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ABSTRACT Feature engineering aims at representing non-numeric data with numeric features that keep the
essential information of the underlying problem, and it is a non-trivial process in building a predictive model.
In bioinformatics, there is a profound scale of DNA and protein sequences available, but far from being fully
utilized. Computational models can facilitate the analyses of large-scale data. However, most computational
models require a numeric representation as input. Expert knowledge can help design features to cast the raw
symbolic data effectively. But generally, the features vary from case to case and have to be redesigned for a
problem. Automated feature engineering, i.e., an encoding scheme automating the construction of features,
saves the redesigning process and allows the researchers to try different representations with minimal effort.
This is more in line with the explosion of data and the goal of building an intelligent system. In this paper,
we introduce an encoding scheme for protein sequences, which encodes the representative sequence dataset
into a numeric matrix that can be fed into a downstream learning model. The method, Context-Free Encoding
Scheme (CFreeEnS), was proposed for a dataset with labels for pairwise sequences. Here, we improve the
method by making it applicable to a batch of protein sequences, requiring no sequence alignment beforehand.
The improved method is applied to protein classification at the functional level, including identifying
antimicrobial peptides, screening tumor homing peptides, and detecting hemolytic peptides and phage virion
proteins. Compared with the traditional methods using task-specific designed features, CFreeEnS improves
the predicting accuracy, with an increase ranging from 5.54% to 14.14%. The results indicate that the
improved CFreeEnS, free from dependence on carefully designed features, is promising in capturing generic
priors and essential properties of amino acids, thereby serving as an automated feature engineering method
for protein sequences.

INDEX TERMS Encoding scheme, feature engineering, information representation, machine learning.

I. INTRODUCTION

Representing non-numeric raw data with numeric features
that profile raw data from different angles, namely fea-
ture engineering, is generally the first process in a machine
learning pipeline. Most machine learning, especially deep
learning, algorithms require a numeric data representation
with equal length as the input [1]. The quality of data rep-
resentation can profoundly affect the performance of the
downstream learning methods. Therefore, studies in many
fields (e.g., speech recognition, text mining, bioinformat-
ics, etc.) have endeavored to design an effective data repre-
sentation supporting and improving the subsequent learning
process [2]-[5]. Unfortunately, features usually vary from

problems, especially when expert knowledge is involved
in the design, making them only useful in the context of
specific tasks and models [6]. In the era of big data, auto-
mated feature engineering that is less sensitive to the con-
text is more desired. Studies have justified that knowledge
learned from one task can be applied to another via transfer
learning [7], [8]. A good representation that can benefit large-
scale learning should maintain the intrinsic structure of data,
be task non-specific but keep the most relevant information
about the task at hand [1].

In bioinformatics, the high-throughput sequencing tech-
niques have made scads of DNA and protein sequences avail-
able, launching the field into a new era of big data. However,
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deciphering the sequences, e.g. to uncover the relationship
between genotype and phenotype, remains a challenge. As a
complement to the costly wet-lab experiments, computational
models provide an alternative perspective to disentangle the
hidden patterns in protein sequences. Casting the symbolic
sequence dataset into a numeric representation usually serves
as the upstream stage in a pipeline for analyses. Expert knowl-
edge about the problem may facilitate the analyses, but this
process is also tedious and limited by human subjectivity [9].
An encoding scheme of protein sequences capturing generic
priors of amino acids is more likely to be free from the context
(i.e., the task, data, and model) so that the bioinformaticians
can save the effort of designing features for different prob-
lems. This is more in line with the eruption of sequence data
and the goal of automating sequence annotation.

Protein classification is a fundamental problem in ana-
lyzing the protein sequences, referring to multifaceted
tasks. Proteins can be classified regarding different aspects
(e.g., family, structure, localization, function, protein-protein
interaction, etc.) and different levels of a classification hier-
archy (e.g., subfamilies, families, superfamilies, etc.) [10].
Classifying a protein sequence into a well-characterized
group is a preliminary but non-trivial analysis, helpful for
annotating its properties. For characterizing more specific
functions or phenotype, usually experimental assays are
designed and conducted to test the properties of a targeted
entity [11]. For example, the hemagglutination inhibition (HI)
assay is designed to quantify the antigenic similarity between
the hemagglutinin proteins [12].

Traditional methods for protein classification include the
composition-based methods (e.g., the amino acid composi-
tion, pseudo-amino acid composition, atomic composition,
etc.) [13]-[15] and motif-based methods (e.g., n-grams,
active motifs, conserved motifs, etc.) [16]-[18]. Although
they have been applied to many classification tasks and
yielded moderate accuracy of 75%—-85%, generally serving
as benchmarks for task-specific methods, there is still room
to improve the performance. Recently, there have been many
representations of biological sequences inspired by natural
language processing (NLP), treating the sequences from a
text mining perspective. Asgari and Mofrad [19] proposed
ProtVec, a continuously distributed representation for pro-
tein sequences using the n-grams with a skip-gram model.
Islam et al. [20] extended their work by a modified n-gram
and skip-gram model, named m-NGSG, where the optimal
parameters are obtained through grid search. It is a state-
of-the-art automated feature generation method for protein
sequences that has been applied to protein classification,
promising to accelerate large-scale characterization of protein
sequences. However, the methods do not give a solution to
lower levels of the classification hierarchy and distinguishing
protein sequences that are within the same family but bearing
a few phenotype-related mutations.

Previously, we proposed an encoding scheme for protein
sequence pairs, named CFreeEnS, to predict the antigenic
similarity between the hemagglutinin proteins of influenza
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viruses, which was effective across multiple subtypes of
influenza [21]. We hypothesized that the method captured
intrinsic distinctions between amino acid pairs and was
promising to be applied to other problems with aligned pro-
tein sequence pairs as the input. It was only applicable to
a dataset with labels for pairwise sequences, measuring the
phenotype distinctions. In this paper, we extended the encod-
ing scheme CFreeEnS to make it applicable to a batch of
protein sequences where the labels annotate each sequence
instead of measuring pairwise distinctions. The improved
CFreeEnsS requires no sequence alignment beforehand. Each
protein sequence is profiled by the average value of known
amino acid properties. This encoding scheme keeps con-
served known properties of amino acids as much as pos-
sible, thereby allowing the downstream learning method to
disentangle features relevant to the target task. Together
with the module dealing with pairwise protein sequences,
the improved CFreeEnS is able to profile any protein
sequence dataset with a numeric representation, maintaining
generic properties of amino acid, and the distinctions between
pairs of amino acids. With the two modules, CFreeEnS is
more matched with the name “a Context-Free Encoding
Scheme for protein sequences”. Thus, the manuscript would
present CFreeEnS as an independent encoding scheme with
two modules, taking protein sequences and sequence pairs as
the input respectively, followed by several cases of applica-
tion. The manuscript is structured as follows:

1) Section II describes how CFreeEnS encodes the protein
sequences and protein sequences pairs. The module
dealing with protein sequence pairs has been presented
in our previous work [21] so that we would only briefly
introduce the framework.

2) Section III presents the applications of CFreeEnS.
Regarding the module of encoding protein sequences,
CFreeEnS is applied to several protein classification
problems, including identifying the antimicrobial pep-
tides, tumor homing peptides, hemolytic peptides, and
phage virion proteins. In terms of encoding protein
sequence pairs, CFreeEnS is used to predict the anti-
genic similarity between the hemagglutinin protein of
influenza viruses. The results of CFreeEnS on the men-
tioned cases are compared with traditional methods
using designed features for each case, as well as the
state-of-the-art methods that are less specific to the
task.

3) Section IV discusses the strength and weakness
of CFreeEnS and other methods for protein
representations.

Il. METHODS

A typical pipeline of computational modeling consists of
four modules, as shown in Figure 1. The pipeline begins
with a data retrieval module and followed by an iterative
process including feature engineering, modeling, and eval-
uation. With a satisfying model performance, the trained
model is promising to be deployed for applications. In the

7349



IEEE Access

X. Zhou et al.: Encoding Scheme Capturing Generic Priors and Properties of Amino Acids Improves Protein Classification

Genotype \

(Genome sequences,
or protein sequences)

2. Feature
Engineering

Numerical
matrix

Encoding scheme
/Feature extraction

1. Data Retrieval

3. Modelling

X Supervised machine
learning models

Predicted
labels

%

4. Evaluation Application/

A
Labels Y ] .

TFunctional, taxonomic
or phenotype labels Y
~—

Iteration

Deployment/
0O fun . -

P ettt Monitoring...
parameters

until satisfying performance

FIGURE 1. A typical pipeline of supervised machine learning models in bioinformatics. 1. Data retrieval. Preparing the genotype dataset and the
corresponding labels. 2. Feature engineering. Representing the non-numeric raw dataset with numeric features that can be fed into the downstream
modeling module. As CFreeEnS contributes to this module, it is highlighted with green shadow. 3. Modelling. Using supervised learning algorithms to
predict the labels. 4. Evaluation. Comparing the predicted labels with the true labels to measure the performance of the model, typically by optimizing an
error function o (Y, Y*). Iterating the process from feature engineering to evaluation and tuning parameters if necessary until the model achieves a
satisfying performance, and then the model is promising to be deployed for applications.

feature engineering module, the raw non-numeric dataset is
encoded by a numeric matrix so that it can be fed into the
downstream learning algorithms, i.e. the modeling module.
The performance of a computational model mainly relies on
the cooperation of the two patrts, i.e. the upstream encoding
scheme and the downstream learning algorithm. The effec-
tiveness of a learning algorithm is largely dependent on the
quality of the input, which is the data representation cast by
an upstream encoding scheme. Different representations can
entangle and hide variant explanatory factors of the data.

As for the application in bioinformatics, usually, the dataset
includes genotype information represented by symbolic
genome sequences or protein sequences, and phenotype
labels about the function or taxonomic name, denoted as Y.
However, in the modeling part, most downstream learning
algorithms need an input of numeric vectors with equal-
length. Thus, an encoding scheme is needed to cast the non-
numeric sequence dataset into a numeric matrix X, which
can be fed into a downstream supervised learning model to
predict the target labels. The predictions are denoted as Y™*.
In the evaluation module, the true labels Y and the predicted
labels Y* are compared to measure the performance of the
computational model.

To measure the effectiveness of encoding schemes, one
way is to compare the overall performances using the same
downstream learning method. A good encoding scheme
should return a representation keeping the most relevant
information about the predicting target and the least noise,
which will benefit the predicting accuracy of the downstream
learning methods. Implementing expert domain knowledge
into the input dataset usually would help improve the design
of a suitable encoding scheme, but an encoding scheme with
more generic priors instead is more in line with the goal of
automating data-driven learning.

Herein, we improved our proposed method in [21] so
that the encoding scheme can be applied to both pro-
tein sequences with varying lengths and protein sequence
pairs, which covers the most situation of sequence analyses
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in bioinformatics. The method, CFreeEnS, is based on the
AAindex database [22], which is the collection of amino acid
indexes and mutation matrices from published work, rep-
resenting physiochemic and biochemical properties related
to the specificity and diversity of protein structures and
functions. Currently, the AAindex contains 566 amino acid
indexes in AAindex1, 94 substitution matrices in AAindex2
and 47 matrices derived from the statistical pairwise con-
tact potential between amino acids in AAindex3. For encod-
ing protein sequences with varying length to roughly group
the proteins, the CFreeEnS encodes the sequences with
AAindex1. Likewise, for characterizing more subtle dis-
tinctions between proteins, the substitution matrices in
AAindex?2 are utilized in CFreeEnS.

Figure 2 presents how the improved CFreeEnS works.
When taking a sequence batch S of m sequences with varying
lengths as the input, CFreeEnS encodes each sequence s;
using k amino acid indexes in AAindex1, which repre-
sent generic physicochemical and biochemical properties,
a-helix, B-strand and turn propensities of amino acids. For
the sequence s; encoded by index j, the outputting numeric
vector is denoted as si The average value v;; is calculated,
representing the value of s; with the property j. After encoded
by the k indexes, the sequence s; is represented by a vector
vi = [vi1,vi2, ...vjj, ...vik]. After stacking the vectors for
m sequences, the symbolic dataset is encoded by the numeric
matrix X with dimension m x k, which can be fed into a down-
stream machine learning algorithm together with the label
vector Y of length m. When analyzing the substitutions of
two protein sequences, pairwise alignment is required before
inputting into the encoding module. Taking a batch aligned
protein sequence pairs, each sequence pair p; of length /
is encoded with k substitution matrices in AAindex2. For
m sequence pairs, CFreeEnS outputs a numeric matrix X with
dimension m x k x [.

Algorithm 1 clarifies how the CFreeEnS encodes a protein
sequence or a pairwise protein sequence alignment using
k indexes in detail. For a protein sequence s, each residue is
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FIGURE 2. The diagram of CFreeEnS for m protein sequences or protein sequence pairs. For sequences with varying lengths, each sequence s; can be
casted to a numeric vector using an amino acid index AAindex; in AAindex1. The average score v;; is calculated. Using k amino acid indexes, the protein
sequence will be represented by a vector v; with length k. For aligned sequence pairs with length /, each pair can be casted to a numeric vector using one
amino acid substitution matrix in AAindex2. Using k substitution matrices, each sequence will be represented by a matrix with dimension / x k. For m

sequence pairs, CFreeEnS outputs a m x k x | matrix.

replaced by the scores evaluated in the amino acid index idx.
The average value vj4, of the encoded vector vy is taken as
the evaluation of the sequence. Using k amino acid indexes,
the output is saved in a dictionary v where the idx is taken
as the key for the vig. For a protein sequence pair with
sequence s1 and s, using a substitution matrix idx, the dis-
tance for each pairwise residue a1 and a; is calculated as:

d(ay, ap) = idx(ay, ay) + idx(az, ax) — 2 x idx(al, a2)

where the idx(a;, aj) represents the score in substitution
matrix idx for residue a; and a;. A penalty is A is added
for a gap. Similarly, using k substitution matrices, the dis-
tance vectors are saved in a dictionary v with idx as the
keys. As mentioned, there are k = 94 substitution matrices
in the AAindex database, with subtle distinctions between
residues available [23], which provides an opportunity to
systematically check all substitution scoring matrices. The
most effective ones casting the dataset into different space can
be selected for the scenario we need to analyze. Traversing
each instance in the dataset and stacking the value vectors,
as illustrated in Figure 2, CFreeEnS outputs a numeric matrix
of dimension m x k for m protein sequences, or a matrix of
dimension m x k x [ for m protein sequence pairs. In this
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way, CFreeEnS can convert symbolic protein sequences and
protein sequence pairs into numeric representations that can
be fed into downstream learning machine learning models.

The encoding scheme has been applied to different tasks
of protein classification, as well as measuring the phenotype
similarity between proteins, resulting in better performance
than other traditional schemes.

Ill. APPLICATIONS AND RESULTS

A. PROTEIN CLASSIFICATION

To test the effectiveness of CFreeEnS on casting the protein
sequences to numeric representations, we conducted protein
classification under different scenarios. The classification
results are compared with other traditional methods using
handcrafted features specially designed for each dataset.
Also, we compared the CFreeEnS with a state-of-the-art pro-
tein classification method named m-NGSG, which is inspired
by natural language processing [20].

An overview of the datasets for protein classification is pre-
sented in Table 1. The abbreviations of datasets are identical
with the methods proposed explicitly for them.

1) iAMP. The iAMP dataset, abbreviated for identifying

antimicrobial peptides, includes antibacterial peptides,
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Algorithm 1 CFreeEnS for a Protein Sequence or a Pairwise Sequence Alignment

1:

2:

function CFreeEnS(s, idxList)
with k index IDs

> Input: s is either a protein sequence or a pairwise sequence alignment; idxList is a list

flag = checkType(s) > checkType is a function returning 0 if the input s is a protein sequence while 1 is the input is a

pairwise sequence alignment.
declare v = {}
if flag == O then
for idx in idxList do
vs =[]
for j = 1 to len(s) do
vg.append(idx.get(s[j]))
Vidx = vs.mean()
vlidx] = vigy
else
s1 = s[0]; s2 = s[1]
assert len(s;) == len(s»)
for idx in idxList do
vy =[]
for j = 1to len(s;) do
a1 = s1[j]; az = s2[j]
ifay == “—" orap; == “—"" then
vs.append(})
else

dist = idx.get(ay, ay) + idx.get(ay, ay) — 2% idx.get(ay, az)

amino acids
vs.append(dist)
v[idx] = vy
return v

> v is a dictionary where the keys are the IDs of amino acid indexes for encoding

> CFreeEnS for a protein sequence

> Get the score of each residue s[j] from the amino acid index idx

> CFreeEnS for a pairwise sequence alignment

> Add penalty for gaps in pairwise alignment

> Get the distance score of pairwise

TABLE 1. An overview of datasets for protein classification.

Datasets
(Methods)

Description Sequence

Lengths

# Sequences

iAMP

Antimicrobial peptides data in- 6214
volves anti-bacteria, anti-cancer,
anti-fungal and anti-viral se-
quences. The task is to classify
antimicrobial peptides from non-
antimicrobial peptides.

10-255;
Median: 26

TumorHPD

TumorHPD  classifies tumor | 4-31; 2240
homing peptides, helping to | Median: 10
design analogs of tumor homing

ability

HemoPI

4-98;
Median: 18

Identifying the hemolytic pep- 1104
tides from non-hemolytic pep-

tides.

PVPred

Phage virion proteins are classi- | 23—-1825; 337
fied from other non-phage virion | Median:
proteins 213

7352

antiviral peptides, and antifungal peptides. The antimi-
crobial peptides are important host defense molecules
in the innate immune system against pathogens. Com-
putational identification of AMPs saves the researchers
from expensive in vitro wet-lab experiments. Previous
analyses tried incorporating several designed features,
including the distribution patterns of amino acids [24],
pseudo amino acid composition and some selected
physiochemical features [25], [26]. The benchmark

2)

3)

dataset of iAMP includes 3107 positive samples and
an equal number of negative samples generated from
UniProt. Sequence lengths of antimicrobial peptides in
the dataset vary from 10 to 255, with a median of 26.
TumorHPD. The TumorHPD is a web server for recog-
nizing tumor homing peptides, which are able to recog-
nize tumor cells [27]. Amino acid composition profile,
dipeptide composition, and binary profile are gener-
ated in the TumorHPD to capture the features of input
sequences. The benchmark dataset includes 651 and
469 positive samples obtained from the TumorHoPe
database as the training set and validation set respec-
tively. An equal number of negative samples are gener-
ated from Swiss-Prot database. The median of lengths
of the tumor homing peptides is 10.

HemoPI. The HemoPI, short for hemolytic peptide
identification, is to screen hemolytic peptides from
the non-hemolytic, where quantitative matrices are
developed for measuring the hemotoxicity [28]. Motifs
observed in hemolytic peptides are utilized as fea-
tures to differentiate them from the non-hemolytic
ones. There are 552 positive samples which are experi-
mentally validated highly hemolytic peptides from the
Hemolytik Database. The same amount of negative
samples are generated from SwissProt.

VOLUME 7, 2019
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FIGURE 3. Predicting accuracy of CFreeEnS on protein classification compared with traditional
methods and m-NGSG.

4) PVPred. PVPred predicts the phage virion proteins by
analyzing the variance and optimizing the g-gap dipep-
tide [29]. Most phage virion proteins in the dataset have
long primary sequences with several hundred residues.
The sequence lengths vary from 23 to 1825, but with
a median of 213. There are 99 positive samples and
208 negative samples in the training set; 11 positive
samples and 19 negative samples in the validation set.

The four datasets are encoded by CFreeEnS, using all the

TABLE 2. The classification results of CFreeEnS applied to iAMP,
TumorHPD, HemoPI and PVPred datasets.

Datasets Accuracy |Precision Recall |F-score AUC |G-mean MCC
iAMP 0.9207 0.9261 0.9203 {0.9201 |0.9203 |0.9185 |0.8464
TumorHPD |0.8806 0.8987  |0.8806 |0.8792 |0.8806 |0.8741 |0.7791
HemoPI 0.9364 0.9377  |0.9364 [0.9363 |0.9364 [0.9360 |0.8740
PVPred 0.9333 0.9397  ]0.9333 |0.9317 [0.9091 |0.9045 |0.8604

available 566 amino acid indexes in the AAindex database.
Sequences with varying length are represented by vectors

with length 566. Columns with high correlation are dropped
before inputting into a downstream learning method. To
compare the effectiveness of data representation, we keep
the same downstream learning procedure as those tradi-
tional methods using designed features for each dataset.
Besides, the m-NGSG, a state-of-the-art method treating
protein sequences as normal text and generating features
from a text mining perspective, has been applied to the four

datasets [20].

Table 2 shows the classification results of CFreeEnS, tak-
ing 0.95 as the dropout threshold. There are 190, 146, 170
and 211 features dropped for iAMP, TumorHPD, HemoPI and
PVPred respectively. The performance of CFreeEnS on each
dataset is evaluated with accuracy, precision, recall, F-score,

range from 5.54% to 14.14% when compared with the tra-
ditional method, from 0.82% to 13.44% when compared
with m-NGSG. Although the accuracy of predicting tumor
homing peptides seems not high enough, it has been improved
by 5.54% compared with the traditional method using sev-
eral designed profiles. Even compared with the m-NGSG,
the accuracy has been increased by 4.66%. The fact that
tumor homing peptides are generally short with a median
of 10 may partially contribute to the difficulty in accurate
prediction. Both m-NGSG and CFreeEnS work well on the
iIAMP dataset, which may benefit from the large amount
and balanced training samples. It is worth noting that the
CFreeEnS also works well on the PVPred dataset with a small
number of training samples.

AUC, geometric-mean (g-mean) and Matthews correlation

coefficient (MCC). The CFreeEnS works best on the HemoPI
database with the highest AUC (0.936) and MCC (0.874),
while worst on the TumorHPD database with a moderate

AUC of 0.881.

When comparing with other methods, as presented
in Figure 3, we can observe that CFreeEnS outperforms
the state-of-the-art method m-NGSG and traditional methods
using designed features. The predicting accuracy scores of
the four datasets are improved. The increases of accuracy
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B. SUBTLE DISTINCTIONS BETWEEN PROTEINS WITHIN
THE SAME FAMILY
Our previous work has demonstrated that CFreeEnS is effec-
tive in predicting the antigenic similarity between the hemag-
glutinin protein of influenza viral strains [21], indicating that
CFreeEnS for protein sequence pairs can distinguish subtle
differences between proteins within the same family.
Quantifying the antigenic similarity between viral strains
is an essential step in selecting and manufacturing vaccine
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TABLE 3. Datasets and accuracy of predicting the antigenicity of
influenza viruses using different encoding schemes.

Datasets # SeqPairs | MutCounts | RegionBand| CFreeEnS
A/HIN1 355 0.824 0.706 0.859
A/H3N2 791 0.843 0.790 0.885
A/H5N1 293 0.863 0.858 0.915
A/HIN2 118 0.775 0.804 0.850
Combined | 1557 0.698 0.751 0.846

#SeqPairs: Number of sequence pairs;

strains. But the traditional hemagglutination inhibition (HI)
assays are costly and require high biosafety facilities for
high pathogenic subtypes, resulting in limited HI assays data.
We collected the HI assays data and the corresponding pro-
tein sequence pairs of four flu subtypes, namely influenza
A/HINI1, A/H3N2, A/H5N1 and A/HIN2, forming a com-
bined dataset [30]. For each subtype, all substitution matrices
were evaluated. Subsequently, the ones resulted in the best
performance in each dataset were selected to encode the
combined dataset. Thus, we used four substitution matrices
to encode the combined dataset of various influenza subtypes.
The random forest with a maximum depth of 9 was used as
the downstream classifier.

Most works analyzing the antigenicity of influenza design
subtype-specific features, which could be applicable to other
subtypes but not work so well [31]-[33]. For comparison,
We adapted a mutation-counts-based method proposed
by Liao et al. [31] to all subtypes. Also, we com-
pared the CFreeEnS with a universal model proposed by
Peng et al. [34], which is based on regional bands cross
subtypes. The two methods for comparison are shorted for
MutCounts and RegionBand respectively. Using the same
downstream learning method, the performances of Mut-
Counts, RegionBand and CFreeEnS on each subtype and
the combined dataset with four subtypes(A/HIN1, A/H3N2,
A/H5N1 and A/HIN2) are listed in Table 3. CFreeEnS always
achieves the highest predicting accuracy, not only on the
datasets with one subtype, but also on the combined dataset
with diverse subtypes. We also analyzed the performance
of CFreeEnS in transfer learning models, i.e. training the
model on one subtype but testing on another subtype with
fewer samples. CFreeEnS always achieves higher predicting
accuracy than MutCounts and RegionBand [21]. The results
indicated that CFreeEnS could capture the cross-subtype fea-
tures of influenza viruses.

IV. DISCUSSION AND CONCLUSION

A dilemma in feature engineering is that domain-specific
knowledge can benefit the design of an effective data rep-
resentation for a specific dataset, but it can be tedious, time-
consuming and limited by human subjectivity. A representa-
tion with more generic priors can help automate the design
of features and facilitate large-scale analyses of different
datasets. The explosion of protein sequence data and the
increasing availability of computing power make the latter
more urgent and promising. When it comes to the protein
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classification problem, existing methods of protein represen-
tation have achieved moderate performance, and can compete
with the design incorporated with domain-specific knowl-
edge especially classifying proteins into families [35].

To compare the effectiveness of CFreeEnS, we chose four
protein classification problems, detecting peptides with dif-
ferent functions, namely antimicrobial peptides, tumor hom-
ing peptides, hemolytic peptides and phage virion proteins.
Sequences in the four selected datasets not only have different
biological backgrounds, but also vary in the data size, sample
distribution and sequence length distribution. The number
of training samples range from hundreds to thousands, and
the lengths of peptides range from several residues to a few
hundred. The predicting accuracy of CFreeEnS exceeds 88%
on each dataset, regardless of being balanced or not for the
positive and negative classes, with short or long peptides.
The results show the robustness of CFreeEnS, suggesting that
CFreeEnS encodes the generic priors of protein sequences
into features representative enough for distinguishing them
at the functional level. For distinguishing subtle differences
among protein sequences with only several mutations, but
showing different phenotypes, we applied CFreeEnS to pre-
dicting the antigenic similarity between hemagglutinin pro-
teins of influenza viruses, showing its ability to capture cross-
subtype antigenic features of influenza viruses [21].

CFreeEnS is a protein representation heavily depends on
the AAindex database, i.e. the known properties of amino
acids. Therefore, features selected by the downstream learn-
ing models are easy to interpret through the analysis of vari-
able importance. It has been demonstrated that with features
created by CFreeEnS, protein functions can be predicted with
high accuracy. However, CFreeEnS is not good at disentan-
gling more abstract features, or providing a new angle to
explain the relationship between genotype and phenotype.
The m-NGSG, inspired from NLP, although not as good as
CFreeEnS on the mentioned tasks, provides a novel perspec-
tive to treat the biological sequences. The abstract features
generated by m-NGSG can be taken as new properties of
a group of amino acids. Graphic representations of protein
sequences are also interesting, providing visual qualitative
inspection of sequences, but they are not efficient in describ-
ing long protein sequences [36]. Different representations of
protein sequences may disentangle or hide different aspects.
An encoding scheme capturing the known generic properties
of amino acids can help automate the process of construct-
ing features and facilitate annotating protein functions. For
profiling other aspects of proteins, e.g. predicting the protein
folds, computational predictions using other novel represen-
tations may give more insights.
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