i,k), i ≤ p, k ≤ q} = argmin
cj(j=1,2,3,4)

(
1
O1

). (35)

In order to solve this problem, the PSO algorithm is
designed in this work. In the PSO algorithm, N particles
are included in a particle swarm and each particle has q
sub-particles corresponding to q directions of the optical axis.
The process of the robots optimal configurations generation
based on the PSO algorithm can be divided into four steps,
and the flow chart is shown in Fig. 5.

1) The particle X j is initialized with a random vector and
it is defined as

X j = [X (1)T
Sj , . . . ,X (q)T

Sj ], (36)

X (k)
Sj = [µ(k)T

j ,P(k)T
cj ,Q(1,k)T

j , . . . ,Q(p,k)T

j ]. (37)

The sub-particle X (k)
Sj (k = 1, 2, . . . , q) belongs to the

particle X j,which contains the information about the
p poses aligned to lk of the passive robot. µ(k)

j (k =
1, 2, . . . , q, j = 1, 2, . . . ,N ) is the vector of the optical
axis lk , P

(k)
cj is the original point of the camera coor-

dinates, and Q(i,k)
j (i = 1, 2, . . . , p) is the orientation

of the passive robot EE. They are all described in the
passive robot base frame and used to express the poses
of both robots. The position of the feature point fp is
calculated by

P(i,k)
ej = P(k)

cj + (D+ iDstep)µ
(k)
j , (38)

where Dstep is the desired distance between the two
adjacent positions of fp. D is the distance between the
original point of camera and the last position of fp

FIGURE 5. The flow chart of robots optimal configurations generation
based on the PSO algorithm.

aligned to lk . So the constraints C3 and C4 can be
always achieved by setting appropriate Dstep and D.

2) During each searching process, the fitness function fob,
the best position of the particle Xbi and the best posi-
tion Xbest of all particles are updated to evaluate the
particles. where fob is expressed as

fob =
1
O1
=

√
m

(σ1σ2 . . . σm)1/m
. (39)

Then the particles move to Xbi and Xbest with respect
to the following updating equations

V j(t + 1) = wV j(t)+ L1η1(Xbj(t)− X j(t))

+L2η2(Xbest (t)− X j(t)), (40)

X j(t + 1) = X j(t)+ V j(t + 1), (41)

where V j(t) and X j(t) are the velocity and position
of the ith particle at the t th iteration. ω is the inertial
factor. L1 and L2 are the positive constants of learning
factors. η1 and η2 are the random constants between
0 and 1.

3) Check if the position X j(t) satisfies the constraints
C1 and C2 after each iteration. If not, the particles
which are violating C1 and C2 should be updated
again.

4) The optimal desired poses of both robots can be
obtained.
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V. KINEMATIC PARAMETERS CALIBRATION
Because of the nominal kinematic parameters error and other
errors of the robots system, the feature point fp is not on
the optical axis lk when both robots reach the desired poses
generated above. The image based visual control method is
an ideal method to control the passive robot to make fp move
to lk automatically. After fp has coincided with the optical
axis from all the desired poses, the misaligned error E in
the kinematics error model is calculated. Then the kinematics
parameters error vector1ϕ is identified using LM algorithm.

A. POSES ALIGNMENT BASED ON VISUAL
CONTROL METHOD
As shown in Fig. 6, the feature point should move to the
optical axis from the generated positions.

FIGURE 6. The schematic diagram of the feature point move to the
optical axis.

Based on the perspective projection principle of camera,
the ideal coincidence criteria is that the pixel coordinate
(uf , vf ) of the feature point coincides with the principle point
(u0, v0) of image and the pixel difference (1uf ,1vf ) is (0,0).
The actual distance between the position of fp and µk is
defined as d . The goal of the visual control method is to make
the distance d reduce to 0 gradually.
The scheme of the image based visual control method

is illustrated in Fig. 7, which consists of an image feature
control outer loop and a robot control inner loop. In the outer
loop, the actual pixel coordinate (uf , vf ) of the feature point
is obtained based on the corner detection algorithm. Then
the deviation between (uf , vf ) and (u0, v0) is calculated and
converted into the position deviation of the passive robot
based on the pose adjustment strategy. In the inner closed
loop, the desired pose of the passive robot is translated into
the joint angles using the nominal inverse kinematics. Then
the passive robot is controlled to reach the desired poses using
the joint position controller.

In the pose adjustment strategy, the position deviation
1Pbpf of the passive robot is calculated by

1Pbpf = Rbpc 1P
c
f = Rbpc

 (uf − u0)zf
/
kx

(vf − v0)zf
/
ky

0

. (42)

The rotation matrix Rbpc can be calculated by

Rbpc = RhcR
ba
h R

bp
ba, (43)

where Rbah is the rotation matrix from the active robot EE to
the active robot base, which can be obtained based on the
forward kinematic model. Rhc relates the camera to active
robot EE, and Rbpba relates the active robot base to passive
robot base. Rhc and Rbpba are approximated roughly using the
measurement device in advance.

The intrinsic parameter matrix M in of the camera is
also needed, which is calibrated by the camera calibration
method [25] before the robot calibration process.

M in =

 kx 0 u0
0 ky v0
0 0 1

. (44)

Because the visual control system is closed-loop,
the parameters kx , ky, zf and R

bp
c in (42) are not required to

be accurate completely. The pose of the passive robot can be
adjusted to make the feature point align to the optical axis
gradually and automatically.

B. PARAMETERS IDENTIFICATION
The joint angles of the passive robot are recorded when fp
is on the optical axis at all of the sampled position. The
nominal positions P(i,k)

e (xi, yi, zi) of the passive robot can be
further calculated using the nominal kinematic parameters
and the saved joint angles. The optical axis vectorµk (m, n, 1)
is estimated by P(i,k)

e based on the least square method

[
m x0
n y0

]
=


p∑
i=0

xizi
p∑
i=0

xi
p∑
i=0

yizi
p∑
i=0

yi




p∑
i=0

z2i
p∑
i=0

zi
p∑
i=0

zi p


−1

.

(45)

After estimating the optical axis vector µk , the misaligned
error E(i,j,k) can be calculated based on (18). Notice that[
µk×

]
µk = 0, from (13) and (18) we can have

E(i,j,k)

= [µk×]
(
v(j,k) − v(i,k)

)
= [µk×]

(
(s(j,k)µk+v

(j,k)
+P(k)

c )−(s(i,k)µk+v
(i,k)
+P(k)

c )
)

= [µk×]
(
P(j,k)
e − P(i,k)

e

)
(46)

As the optical axis vector µk and the nominal positions
P(i,k)
e and P(j,k)

e are all obtained, E(i,j,k) can be calculated
using (46). Then the misaligned error matrix E could be
obtained based on (22).

In order to make the approximated vector µ̂k more accu-
rate, µ̂k and 1ϕ are estimated in a recursive way. That is
to say, µ̂k is updated based on the updated positions of the
passive robot iteratively, until the calibration error is small
enough. The calibration error ε can be calculated as follows

ε =
(
(E−81ϕ̂)T (E−81ϕ̂)

) 1
2
. (47)
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FIGURE 7. Scheme of the image based visual control method.

FIGURE 8. The kinematic calibration system with two Reinovo
manipulators.

Then the LM algorithm is used to identify 1ϕ. At the t th

iteration, the estimated 1ϕ̂(t) is updated as

1ϕ̂(t) = (8(t)T8(t)+ λLM (t)I)−18(t)TE, (48)

where I is an identity matrix, λLM (t) is the LM parame-
ters, λLM (0) ∈ [0.001, 0.1]. The updated λLM (t + 1) at
i + 1th iteration is shown in (49), the scalar h ranges from
2 to 10.

λLM (t + 1) =
{
λLM (t)/h, ε(t) < ε(t − 1)
λLM (t)/h, ε(t) ≥ ε(t − 1).

(49)

VI. EXPERIMENTS
A. EXPERIMENT ENVIRONMENT
In order to verify the proposed robots calibration method,
experiments are performed with a dual-manipulators cali-
bration system. As shown in Fig. 8, the system consists of
two Reinovo 6-DOF industrial manipulators, a Bumblebee
CCD camera and a calibration target. The Reinovo robot
has a repeatability accuracy of 0.1 mm. The camera with
1024H × 768V resolution and 3.8 mm focal length is fixed
on the active robot flange rigidly. A 4 × 4 chessboard as the
calibration target is attached to the passive robot flange and
its fifth corner is served as the feature point fp. In the current
configuration, robot 1 is the active robot and robot 2 is the
passive robot. The local frame of the Reinovo robot in the
initial configuration is illustrated in Fig. 9.

FIGURE 9. The local frames of the Reinovo robot in the initial
configuration.

The calibration target is considered as the link 7 of the
passive robot, which is also modeled in the robot kinematic
model. The nominal kinematic parameters of both robots are
shown in Table 1 and Table 2 respectively. The calibrated
camera intrinsic parameter matrixM in is:

M in =

 kx 0 u0
0 ky v0
0 0 1

 =
 834.31 0 513.56

0 833.38 403.95
0 0 1


TABLE 1. The nominal kinematic parameters of robot 1.

B. GENERATION OF THE DESIRED POSES
Before generating the desired poses of the robots, the base-
base relative pose b1Tb2 and hand-eye relative pose cTh
should be approximated roughly. The used Bumblebee cam-
era is a binocular camera, and we just use one eye in the
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TABLE 2. The nominal kinematic parameters of robot 2.

experiment. In this experiment, the right eye of the camera
is used, the relative poses b1Tb2 and

cTh are approximated by
the following homogeneous matrix respectively

b1Tb2 =


−1 0 0 1.2
0 −1 0 0
0 0 1 0
0 0 0 1

,

cTh =


1 0 0 −0.6
0 1 0 0.6
0 0 1 0.26
0 0 0 1

.
In the process of the desired poses generation, the con-

straints are set as follows

C1 : IS (θ (i,k)) ≤ IS max, IS max = 10,

C2 : IL(θ (i,k)) ≤ ILmax, ILmax = 18/π,

C3 : 1 ≥ I (i,k)v ≥ Ivmax, Ivmax =

√
3
/
2,

C4 : D(i,k)
≥ Dmin,Dmin = 0.3m,

C5 : D(i,k)
≤ Dmax,Dmax = 0.6m, (50)

where the minimal distance between each joint angle and
its limit in C1 is min

i<n
(Dθi ) = 10◦, the acceptable smallest

singular value in C2 is set as λmin = 0.1 and the visibility
angle in C3 is set as −30◦ < θv < 30◦.
There are totally 35 parameters expected to be identified

for each robot. According to (19), each misaligned error
E(i,j,k) with three components is provided by every two robot
positions. So at least 12 misaligned errors, which are calcu-
lated from six different passive robot positions, are needed
to obtain the unique solution of the parameters. In order to
improve the estimated accuracy of the optical axis vector,
more configurations of the robots are required. Five optical
axis in different directions and 10 poses aligned to each
optical axis are generated for each robot.

Using the PSO algorithm, the optimal desired poses under
the given constraints are generated. The swarm size is 10.
The algorithm run 5 times and 100 iterations each time
to search the best fitness value. In order to make the
generated poses satisfy the constraints C4 and C5, the max-
imum distance between the calibration target and the cam-
era is set as Dmax = 0.5m, the distance between the
neighboring poses of the passive robot aligned to one opti-
cal axis is set as Dstep = 0.02m. In the five running,

the best fitness value achieved at each iteration is shown
in Fig. 10.

FIGURE 10. The fitness during each run of the PSO algorithm.

It can be seen that the best fitness fob best = 1.6 × 104

during the PSO process is achieved in the first running. The
generated optimal poses of both manipulators at the best
fitness are depicted in Fig. 11. Note that the directions of
the optical axis are different, and the desired positions of
the passive robot has covered most of the robot workspace.
So the particular problem of the desired positions is
avoided.

C. CALIBRATION PROCESS AND RESULTS
With the generated poses, there are 50 different measure-
ments for each robot. These data are divided into two sets:
30 measurements are used to be the calibration set, and the
remaining 20 measurements are used to be the validation set.

The steps of the measurement process for each robot is:
1) Move the active robot to the desired position.
2) Move the passive robot to the corresponding desired

position. Control the passive robot by the visual control
method to make the feature point move to the optical
axis of the camera automatically.

FIGURE 11. The optimal desired poses generated at the best fitness for
the dual-robots.

VOLUME 7, 2019 7777



Q. Zhu et al.: Kinematic Self-Calibration Method for Dual-Manipulators Based on Optical Axis Constraint

3) Save the joint angles of the passive robot.
4) Repeat step 2) - 3) until the feature point has aligned to

the current optical axis at 10 positions.
5) Repeat step 1) - 4) until the 50 measurements had done.
During the visual control process, a calibration interface

program is designed to detect the feature point and control
the feature point move to the optical axis automatically. The
approximated base-base relative pose b1Tb2 of the robots and
the hand-eye relative pose cTh are used to adjust the pose of
the passive robot. The image in the view of camera before and
after the visual control is shown in Fig. 12(a) and Fig. 12(b),
respectively. The center of the red circle is the principle point,
and the center of the green one is the actual position of fp.
The pixel differences (1uf ,1vf ) between fp and the optical
axis reduced from (−5.87, 13.04) to (−0.01, 0.07). Generally,
it costs 1 minutes during fp moving from each generated
position to the optical axis. Experiments show that the feature
point can align to the optical axis automatically.

FIGURE 12. The image plane in the view of camera: (a) before the visual
control; (b) after the visual control.

It is considered that fp has aligned to the optical axis
when the pixel differences (1uf ,1vf ) between them is less
than (0.1, 0.1). According to the parameters of the cam-
era, the maximum visual control error ed is calculated by
Equation (51), it is acceptable because it is less than the
repeatability accuracy of the robot.

ed =
(
x22max + y

2
2max

) 1
2
=0.087mm. (51)

The snapshot of the system while fp is on an optical axis at
different positions is shown in Fig. 13. The red dotted line is
the virtual constraint which are constructed by the optical axis
of the camera. The colored solid circle points are the positions
of fp when it is on the optical axis.

Then the kinematic parameters errors are identified using
the LM method. The calibration process is continued after
exchanging the passive and active roles of the two robots.
The estimated kinematic parameters errors of both robots are
shown in Table 3 and Table 4 respectively.

With 10 positions of the feature point aligned to each
optical axis, there are 45 misaligned errors corresponding
to each optical axis. For the 30 calibration measurements,
there are totally 135 misaligned errors for each robot. After
the kinematic parameters are calibrated, the misaligned errors
are recalculated by the calibrated kinematic parameters. The
comparative result before and after calibration of the mis-
aligned errors of the two robots are shown in Fig. 14. For the

FIGURE 13. The snapshot of the system while the feature point is on an
optical axis at different positions.

TABLE 3. The kinematic parameters errors of robot 1.

TABLE 4. The kinematic parameters errors of robot 2.

robot 1, the average misaligned error reduced from 2.22 mm
and 0.33 mm, which decreased by 85.14%. For the robot 2,
the average misaligned error after calibration reduced from
2.28 mm to 0.25 mm, which was a 89.04% decrease.

The misaligned errors of both robots after calibration are
much less than those before calibration. In order to further
illustrate the efficiency of the proposedmethod, we compared
the calibration results with the robot calibrationmethod in [9]
and [17]. The best result in [9] is reduced from 7.33 mm
to 1.53 mm. According to the calibration result in [17],
the misaligned error before calibration is less than 0.8 mm
and the misaligned error after calibration is 0.105 mm. The
comparison of calibration result is shown in Table 5.

It is demonstrated that the result in this paper is better
than those in [9] and almost as well as the result in [17].
Compared with [17], our method does not need the laser
stripe generator, which makes the calibration more cheap and
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FIGURE 14. Misaligned errors with three optical axes before and after
calibration of: (a) robot 1; (b) robot 2.

TABLE 5. The comparison of calibration results with method [9] and [17].

easy to perform. Another advantage of the proposed method
is that the robot can be calibrated automatically.

Then the remainder 20 measurements which are different
from the experiment data are used to verify the calibrated
result. The misaligned errors before and after calibration are
calculated based on the nominal and calibrated parameters
respectively. The comparison results of the two robots are
shown in Fig. 15. As we can see, the mean values of the mis-
aligned errors of robot 1 reduced from 1.95 mm to 0.58 mm
and those of robot 2 reduced from 2.48 mm to 0.67 mm.

As a consequence, the calibration method has improved the
accuracy for both robots.

FIGURE 15. The comparative results with two optical axes of: (a) robot 1;
(b) robot 2.

D. ROBUSTNESS OF THE PROPOSED METHOD
In order to demonstrate the robustness of the proposed
method, two more experiments are built by changing the
base-base relative pose b1Tb2 and hand-eye relative pose

cTh.
The relative poses are approximated to b1T ′b2 and cT ′h
respectively in the second experiment, and they are approxi-
mated to b1T ′′b2 and

cT ′′h in the third experiment.

b1T ′b2 =


−1 0 0 1
0 −1 0 0
0 0 1 0
0 0 0 1

,

cT ′h =


1 0 0 −0.6
0 1 0 −0.6
0 0 1 0.26
0 0 0 1

,
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b1T ′′b2 =


−1 0 0 1.1
0 −1 0 0.2
0 0 1 0
0 0 0 1

,

cT ′h =


1 0 0 −0.6
0 1 0 0.6
0 0 1 0.26
0 0 0 1

.
In the second experiment, the left eye of the camera is used.

It is important to notice that the distance between the two
robot bases should not be too far nor too close, otherwise
the constraints Ci(i = 1, · · · , 5) would not be satisfied.
After changing b1Tb2 and cTh, the desired optimal poses of
the robots need to be re-generated using the PSO algorithm.
In each experiment, two directions of the optical axis and
10 poses aligned to the optical axis in each direction are
generated.

In the comparison experiments, only Robot 1 is calibrated.
After the feature point are aligned to the optical axis, the joint
angles of the passive robots at each alignment position are
saved. Using the nominal and calibrated kinematic param-
eters respectively, the corresponding positions of the pas-
sive robot can be calculated based on the forward kinematic
model. According to (44), the misaligned error E before and
after calibration can be calculated. The comparison results of
the misaligned error in the second and third experiments are
shown in Fig. 16.

In the second experiment, the average misaligned error
reduced from 2.46 mm to 0.70 mm, which decreased 71.37%.
In the third experiment, the average misaligned error reduced
from 2.42 mm to 0.65 mm, which decreased 73.18%. The
results are similar with the validation result in the first exper-
iment. It can be demonstrated that the proposed method is
robust to different relative poses.

VII. DISCUSSION
The research in [15] and the proposed method in this paper
both calibrated the robot kinematic parameters based on vir-
tual straight line constraints. A laser was used in [15] to con-
struct the constraint and an optical sensor is centered on the
laser line. Compared with the laser and optical sensor, camera
and calibration target used in this paper are easier-to-obtain
and used more frequently in the manipulator area. Thanks
to plenty researches on machine vision, the vision-based
kinematic calibration process is easy to be completed auto-
matically because it is easy to detect the fixed point on the
robot EE by the corner detection algorithm [32] and align the
fixed point to the optical axis by the visual control method.
Moreover, the PSO algorithm is developed to generate the
optical poses of the robots under the designed constraints in
this paper, which ensures the calibration poses feasible and
the measurement errors acceptable.

The calibration method proposed in this paper achieved
high positional accuracy of both robots. It is inexpensive
and easy to perform. However, this method could be further

FIGURE 16. The comparison results with two optical axes in
the: (a) 2nd experiment; (b) 3rd experiment.

improved. In the next step, we will put effort into improving
the calibration accuracy and reducing the influence of the
measurement error. Information fusion techniques, such as
Kalman filter and particle filter [33]–[36], are often used
to analyze the sensing information and deal with the uncer-
tainty of the sensing systems. The sliding mode estimation
method [37] is also a good way to get a good estimation
result and improve the robustness of the nonlinear system.
These techniques might be good choices for improving the
robot calibration method.

VIII. CONCLUSION
A kinematic calibration method for dual-manipulators is pro-
posed in this paper based on virtual line constraint, which
is inexpensive, easy to perform and can be accomplished
automatically. Firstly, based on the new established kine-
matic error model, the calibration results are unaffected by
the camera’s low depth accuracy. Secondly, the PSO algo-
rithm is developed to generate the optimal configurations of
both robots, which limits the impact of camera resolution
and improves the calibration accuracy. Thirdly, the poses
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alignment process is completed automatically based on the
visual control method. Then the kinematic parameters are
identified by LM algorithm. The effectiveness of the cal-
ibration method was verified through experiments on the
dual-manipulators system. The average misaligned errors
of robot 1 and robot 2 are decreased 85.14% and 89.04%
respectively. The comparison experiments demonstrated that
the proposed method is robust to different base-base and
hand-eye relative pose.

The proposed method can also be used for the single
manipulator and multi-manipulators calibration by fixing the
camera in the appropriate place. In the future, subsequent
works will be continued to simplify the calibration process
and shorten the calibration time. We will pay more attention
to improving the accuracy and robustness of the developed
method by combining the information fusion method. More-
over, the proposed method will be extended to calibrate the
whole dual-manipulators system simultaneously, including
the kinematics calibration, the base-base calibration and the
hand-eye calibration.
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