
Received December 5, 2018, accepted December 19, 2018, date of publication December 28, 2018,
date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890150

FPGA-Based Accelerators of Deep Learning
Networks for Learning and Classification:
A Review
AHMAD SHAWAHNA 1, SADIQ M. SAIT 1,2, (Senior Member, IEEE),
AND AIMAN EL-MALEH1, (Member, IEEE)
1Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Center for Communications and IT Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Corresponding author: Sadiq M. Sait (sadiq@kfupm.edu.sa)

This work was supported by the King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

ABSTRACT Due to recent advances in digital technologies, and availability of credible data, an area
of artificial intelligence, deep learning, has emerged and has demonstrated its ability and effectiveness
in solving complex learning problems not possible before. In particular, convolutional neural networks
(CNNs) have demonstrated their effectiveness in the image detection and recognition applications. However,
they require intensive CPU operations and memory bandwidth that make general CPUs fail to achieve the
desired performance levels. Consequently, hardware accelerators that use application-specific integrated
circuits, field-programmable gate arrays (FPGAs), and graphic processing units have been employed to
improve the throughput of CNNs. More precisely, FPGAs have been recently adopted for accelerating the
implementation of deep learning networks due to their ability to maximize parallelism and their energy
efficiency. In this paper, we review the recent existing techniques for accelerating deep learning networks on
FPGAs. We highlight the key features employed by the various techniques for improving the acceleration
performance. In addition, we provide recommendations for enhancing the utilization of FPGAs for CNNs
acceleration. The techniques investigated in this paper represent the recent trends in the FPGA-based
accelerators of deep learning networks. Thus, this paper is expected to direct the future advances on efficient
hardware accelerators and to be useful for deep learning researchers.

INDEX TERMS Adaptable architectures, convolutional neural networks (CNNs), deep learning,
dynamic reconfiguration, energy-efficient architecture, field programmable gate arrays (FPGAs), hardware
accelerator, machine learning, neural networks, optimization, parallel computer architecture, reconfigurable
computing.

I. INTRODUCTION
In recent years, due to the availability of massive amounts
of credible data (Big Data: Text, Video, Audio, etc.), and
tremendous advances in the area of digital electronics tech-
nologies that provide immense computing power, there has
been a revival in the area of artificial intelligence (AI), par-
ticularly in the area of deep learning (DL) [1]–[3], a sub-field
of machine learning (ML).

The field of DL emerged in 2006 after a long pause in the
area of neural networks (NNs) research [4]. A key aspect in
DL is that the networks and/or their weights are not designed
by human beings. Instead, they are learned from data using a
general purpose learning procedure [5], [6].

While ML uses algorithms to parse and learn from data,
to make informed decisions, DL structures algorithms in

layers to create an artificial neural network (ANN) that can
learn, and similar to human intelligence, can make accurate
decisions on its own [7]. Therefore, instead of designing
algorithms by hand, systems can be built and trained to
implement concepts in a way similar to what comes naturally
to humans, and with accuracy sometimes exceeding human-
level performance [8], [9].

In DL, each layer is designed to detect features at
different levels. A layer transforms the representation at
one level (starting from input data which maybe images,
text, or sound) to a representation at a higher, slightly more
abstract level [10]. For example, in image recognition, where
input initially comes in the form of pixels, the first layer
detects low level features such as edges and curves. The out-
put of the first layer becomes input to the second layer which

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7823

https://orcid.org/0000-0003-3024-8798
https://orcid.org/0000-0002-4796-0581

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

produces higher level features, for example semi-circles, and
squares [11]. The next layer assembles the output of the
previous layer to parts of familiar objects, and a subsequent
layer detects the objects. As we go through more layers,
the network yields an activation map that represents more and
more complex features. The deeper you go into the network,
the filters begin to be more responsive to a larger region
of the pixel space. Higher level layers amplify aspects of
the received inputs that are important for discrimination and
suppress irrelevant variations.

A. APPLICATIONS OF DEEP LEARNING NETWORKS
With the now widely used convolution neural networks
(CNNs) [12], [13] and deep neural networks (DNNs)
[14], [15], it is now possible to solve problems in domains
where knowledge is not easily expressed explicitly and
implicit information is stored in the raw data. Solutions to
multifarious problems in the domain of sciences, business,
etc., have been possible that were not conceivable for sev-
eral years, in spite of best attempts by the AI community.
This has been primarily possible due to the excellent abil-
ity of deep learning in discovering intricate structures in
high-dimensional data. Examples include character recogni-
tion [16], gesture recognition [17], speech recognition (e.g.,
in Google Now, Siri, or click-through prediction on an adver-
tisement) [18]–[20], document processing [21]–[23], natu-
ral language processing [24], [25], video classification [26],
image classification [27]–[32], face detection and recogni-
tion [33], [34], robot navigation [35]–[37], real-time multiple
object tracking [38], financial forecasting [39], and medical
diagnosis systems [40]–[42], to name a few.

Other recent areas of applications include automated driv-
ing (e.g., learning to detect stop signs, traffic lights, pedes-
trians, etc.), aerospace and defense (e.g., identify objects
from satellites and identify safe or unsafe zones), medical
research (e.g., in identification of cancer cells), industrial
automation (e.g., to improve worker safety by detecting when
people or objects are within an unsafe distance of machines),
and electronics (used in automated hearing, speech transla-
tion, etc.) [9], [43]–[46].

B. EMERGENCE OF DEEP LEARNING NETWORKS
Convolutional neural networks are considered as one of
the most influential innovations in the field of computer
vision [47]. The success of deep learning networks grew
to prominence in 2012 when Krizhevsky et al. [28] uti-
lized CNNs to win the annual olympics of computer
vision, ImageNet large-scale vision recognition challenge
(ILSVRC) [30]. Using AlexNet model, they achieved an
astounding improvement as the image classification error
dropped from 26% (in 2011) to 15%. ImageNet is a standard
benchmark dataset used to evaluate the performance of object
detection and image classification algorithms. It consists of
millions of different images distributed over tens of thousands
of object classes.

CNNs have achieved even better accuracy in classifica-
tion and various computer vision tasks. The classification
accuracy in ILSVRC improved to 88.8% [48], 93.3% [31],
and 96.4% [49] in the 2013, 2014, and 2015 competitions,
respectively. Fig. 1 shows the accuracy loss for the winners
of ImageNet competitions before and after the emergence of
deep learning algorithms.

FIGURE 1. ImageNet Competition Results [50].

Thereafter, large host companies started using CNNs at the
core of their services. Google,Microsoft, Facebook, Amazon,
Pinterest, and Instagram are currently using neural networks
for their photo search, Bing’s image feeds, automatic tagging
algorithms, product recommendations, home feed personal-
ization, and for their search infrastructure, respectively [11].
However, the classic use-case of CNNs is for image and
speech processing [51].

A typical CNN is amulti-layered feed-forwardANNwith a
pipeline-like architecture. Specifically, each layer performs a
well-known computation on the outputs of the previous layer
to generate the inputs for the next layer. In general, CNNs
have two types of inputs; the data to be tested or classified
(also named as feature maps), and the weights. Images, audio
files, and recorded videos are examples of the input data to
be classified using CNNs. On the other hand, the network
weights are the data generated from training the CNN on a
dataset containing similar inputs to the one being tested.

C. HARDWARE ACCELERATION OF DEEP
LEARNING NETWORKS
To provide more accurate results as well as real-time object
recognition, for example in applications such as robots and
auto-piloted cars, the size of the convolution neural net-
work needs to be increased by adding more neural network
layers [28]. However, evolving more and new type of NN
layers results in more complex CNN structures as well as
high depth CNN models. Thus, billions of operations and
millions of parameters, as well as substantial computing
resources are required to train and evaluate the resultant large-
scale CNN [31], [52], [53]. Such requirements represent
a computational challenge for general purpose processors
(GPP). Consequently, hardware accelerators such as applica-
tion specific integrated circuit (ASIC), field programmable
gate array (FPGA), and graphic processing unit (GPU) have
been employed to improve the throughput of the CNN.

7824 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

In practice, CNNs are trained off-line using the back-
propagation process [54]. Then, the off-line trained CNNs
are used to perform recognition tasks using the feed-forward
process [55]. Therefore, the speed of feed-forward process is
what matters.

GPUs are the most widely used hardware accelerators
for improving both training and classification processes in
CNNs [56]. This is due to their high memory bandwidth
and throughput as they are highly efficient in floating-point
matrix-based operations [57]–[59]. However, GPU accelera-
tors consume a large amount of power. Therefore, their use
in CNN-based applications implemented as a cloud service
on large servers or in battery operated devices becomes a
challenge. Furthermore, GPUs gain their performance from
their ability to process a large image batch in parallel. For
some applications like a video stream, input images should
be processed frame by frame as the latency of the result of
each frame is critical to the application’s performance. For
some tracking algorithms, the result of one frame affects the
process of the next frame [60]. Nurvitadhi et al. [61] recently
evaluated emerging DNN algorithms on latest generations
of GPUs (i.e., NVIDIA Titan X Pascal) and FPGAs (i.e.,
Intel Arria 10 GX 1150 and Intel Stratix 10 2800). The
experimental results show that current trends in deep neural
networks favor FPGA platforms as they offer higher power
efficiency (a.k.a., performance per Watt).

FPGA and ASIC hardware accelerators have relatively
limited memory, I/O bandwidths, and computing resources
compared with GPU-based accelerators. However, they can
achieve at least moderate performance with lower power
consumption [62]. The throughput of ASIC design can be
improved by customizing memory hierarchy and assigning
dedicated resources [63]. However, the development cycle,
cost, and flexibility are not satisfactory in ASIC-based accel-
eration of deep learning networks [64], [65]. As an alterna-
tive, FPGA-based accelerators are currently in use to provide
high throughput at a reasonable price with low power con-
sumption and reconfigurability [66], [67]. The availability
of high-level synthesis (HLS) tools, using C or C++, from
FPGA vendors lowers the programming hurdle and shortens
the development time of FPGA-based hardware accelera-
tors [68]–[70].

Convolutional neural networks have a very useful property,
that is, each feature map neuron shares its weights with all
other neurons [71]. Hameed et al. [72] and Keckler et al. [73]
proved that the highest energy expense results from accessing
the off-chip DRAM memory for data movement rather than
computation. In other words, the energy cost of the increased
memory accesses and data movement due to the large number
of CNN operations often exceeds the energy cost of compu-
tation [64], [74]. Thus, CNN accelerators need to carefully
consider this to achieve efficient architecture in terms of time
and power.

In this paper, we review the current status of using FPGAs
as accelerators for implementing deep learning networks.
We highlight the implementation challenges and design

directions used to tackle those challenges. We also provide
future recommendations to maximize the performance of
FPGAs as accelerators for deep learning networks and sim-
plify their use.

The remainder of the paper is organized as follows.
Section II provides background information about CNNs,
their key operations, and some well-known deep learning
networks. In addition, it introduces the basic structure of
FPGAs and highlights their features enabling them to accel-
erate computationally intensive applications. It also discusses
the implementation challenges of deep learning networks
on FPGAs and how these challenges can be overcome.
Section III reviews existing CNNs compression techniques
and presents the current status of accelerating deep learning
networks using ASIC-based and FPGA-based accelerators.
Section IV describes the use of metaheuristics in the design
and optimization of CNNs implementation. Section V sum-
marizes existing design approaches for accelerating deep
learning networks and provides recommendations for future
directions that will simplify the use of FPGA-based accel-
erators and enhance their performance. Finally, section VI
concludes the paper.

II. BACKGROUND AND TERMINOLOGY
This section gives an overview of the key operations and
terminology used in convolutional neural networks (CNNs)
and provides examples of well-known deep learning net-
works. In addition, it illustrates the basic structure of field
programmable gate arrays (FPGAs) and how deep learning
methods can benefit from the capabilities of FPGAs. The last
subsection highlights the challenges of implementing deep
learning networks on FPGAs.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
In this subsection, we describe the key operations and
terminology involved in the construction of CNNs includ-
ing convolution, activation functions, normalization, pooling,
and characteristics of fully connected layers.

1) CONVOLUTION (CONV)
A convolution operation can be thought of as the production
of a matrix smaller in size than the original image matrix,
representing pixels, by sliding a small window (called filter,
feature identifier, or kernel) of size k × k over the image
(called input feature map (FM)), to produce an output feature
neuron value [75]. The filter is an array of numbers called
weights or parameters. These weights are computed during
the training phase. As the filter slides over the feature map,
it multiplies the values in the filter with the original pixel
values, that is, it first performs element-wise multiplication,
and then sums the products, to produce a single number. The
inputs and outputs of the CONV layer are a series of FM
arrays.

This operation, starting from the top left corner of the FM,
is repeated by moving the window S strides at a time, first in
the right direction, until the end of the FM is reached, and then

VOLUME 7, 2019 7825

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

proceeding downwards until the FM is completely scanned
and all the elements of the FM are covered. The sliding of
the filter window and performing the operation is known by
the verb convolving, hence the noun convolution [11], [76].
Normally, the size of the kernel is very small, less
than or equals to 11 × 11. Each output-input FM pair has
a set of weights equal to the kernel size and each output FM
is computed based on the sum of the convolution operations
performed on all input FMs. Note that different CONV layers
in the same CNN model vary considerably in their sizes.

In summary, the convolution operation comprises four lev-
els of loops; the output FMs loop (Loop-4), the loop across
the input FMs (Loop-3), the loop along the dimensions of
a single input FM (scan operation, Loop-2), and the kernel
window size loop (multiply-and-accumulate (MAC) opera-
tion, Loop-1). CONV layers are dominant in CNN algorithms
since they often constitute more than 90% of the total CNN
operations [28], [29], [49], [74], [77], [78]. Therefore, many
attempts have been made to speedup CONV operations using
loop unrolling technique [55], [79], as will be discussed
later. Loop unrolling maximizes the parallelism of CONV
MACs computation which requires a special consideration
of processing elements (PEs) and register arrays architecture.
Fig. 2 illustrates the loop unrolling of CONV loops levels.

FIGURE 2. CONV Loops Unrolling [83]: (a) Unrolling Loop-1; (b) Unrolling
Loop-2; (c) Unrolling Loop-3; (d) Unrolling Loop-4, where, Pkx , Pky , Pix ,
Piy , Pif , and Pof are loop unrolling design variables for the kernel
window width, kernel window height, input FM width, input FM height,
number of input FMs, and the number of output FMs, respectively.

2) ACTIVATION FUNCTIONS (AFs)
Activation function in neural networks is similar to action
potential in animal cells such as neurons. A neuron is said to
fire if it emits an action potential. A popularly used activation
function is the sigmoid function which can be expressed as

f (x) = 1/(1+ e−x) (1)

where x represents the weighted sum of the neuron inputs
and if it is a sufficiently large positive number, the sig-
moid function approximates to unity. For sufficiently large
negative values of x, the sigmoid function is close to 0.

Another popular activation function is

f (x) = tanh(x) (2)

The above standard sigmoid and tanh non-linear functions
require long training time [28]. A recently proposed and
commonly used AF in CNNs is rectified linear unit (ReLU)
which is defined as

f (x) = max(x, 0) (3)

ReLU activation function is known to converge faster in
training, and has lesser computational complexity [80], [81]
than standard sigmoid and tanh functions. In addition, it does
not require input normalization to prevent it from saturat-
ing [28], [80], [82].

3) NORMALIZATION
In real life, a phenomenon called ‘lateral inhibition’ appears,
which refers to the capacity of an excited neuron to sub-
due its neighbors, thereby creating a contrast in that area.
In CNNs, to accomplish this, local response normalization
(LRN) or simply normalization is used, particularly when
dealing with ReLU neurons, because they have unbounded
activation that needs normalization. It detects high frequency
features with a large response. If we normalize around the
local neighborhood of the excited neuron, it becomes even
more sensitive as compared to its neighbors. At the same
time, it will dampen the responses that are uniformly large
in any given local neighborhood. If all the values are large,
then normalizing those values will diminish all of them. So,
basically it performs some kind of inhibition and boosts the
neurons with relatively larger activations.

Normalization can be done within the same fea-
ture or across neighboring features by a factor that depends
on the neighboring neurons. Expressions to compute the
response normalized activity can be found in [28] and [80].

4) POOLING
Pooling, also known as subsampling, is employed to progres-
sively reduce the spatial size of the representation, thereby
reducing the amount of parameters and computation in the
network. Pooling layers are periodically inserted in between
successive convolutional layers. They operate independently
on every depth slice of the input and resize it spatially using
the MAX operation. The most common form is a pooling
layer with filters of size 2 × 2 applied where the MAX
operationwould be taking amaximumover 4 samples thereby
discarding 75 percent of the activations [84]. In addition to the
popular MAX pooling, the pooling units in some CNNs are
also used to perform other functions, such as AVG and MIN
operations [80].

5) FULLY CONNECTED LAYER (FC)
A common form of a convolutional neural network archi-
tecture comprises stacks of a few convolutional and ReLU
layers, followed by layers for pooling, and this pattern is

7826 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 3. AlexNet CNN Architecture [28].

repeated until the image has merged spatially to a small
size. This is followed by one or more fully connected layers,
also known as inner-product layers, whose neurons have full
connections to all activations in the previous layer, hence the
name. The last fully connected layer is the classification layer
and it holds the output such as the class scores [80].

B. EXAMPLES OF DEEP LEARNING NETWORKS
We list in this subsection some of the well-known deep
learning networks.
• AlexNet (2012) is a convolutional neural network
consisting of 5 convolutional layers, interspersed by
2 normalization layers, as well as 3 fully connected lay-
ers [28]. Each convolutional layer performs the activa-
tion function using ReLU. In addition, 3 pooling layers
are employed with the first, second, and last convolu-
tional layers. The architecture of AlexNet CNN is shown
in Fig. 3. AlexNet won the 2012 ImageNet challenge by
classifying 224 × 224 input color images to 1,000 dif-
ferent output classes.

• VGG (2014) is a convolutional neural network model
similar to AlexNet in terms of the number of fully
connected layers. However, it consists of 5 groups of
convolutional layers [29], [81]. The exact number of
CONV layers in each group depends on the version
of the VGG, visual geometry group, model. Table 1
shows the number of CONV and FC layers for the most
commonly used VGG models.

• ResNets (2016) are deep residual networks with
extremely irregular and complex structures compared

TABLE 1. CNN layers for VGG models.

to AlexNet and VGG CNN models [49], [85], [86].
This is due to having more types of layers, where
non-adjacent layers incorporate shortcuts to compute
the residual functions, as well as having highly deep
structures, that is, between 50 and 1000 CONV layers.
Unlike AlexNet and VGG models where the layers are
connected in sequence, the interconnections in ResNet
layers are in the form of a directed acyclic graph (DAG).
ResNet-50 and ResNet-152 are widely used, especially
for image classification. ResNet-50/152 structure con-
tains 53/155 CONV (most of them are followed by batch
normalization (BatchNorm), scale, and ReLU layers),
1/1 MAX pooling, 1/1 Average pooling, 1/1 FC, and,
16/50 element-wise (Eltwise) layers, respectively.

C. FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)
FPGAs are off-the-shelf programmable devices that provide
a flexible platform for implementing custom hardware func-
tionality at a low development cost. They consist mainly of
a set of programmable logic cells, called configurable logic
blocks (CLBs), a programmable interconnection network,
and a set of programmable input and output cells around the
device [87]. In addition, they have a rich set of embedded
components such as digital signal processing (DSP) blocks
which are used to perform arithmetic-intensive operations
such as multiply-and-accumulate, block RAMs (BRAMs),
look-up tables (LUTs), flip-flops (FFs), clock management
unit, high speed I/O links, and others. Fig. 4 shows a basic
structure of an FPGA.

FPGAs are widely considered as accelerators for
computationally-intensive applications as they enable models
with highly flexible fine-grained parallelism and associative
operations such as broadcast and collective response [88].
In [89] and [90], FPGA computing models used for appli-
cations acceleration are presented, including data stream-
ing, associative computing, highly parallel memory access,
use of standard hardware structures such as first in first
out (FIFO) buffers, stacks and priority queues, and functional
parallelism.

FPGAs have the advantage of maximizing performance
per Watt of power consumption, reducing costs for large
scale operations [91]. This makes them an excellent choice
as accelerators for battery operated devices and in cloud

VOLUME 7, 2019 7827

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 4. FPGA Basic Structure [87].

services on large servers. FPGAs have recently been widely
used for deep learning acceleration given the flexibility in
implementing architectures with large degree of parallelism
resulting in high execution speeds [92].

The adoption of software-level programming models
such as the open computing language (OpenCL) standard
[93], [94] in FPGA tools made them more attractive to use
for deep learning [95], [96]. In addition, the feed-forward
nature of deep learning algorithmsmakes FPGAs offer a clear
advantage as they can create customized hardware circuits
that are deeply pipelined and inherently multithreaded [91].
FPGAs also have the capability of partial dynamic config-
uration, which allows part of the FPGA to be reconfigured
while the rest is being used. This could be of potential benefit
to deep learning methods where the next layer could be
reconfigured while the current layer is being used.

D. CHALLENGES OF FPGA-BASED IMPLEMENTATION OF
DEEP LEARNING NETWORKS
Implementation of deep learning networks and, in particu-
lar, CNNs on FPGAs has a number of challenges including
the requirement of a significant amount of storage, exter-
nal memory bandwidth, and computational resources on the
order of billions of operations per second [97]. For example,
AlexNet CNN has over 60 million model parameters which
need 250MB of memory for storing the weights based on
32-bit floating-point representation as well as requires around
1.5 billion operations for each input image [80]. This large
amount of storage required is not supported by existing com-
mercial FPGAs and hence the weights have to be stored on
external memory and transferred to the FPGA during compu-
tation. Without careful implementation of deep learning net-
works and maximizing resource sharing, the implementation
may not fit on FPGAs due to limited logic resources.

The problem exacerbates with more complex models such
as VGG CNN model which have 16 layers. For example,
the VGG-16 CNN model has 138 million weights and needs
over 30 GOPS [98]. Although the current trends in imple-
menting CNNs is going toward compressing the entire CNN
model with dramatically reducing data bit-width [99], it is
expected that future CNN models will get more complex

with larger number of layers as the amount of training data
continues to grow and the problems to be solved get more
complex.

In addition, different layers in CNNs have different char-
acteristics which result in different parallelism and memory
access requirements. Different layers in a CNN network
exhibit vastly different amounts of intra-output and inter-
output parallelism [100]. Intra-output parallelism paral-
lelizes the computation of a single output image since it
is the sum of n input-kernel convolutions. However, inter-
output parallelism is based on computing multiple out-
put FMs in parallel. Furthermore, convolutional layers are
computational-centric while fully connected layers are mem-
ory centric [98]. For example, the number of operations in
each group of convolutional layers in VGG-16 model are on
the order of 2 to 9 GOPS while the number of weights are
on the order of 0.04 to 7.08 million. However, the number
of operations in fully connected layers are in the order
of 0.01 to 0.21 GOPS, while the number of weights are on
the order of 4.10 to 102.76 million. Thus, the developed CNN
accelerator must be designed carefully to meet the varying
requirements of different layers and needs to be flexible to
maximize the performance for each CNN layer.

As technology advances, FPGAs continue to grow in size
and capabilities. It is crucial to have some mechanisms for
addressing the requirements for efficient implementations
of deep learning networks. Addressing hardware resource
limitations requires reuse of computational resources, and
storing of partial results in internal memories. Data transfer
and computational resource usage are significantly impacted
by the ordering of operations and selection of parallelism in
the implementation of CNNs on FPGAs. Careful scheduling
of operations can result in significant reduction in external
memory access and internal buffer sizes. External mem-
ory bandwidth requirements can be also decreased by using
reduced precision for representing the weights with minimal
impact on solution quality, which also results in a better
energy efficiency. In addition, the number of external mem-
ory accesses can be reduced by utilizing on-chip memory
and exploiting data reuse. Furthermore, the large number of
weights in the fully connected layer can be reduced, based on
utilizing singular value decomposition (SVD) [101] with a
small impact on accuracy. In the next section, we will review
various design approaches used to cope with those challenges
for implementing deep learning networks.

III. ACCELERATION OF DEEP LEARNING NETWORKS:
CURRENT STATUS
In this section, we will start by covering convolutional neural
networks (CNNs) compression techniques as they have a sig-
nificant impact on the implementation complexity of CNNs.
CNNs compression techniques target the minimization of the
number of operations and the memory footprint with minimal
impact on accuracy. Then, we discuss hardware acceleration
techniques for deep learning (DL) algorithms and CNNs
based on both application specific integrated circuit (ASIC)

7828 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

and field programmable gate array (FPGA) implementa-
tions. In general, hardware accelerators focus on designing
specific modules and architectures that ensure data reuse,
enhance data locality, and accelerate convolutional (CONV)
layer operations based on performing needed operations in
parallel.

A. CNNs COMPRESSION
In this subsection, we review techniques that target the com-
pression of CNNs which results in significantly reducing
their implementation complexity with minimal impact on
accuracy.

Denton et al. [102] proposed a technique to reduce
the memory footprint for the network weights in object
recognition systems. They used singular value decompo-
sition (SVD) [101] and filter clustering methods for this
purpose. The results for convolutional model of 15 layers
in [48] show that the proposed technique speeds up the oper-
ations in convolutional layers by a factor of 2, compared to
CPUEigen3-based library implementation [103]. In addition,
it successfully achieved 13× memory footprint reduction for
the fully connected layers while preserving the recognition
accuracy within 99%.

In another work, Han et al. [104] employed network prun-
ing techniques [105]–[107] to reduce the over-fitting and
complexity of neural network models. Their results demon-
strated that pruning redundant connections as well as less
influential connections achieved 9× and 13× compression
for AlexNet and VGG-16 models, respectively, while achiev-
ing zero accuracy loss for both.

In a subsequent work, Han et al. [108] proposed a deep
compression technique for more reduction of the storage
requirements of CNNs through the enforcement of weights
sharing. Deep compression basically consists of pruning,
trained weights quantization, and Huffman coding pipeline
stages. The experimental results show that the proposed com-
pression technique successfully reduced the storage require-
ment of AlexNet and VGG-16 CNNmodels by 35× and 49×,
respectively, without affecting their accuracy. This also
improved the power efficiency (a.k.a., performance per Watt)
by 3× to 7×.

B. ASIC-BASED ACCELERATORS
In this subsection, we present some recent work in the area of
hardware-based accelerators (ASICs).

An ASIC-based hardware accelerator referred to as
DianNao [109] was designed for large-scale convolutional
neural networks and deep neural networks. DianNao accel-
erates neural networks by minimizing memory transfers,
which opened a new paradigm for hardware accelerators.
Since the weights are repeatedly used in the computations of
convolution layers, frequent memory access can significantly
degrade the overall performance. Therefore, the authors
exploited the locality properties of neural network layers to
design custom storage structures that take advantages of these
properties. In addition, they employed dedicated buffers and

tiling techniques to reduce the overall external memory traffic
through increasing data locality.

Chen et al. [109] also observed that using short fixed-
point representation of feature maps (FMs) and weights can
also significantly reduce computation resources and mem-
ory footprint. They found that the area and power of a
32-bit multiplier can be reduced by a factor of 0.164× and
0.136×, respectively, using 16-bit multipliers. Consequently,
DianNao has been implemented using 65nm fabrication tech-
nology with 16-bit fixed-point arithmetic units, 6 bits of
which are used for the integer part and the remaining 10 for
the fractional part. The experimental results demonstrated
that DianNao has an average performance of 452 GOPS with
power consumption of 485 mW. The results depicted that
using 16-bit arithmetic units instead of 32-bit ones introduced
only 0.26% accuracy loss on MNIST dataset [110]. On the
other hand, the scalability and efficiency of DianNao accel-
erator are severely limited by the bandwidth constraints of the
memory system.

In a related research work, Chen et al. [111] and
Luo et al. [112] proposed DaDianNao multi-chip super-
computer which offers sufficient memory capacity suitable
for on-chip storage of all weights in CNNs. This system
is mainly important for today’s large-scale deployments of
sophisticated industry and consumers services. DaDianNao
uses 16-bit fixed-point numbers in the inference process like
DianNao, but it is implemented using 28nm technology. The
results show that DaDianNao outperforms the performance
of a single GPU architecture by up to 656.63× and reduces
the average energy consumption by 184.05×with only 0.01%
accuracy error rate on MNIST dataset for a 64-chip system.

Another member of the DianNao family, called
PuDianNao [113], has been designed using TSMC 65nm
process to support multiple techniques and scenarios of
machine learning (ML). PuDianNao accelerates different ML
techniques through extracting their critical locality properties
and computational primitives with the use of on-chip storage
as well as 7 novel functional units. Experimental results show
that PuDianNao is 1.20× and 128.41× faster and energy-
efficient, respectively, than NVIDIA K20M GPU architec-
ture. However, both of DaDianNao [111] and PuDianNao
architectures have not been optimized to be used for embed-
ded applications.

To improve the scalability and energy efficiency of
DianNao design discussed in [109], ShiDianNao accelera-
tor was proposed [114]. ShiDianNao is designed especially
for real-time object recognition applications such as self-
driving cars, smartphones, and security using 65nm CMOS
technology. The proposed accelerator directly connects with a
CMOS/CCD sensor in the image processing chip. In addition,
all the weights of CNN layers are stored in SRAM on-chip
memory, as the target here is small CNNmodels. ShiDianNao
is embedded inside the processing chip to eliminate off-
chip DRAMmemory accesses andminimize data movements
between the SRAM holding the CNN model and the individ-
ual processing elements from the sensor. ShiDianNao has a

VOLUME 7, 2019 7829

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

power consumption of 320.10 mW with a peak performance
of 194 GOPS under 1 GHz working frequency. Moreover,
ShiDianNao has 1.87× speedup and is 60× more energy-
efficient than DianNao [109].

However, DianNao [109], DaDianNao [111], [112],
PuDianNao [113], and ShiDianNao [114] are not imple-
mented using FPGA or any other reconfigurable hardware.
Therefore, they cannot be efficiently adapted to different
application demands (i.e., different neural network sizes).
In addition, ASIC designs have a long development cycle
and lack flexibility for handling varying DL network designs.
Finally, CNN accelerators, which store all weights on-chip
such as ShiDianNao [114], will not be able to support realistic
large-scale CNN models.

Similar approaches to the DianNao family of techniques
are presented in [115] with similar limitations. ISAAC [116]
and PRIME [117] have explored in-memory processing to
design an acceleration architecture for neural networks. The
proposed ISAAC architecture has achieved better improve-
ments of 14.8×, 5.5×, and 7.5× in throughput, energy, and
computational density, respectively, than the state-of-the-art
DaDianNao architecture.

In CNNmodels, fine-grained parallelism appears at feature
map level, in the neuron level, and in the synapse level.
Lu et al. [118] reviewed current accelerators that exploit
the intrinsic parallelism and observed a mismatch between
the parallel types supported by the computing engine and
the dominant parallel types that appear in CNN workloads.
They identified that most of the previous techniques proposed
solutions that fall into one of the three representative architec-
tures: (i) Systolic, (ii) 2D-mapping, and (iii) Tiling.

Due to limitations of dataflow of each of the above
three architectures, most existing accelerators support only
one specific parallelism. Systolic architectures exploit
synapse parallelism (SP), 2D-mapping architectures exploit
neuron parallelism (NP), and tiling architectures exploit fea-
ture map parallelism (FP). However, in a practical CNN,
the dominant parallel type depends on the number of input
FMs, the number of output FMs, the size of the output FMs,
and the size of the kernel.

With three components (feature map, neuron, synapse) that
can be either left serial, or parallelized, we get 23 possi-
ble combinations. An example of processing style could be
SFSNMS, meaning, single feature map, single neuron, and
multiple synapse.

To address the above problem, and support all possi-
ble processing styles, Lu et al. [118] proposed a flexible
dataflow architecture, called FlexFlow, with minimal con-
trols. FlexFlow supports all types of data paths in each type
of parallelism in different layers efficiently.

As a first step, a modification to the processing ele-
ment (PE) micro-architecture, and the interconnections
between PEs, is proposed. PEs are arranged in rows where
each row can complete one convolution and serve one output
neuron. The adders in each PE row are connected to form the
adder tree. Fig. 5 illustrates the proposed PE in FlexFlow and

FIGURE 5. Processing Element (PE) Architecture in; (a) FlexFlow,
(b) 2D-Mapping [118].

that in 2D-mapping architecture. By eliminating dependency
between adjacent PEs, the proposed convolutional unit sup-
ports the comprehensive MFMNMS parallelisms. To cater to
different types of parallelisms, they also proposed a hierar-
chical dataflow with high data ‘‘routability’’ and low control
overhead. The entire dataflow can be divided into three sub-
flows: (i) distribution to local storage in each PE, (ii) fetching
of data from local storage for operators (multiplier and adder),
and, (iii) dataflow from neuron and kernel buffers to the
distribution layer. They also presented a method to determine
parallelization type and degree (i.e., the unrolling parameters)
for each CONV layer.

FlexFlow architecture was evaluated for computing
resource utilization, performance, power, energy, and area.
Comparison was made with three typical architectures (i.e.,
systolic, 2D-mapping, and tiling) using six practical work-
loads, including AlexNet and VGG. They also examined
the scalability of FlexFlow in terms of resource utilization,
power, and area with growing scales of computing engine.

From experimental results, it was found that computing
resource utilization of each baseline was over 80% across all
workloads in contrast to other baselines that utilized less than
60% (most of them less than 40%). In terms of performance,
FlexFlow demonstrated over 420 GOPS performance with
1 GHz working frequency. It also outperformed others in
terms of data reusability and power efficiency.

C. FPGA-BASED ACCELERATORS
In this subsection, we will review recent techniques employ-
ing FPGAs for the acceleration of deep learning networks.
For each reviewed technique, we will highlight the key fea-
tures utilized to maximize performance and throughput in the
acceleration process.

FPGA implementations of CNNs appeared in the
mid-1990’s when Cloutier et al. [119] designed the virtual
image processor (VIP) on Altera EPF81500 FPGA. VIP is
a single-instruction stream multiple-data streams (SIMD)
multiprocessor architecture with a 2D torus connection topol-
ogy of processing elements (PEs). VIP improves the perfor-
mance through the use of low-accuracy arithmetic to avoid

7830 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

implementing full-fledged multipliers. Fortunately, recent
digital signal processing (DSP)-oriented FPGAs include
large numbers of multiply-and-accumulate (MAC) units
which allow for extremely fast and low power CNN
implementations.

Thereafter, FPGA implementations of deep learning net-
works have mainly focused on accelerating the computa-
tional engine through optimizing CONV layer operations.
Several studies in the literature [120]–[126] have reported
FPGA-based implementations of convolution operation.

Farabet et al. [127] presented an FPGA implementa-
tion of CNN that uses one dedicated hardware convolver
and a soft-processor for data processing and controlling,
respectively. The proposed implementation is referred to as
convolutional network processor (CNP). CNP exploits the
parallelism of CONV layers to accelerate the computational
engine of CNNs while fully utilizing the large number of
DSPs, the MAC hardware units on FPGA. The proposed
architecture consists of Virtex4 SX35 FPGA platform and
external memory. The authors designed a dedicated hardware
interface with the external memory to allow 8 simultaneous
read/write accesses transparently. In addition, they used first
in first out (FIFO) buffers between the FPGA and the external
memory chip in both directions to guarantee the steadiness of
dataflow.

The vector arithmetic and logic unit in CNP implements 2D
CONV, pooling, and non-linear activation function operations
of convolutional networks. The implementation of 2DCONV
with kernel of size 3 (i.e., K = 3) is shown in Fig. 6, where
x is the data from input feature map (FM), y is the partial
result to be combined with the current result, z is the result
to the output FM, Wij is the weight value in the convolution
kernel, and W is the width of the input image. It can be
seen that the proposed convolutional module accomplishes
K 2 MAC operations simultaneously in each clock cycle.
CNP represents FMs and weights using 16-bit (Q8.8) fixed-
point format. The proposed accelerator has been implemented

FIGURE 6. 2D Convolution Module of 3× 3 Kernel [127].

for a face detection system with LeNet-5 architecture [128].
It utilized 90% and 28% of the general logic and multipliers,
respectively. In addition, CNP consumed less than 15 Watts
of power.

Sankaradas et al. [129] proposed a massively parallel
coprocessor to accelerate CNNs using Virtex5 LX330T
FPGA platform. The proposed accelerator mainly focused on
optimizing computation engine by employing the parallelism
within convolution kernel and FMs. The coprocessor can be
considered as parallel clusters of vector processing elements
(VPEs) where each cluster is designed using 2D convolvers,
adders, sub-samplers, and look-up tables. Each VPE consists
of multiplier-accumulator and programmable register units
to hold kernel weights and FM data. To hold the massive
intermediate data of CNNs, the authors employed a dedi-
cated off-chip memory (4 DDR2 memory banks) with a large
bandwidth on the coprocessor card. Moreover, the proposed
accelerator uses a low precision data representation feature
with memory packing to further improve the memory band-
width as well as the throughput. 20-bit and 16-bit fixed-point
representations were utilized for kernel weights and FMs,
respectively.

The authors examined their architecture on CNN with
4 CONV layers and without any fully connected (FC) layer
for a face recognition application. The results show that the
proposed coprocessor is 6× faster than a software imple-
mentation on a 2.2 GHz AMD Opteron processor with less
than 11 Watts of power dissipation. However, the proposed
accelerator cannot be used to accelerate full CNNs as it
uses few CONV layers without any FC layer. A full CNN
model consists of both CONV layers and FC layers. Thus,
an efficient CNN accelerator for real-life applications is
needed to consider both. Similar approaches to the work of
Sankaradas et al. [129] are presented in [130] and [131] to
accelerate support vector machines (SVM).

MAPLE [132] is a programmable FPGA prototype system
presented to accelerate both learning and classification tasks
in applications with unstructured large amount of data. The
authors analyzed five workload domains to help in design-
ing MAPLE. These workloads are SVM [133], supervised
semantic indexing (SSI) [134], K-means [135], generalized
learning vector quantization (GLVQ) [136], and CNNs [71].
They found that their computations can be structured as par-
allel streams of vector or matrix operations. Thus, they archi-
tected MAPLE as a 2D grid of vector processing elements as
shown in Fig. 7. To efficiently perform matrix multiplication,
they allocate a private local storage to each PE which is
used to store a column, or part of it, from the multiplier
matrix. In this way, matrix multiplication is accomplished
by streaming the multiplicand matrix rows through the PEs
where each PE performs aMAC operation. The PEs are orga-
nized in clusters, where each group is served by a separate
memory bank of the banked off-chip memories, which create
independent streams for processor-memory computation.

Moreover, MAPLE uses on-chip smart memory blocks
to process the large intermediate data on-the-fly using

VOLUME 7, 2019 7831

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 7. MAPLE Processing Core Architecture [132].

FIGURE 8. MAPLE Smart Memory Block [132].

in-memory processing. Fig. 8 shows the architecture of the
smart memory block. To illustrate the idea of on-the-fly
in-memory processing, lets consider finding the maximum
K elements. The filter compares the input data with the
threshold value (VAL). If the input value is greater than VAL,
it updates the list by replacing VAL at address ADDR with
the input value. Then, the scanner (SCAN) searches for the
new minimum value in the list and updates the threshold
VAL and ADDR accordingly. It should be mentioned here
that the employment of in-memory processing reduced the
off-chip memory traffic by 1.64×, 25.7×, and 76× for SSI,
K-means, and CNN workloads, respectively. MAPLE pro-
totype has been implemented on Virtex5 SX240T platform
running at 125MHz. The experimental results for face and
digit recognition CNNs [137]–[139] show that MAPLE is
50% faster than that for 1.3 GHz NVIDIA Tesla C870 GPU
implementation.

Chakradhar et al. [100] proposed a dynamically config-
urable CNN architecture on FPGA. The proposed system
consists of three main components; a coprocessor, a dynam-
ically configurable CNN (DC-CNN) processing core, and
3-bankmemory subsystem. The coprocessor is designed such
that it automatically configures the software and the hardware
elements to fully exploit the parallelism at the workload level.
DC-CNN is responsible for executing CNN applications and

FIGURE 9. The Architecture of DC-CNN [100].

its architecture is shown in Fig. 9. It consists of m com-
putational elements (each with n 2D convolvers as well as
sub-sampling (S) and non-linearity (NL) pipelined units),
m adders (each with n inputs), and input/output switches. The
internal structure of the switches vector encloses m × n
selectors which are used to help in exploring the entire
design space and to provide the configurability function
across different layers of CNN model. To determine the
best (m, n) feasible combination for each layer, the system
analyzes the workload using integer factorization techniques
because it is considered fast for small numbers [140], [141].
Dynamic programming is also used to quickly prune infeasi-
ble combinations.

The authors compared the proposed DC-CNN architecture,
considering 20 2D convolvers as well as a memory subsystem
of 128-bit port width, with a 1.35 GHz NVIDIA’s GPU
implementation. The results show that DC-CNN achieved
4.0×, 4.4×, 5.4×, 6.0×, and 6.5× speedup for face recog-
nition [137], face detection [139], mobile robot vision [127],
video surveillance [100], and automotive safety [100] work-
loads, respectively. It is worth mentioning that DC-CNN is
the first architecture that achieves a performance suitable
for real-time processing for video streaming as it processes
up to 30 frames per second. In addition, DC-CNN is more
energy-efficient than the GPU implementation as it consumes
14 Watts, while more than 150 Watts are consumed by the
GPU. On the other hand, the authors modeled their architec-
ture on a CNN with 3 CONV layers only without any FC
layer which makes it unsuitable for today’s other real-life
applications.

A second-generation of CNP [127] architecture has been
proposed in [142] by designing a stream processor system.
The proposed design replaces the dedicated hardware con-
volver in CNP with multiple parallel vector processing units,
named as ALUs, laid out in a 2D grid. EachALU is composed
of four local routers, one global router, and a streaming
operator. The local routers are used to stream data to/from
the neighbors. Streaming data to and from global data line
is done through the global router. The streaming operators
in the ALU are fully pipelined to produce a result per clock

7832 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

cycle as described in [127] with the use of Q8.8 coding to
represent FMs and weights. The proposed system also uses a
multi-port direct memory access (DMA) streaming engine to
allow individual streams of data to operate seamlessly within
processing blocks. The results show that the proposed stream
processor system can run small CNNs at up to 30 fps while
consuming about 15 Watts.

An improved version of CNP architectures given
in [127] and [142] was presented in [143] and referred to
as neuFlow. Particularly, neuFlow has replaced the 2D grid
of ALUs with a 2D grid of processing tiles (PTs). The
proposed architecture contains a 2D grid of PTs, a control
unit, and a smart DMA module, as shown in Fig. 10. Each
PT consists of local operators and a routing multiplexer
(MUX). The top three PTs have been implemented to per-
form MAC operation. Thus, they can be used to perform
2D convolution, simple dot-products, and spatial pooling.
General-purpose operations, such as dividing and squaring,
have been implemented at the middle three PTs. Therefore,
the middle row of neuFlow can be used for normalization.
Finally, neuFlow’s bottom PTs row implements non-linear
operations. Moreover, each operator employed input and
output FIFOs to stall its pipeline when required. On the other
hand, PT’sMUX is used to connect its local operators with the
neighboring PT’s streaming operators and off-chip memory
instead of the used local routers and global router discussed
in [142].

FIGURE 10. The Architecture of neuFlow [143].

NeuFlow uses a dataflow compiler, named luaFlow,
to translate a high-level flow-graph representation of CNNs
in Torch5 [144] into HDL scripts with different levels of
parallelism. In addition, luaFlow produces a binary code
configuration file and holds it in the embedded control unit.
Thereafter, the control unit configures the 2D grid of PTs
(connections and streaming operator) and the DMA ports
through run-time configuration buses. A smart memory mod-
ule has been designed to support multiple asynchronous
accesses of off-chip memory through its reconfigurable ports.
By targeting the larger Xilinx Virtex6 VLX240T FPGA, neu-
Flow achieved 147 GOPS at 10 Watts for street scene parsing
CNN in [145] with the use of 16 bits to represent FMs and
weights.

Peemen et al. [146] utilized the flexible off-chip memory
hierarchy method to design a configurable memory-centric
accelerator template for a variety of models of CNNs. This
accelerator exploits data reuse in complex access patterns to
reduce off-chip memory communication, which minimizes
the bandwidth requirements. The memory-centric accelerator
maximizes the efficiency of on-chip memories for better
data locality using loop transformation (to optimize the tiling
parameters) and block RAM (BRAM)-based multi-bank on-
chip buffers [147]. At the same time, it minimizes the size of
FPGA on-chip memories to optimize energy and area usage,
which are key requirements for embedded platforms.

The memory-centric accelerator uses a SIMD cluster of
MAC PEs with flexible reuse buffers to accelerate the CONV
layer. The acceleration template has been implemented on
Virtex6 FPGAs. In addition, aMicroBlaze processor has been
utilized to configure and communicate with the accelera-
tor via FIFO-based fast simplex link (FSL). The proposed
accelerator has been analyzed for a CNN vision task of size
2.74 GMAC and the results show that the memory-centric
accelerator is 11× faster than the standard implementation
of similar FPGA resources.

Neural network next (nn-X) [148] is a real-time system-
on-chip (SoC) computing system for deep learning networks
on mobile devices. The architecture of nn-X consists of a
host processor, a co-processor, and external memory. The
co-processor accelerates the learning networks by paral-
lelizing their operations throughout arrays of configurable
processing elements referred to as collections. Each collec-
tion contains one convolution engine, one pooling module,
and one non-linear operator. The CONV engine acceler-
ates the CONV operation by fully pipelining the incoming
data with the use of cache memories. The collections are
able to communicate with one another using the collec-
tion route component to achieve cascaded pipelining, which
results in reducing accesses to external memory. The data
transfer between the collections and the external memory is
accomplished throughout the co-processor full-duplex mem-
ory router, which provides independent data streams. The
nn-X has been prototyped on Xilinx ZC706 which contains
Zynq XC7Z045, two ARM Cortex-A9 processors, and 1 GB
DDR3. Eight collections have been employed to achieve large
parallelism. The results for face recognition model in [149]
show that nn-X is 115× faster than the two embedded ARM
processors.

Zhang et al. [55] proposed a roofline-based model to accel-
erate convolutional neural networks on FPGAs. The roofline
model is an intuitive visual performance model used to relate
the attainable performance to the peak performance that
can be provided by the hardware platform and the off-chip
memory traffic [150]. The focus in their work is primarily
on accelerating the convolutional layers as it consumes more
than 90% of the computational time during the prediction
process [77]. In doing so, the authors optimized both the
computation operations and the memory access operations
in convolutional layers. They considered a CNN applica-

VOLUME 7, 2019 7833

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

tion composed of five convolutional layers that won the
ImageNet competition in 2012 [28]. The proposed accelerator
uses polyhedral-based data dependence analysis [151] to
fully utilize all FPGA computational resources through loop
unrolling, loop pipelining, and loop tile size enumeration.
Note that loop unrolling maximizes the parallel computation
of CONV MAC operations. On the other hand, local mem-
ory promotion and loop transformation are used to reduce
redundant communication operations and to maximize the
data sharing/reuse, respectively.

Subsequently, the roofline performance model is used to
identify the optimal design from all possible solutions in
the design space. Specifically, the authors model all possi-
ble legal designs delivered from the polyhedral analysis in
roofline to find the optimal unrolling factor 〈Tm,Tn〉 for every
convolutional layer, where Tm and Tn are the tile size for the
output FMs and input FMs, respectively. However, designing
a CNN accelerator with different unrolling factors to each
convolutional layer is challenging. Therefore, the proposed
architecture enumerates all possible valid designs to find uni-
form cross-layer unrolling factors. Thereafter, the hardware
accelerator is implemented based on the cross-layer optimal
unrolling factors.

The proposed accelerator composed of a computational
engine and memory sub-system is depicted in Fig. 11. The
computation engine is designed as Tm duplicated tree-shaped
poly structures with Tn inputs from the input FMs, Tn inputs
from the weights, and one input from the bias. On the other
hand, the memory sub-system is implemented as four sets of
on-chip buffers; two sets to store the input FMs and weights,
each with Tn buffer banks, and two buffer sets of Tm inde-
pendent banks for storing the output FMs. To overlap data
transfer with computation, on-chip buffers are operated in
a ping-pong manner. In addition, two independent channels
are implemented for load and off-load operations to increase
the bandwidth utilization. Moreover, MicroBlaze processor
is used to send configuration parameters and commands
for the accelerator over AXI4lite bus. The CNN accelerator
communicates with external data transfer engines through

FIGURE 11. Zhang et al. [55] Accelerator Architecture.

FIFO interfaces, where the data transfer engines are used to
access DDR3 DRAM memory through AXI4 bus.

The accelerator is designed using Vivado 2013.4 high level
synthesis tool and implemented on Xilinx VC707 FPGA
board clocked at 100 MHz. The experimental results depict
that the proposed implementation achieves a peak perfor-
mance of 61.62 GFLOPS as well as a 17.42× speedup over
the software implementation on Intel Xeon CPU E5-2430 at
2.20 GHz with 15 MB cache and 16 threads. In addition to
this, the results show that the proposed FPGA architecture
is 24.6× more energy-efficient than the software implemen-
tation as the total power consumption is only 18.6 Watts.
The proposed implementation has some limitations such as
designing the accelerator with new cross-layer unrolling fac-
tors for different architectures of CNNs. Furthermore, using
the CNN accelerator with uniform unrolling factors might be
sub-optimal for some CONV layers, which affects the overall
performance.

In 2014, Microsoft research team of Catapult project
integrated FPGA boards into data center applications to suc-
cessfully achieve 2× speedup for Bing Ranking (the large-
scale search engine) [67]. A year later, Ovtcharov et al. [152]
at Microsoft Research utilized Catapult hardware infrastruc-
ture, a dual-socket Xeon server equipped with Stratix-V
GSMD5 FPGA, to design a specialized hardware for accel-
erating the forward propagation of deep CNNs in a power-
constrained data center.

The top-level architecture of the proposed CNN accel-
erator is shown in Fig. 12. Multi-banked input buffer and
kernel weight buffer are used to provide an efficient buffer-
ing scheme of FMs and weights, respectively. To minimize
the off-chip memory traffic, a specialized network on-chip
has been designed to re-distribute the output FMs on
the multi-banked input buffer instead of transferring them
to the external memory. The 3D convolution operations
(such as the dot-product) and other CNN operations are

FIGURE 12. Top-Level Archeticture of Microsoft CNN Accelerator [152].

7834 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

independently performed using spatially distributed scalable
vectors of PEs. The controller engine is responsible for
streaming and data delivery of multi-banked input buffer
and kernel weight buffer data to each of the PE vectors.
In addition, it supports configuring multiple CNN layers at
run-time. The results show that the proposed design is able
to classify 134 images/sec, while consuming about 25 Watts,
for AlexNet model on ImageNet-1K dataset [28], which is 3×
better than the published throughput results for the Roofline-
based FPGA Accelerator [55]. The authors mentioned that
using top-of-the-line FPGAs such as Arria 10 GX 1150
improves the throughput to around 233 images/sec.

Qiu et al. [98] proposed an FPGA design to acceler-
ate CNNs for a large-scale image classification challenge
on embedded systems. The focus was on accelerating both
CONV and FC layers, since they are considered as the
most computational-centric and the most memory-centric
operations in CNNs, respectively. The proposed accelera-
tor reduces the resource consumption using specific design
of convolver hardware module. In addition, the authors
applied singular value decomposition (SVD) to the weight
matrix of FC layer in order to reduce memory footprint at
this layer [101]. To further reduce memory footprint and
bandwidth requirement of CNN, they proposed a dynamic-
precision data quantization flow component. This component
is responsible for finding the optimal fractional length for
weights in each layer as well as the optimal fractional length
for FMs in adjacent layers, while achieving minimal accuracy
loss. Then, it converts the floating-point numbers represent-
ing weights and FMs into fixed-point numbers.

In addition, the authors proposed a data arrangement
scheme that maximizes the burst length of each transaction
to the external memory to accelerate CONV and FC layers,
as well as to avoid unnecessary access latency. Note that
maximizing the DRAM burst length raises up the effective
DRAM bandwidth [55], [153].

The proposed architecture consists of a processing sys-
tem (CPU) and programmable logic (FPGA). CNN computa-
tions are performed through special design of processing ele-
ment modules in FPGA. The main modules in the processing
element are convolver complex, max-pooling, non-linearity,
data shift, bias shift, and adder tree, as shown in Fig. 13. The
convolver complex is designed as a classical line buffer [154],

FIGURE 13. Processing Element Module of Qiu et al. [98] Embedded
Accelerator Architecture.

FIGURE 14. Convolver Complex Design of Qiu et al. [98] Embedded
Accelerator Architecture.

as shown in Fig. 14, to achieve convolution operations as
well as to compute FC layer multiplication of matrix-vector.
The pooling layer implemented in the max-pooling module
is used to output the maximum value in the input data stream
with a window of size 2. The activation function of CNN is
applied to the input data stream using the non-linearity mod-
ule. The adder tree accumulates the partial sums generated
from the convolvers. Finally, data shift and bias shift modules
are responsible for accomplishing dynamic quantization.

The proposed embedded FPGA platform has been imple-
mented using VGG-16-SVD network with 16-bit fixed-point
numbers on Zynq XC7Z045 platform. The results demon-
strate that applying SVD technique reduces memory footprint
of FC layer by 85.8% with a compression rate of 7.04%
while introducing an accuracy loss of only 0.04%. Finally,
the overall performance of the proposed accelerator reported
is 136.97 GOPS under 150 MHz working frequency with
the top-5 accuracy of 86.66% and a total power consumption
of 9.63 Watts.

DeepBurning [155] is an FPGA-based neural network
(NN) design automation tool. It allows for building learning
accelerators for specific NN with optimized performance
and custom design parameters configuration using a pre-
constructed register transfer level (RTL) module library. The
RTL library holds the hardware descriptive scripts for NN
reconfigurable components as well as their configuration
scripts. In addition, it contains other RTL building blocks
for logical and arithmetic operations such as the connection
box (used to exchange data between NN layers as well as to
approximate the division operation) and approximate look-up
table (LUT) (used to simplify a function or operation to allow
it to be mapped into hardware).

In order to design an optimized hardware, DeepBurning
compresses the passed NN model to the greatest extent using
temporal and spatial folding which helps also in satisfying
the resource constraints and minimizing the required hard-
ware modules. DeepBurning not only generates the hardware
description for neural network scripts, but also analyzes the
complex access pattern and data locality using an integrated

VOLUME 7, 2019 7835

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

compiler to generate a run-time control flow which pro-
vides energy-efficient, and, better data reuse implementa-
tion. In addition, the DeepBurning compiler investigates the
accelerator on-chip memory size and throughput to properly
tile and partition the NN weights and feature data layouts.
Moreover, DeepBurning uses the address flow component to
automatically fetch and store off-chip memory and on-chip
memory data. The authors compared the performance of
DeepBurning with that in [55], considering AlexNet CNN
model, as they both operate at 100 MHz. They consid-
ered a high budget resources constrained DeepBurning on
Zynq-7045 device. The results show that DeepBurning is
1.13× slower but 1.45× more energy-efficient.
An OpenCL-based optimization framework to accelerate

large-scale convolutional neural network models was pro-
posed by Suda et al. [80]. They found that the number
of performed CONV MAC operations in parallel (NCONV),
SIMD vectorization factor (SCONV), normalization layer loop
unrolling factor (NNORM), the number of parallel pooling
outputs in one cycle (NPOOL), and the number of parallel FC
MAC operations (NFC) are the key variables that determine
the parallelism of the design. Subsequently, they analytically
and empirically modeled the execution time for each layer
as a function of the above mentioned variables. Then, genetic
algorithmwas used to explore the design space for finding the
optimal combination of the key design variables considering
the resources constraints.

The authors implemented the scalable CONV block in a
similar fashion to that in [138] as a matrix multiplication by
flattening and on-the-fly rearrangement of the feature data.
The OpenCL software has been utilized in their work due
to its parallel programming model as well as its ability to
integrate the compiled RTL design with external memory
interfacing IPs [156], which uses memory coalescing tech-
nique with complex load and store units. In addition, it has
optimized matrix multiplication and CPU-FPGA communi-
cation libraries [157], [158].

The framework is used on both VGG-16 and AlexNet
CNN models which are implemented on P395-D8 [159] and
DE5-Net [160] FPGA boards with fixed-point operations
according to their precision study. They compared the pro-
posed implementation with 3.3 GHz core i5-4590 CPU
implementation that uses Caffe tool [58] with ATLAS [161]
optimized library for matrix/vector operations. The results
show that the OpenCL optimized framework on P395-
D8 achieved 5.5× (117.8 GOPS) and 9.5× (72.4 GOPS)
speedups for VGG-16 and AlexNet models, respectively.
On the other hand, DE5-Net FPGA achieved less throughput
speedup than the P395-D8 (2.2× (47.5 GOPS) for VGG-16,
and 4.2× (31.8GOPS) for AlexNet) as it has 7.67× less DSPs
than what is available on P395-D8.

Zhang et al. [153], [162] analyzed the transformation of
CONV and FC layers to regular matrix multiplication pre-
sented in prior work [98]. For VGG-16 model, they found
that such transformation necessitates up to 25× duplica-
tion of input FMs. To address this problem and improve

the bandwidth utilization, they designed a uniformed matrix
multiplication kernel that uses either input-major mapping
(IMM) or weight-major mapping (WMM) techniques while
computing FC layer. In IMM, the designed kernel batches
a group of different input FMs together, and then performs
the matrix multiplication. IMM technique improves the data
reuse of FC weights. On the other hand, the designed kernel
with WMM technique makes use of the fact that the FC layer
is communication-bound in which the weight matrix is much
larger than the input FM matrix. In particular, it loads input
FMmatrix to a weight buffer and loads weight matrix to input
FM buffer. Subsequently, a regular matrix multiplication is
performed on these matrices. As a result, WMM may allow
for a higher data reuse than IMM, especially for input FMs
that can be reused multiple times considering the limited
hardware resources.

For the above, the roofline model was applied to identify
the optimal mapping technique under different batch sizes
and data precisions. The results demonstrate that WMM is
better than IMM in term of data reuse and bandwidth uti-
lization, especially in small batch sizes which is required for
real-time inference. Hence, the same matrix multiplication
kernel is utilized for the computation of both CONV and
FC layers, but with the use of IMM in CONV layer and
WMM in FC layer. Based on this, the authors proposed a soft-
ware/hardware co-design library, which they namedCaffeine,
to accelerate CNNs on FPGAs.

With an easy-to-use developed tool, Caffeine aids in
automatically choosing the best hardware parameters, using
the model files from Caffe and FPGA device specifica-
tions obtained from the user. Caffeine FPGA engine uses a
high-level synthesis (HLS)-based systolic-like architecture to
implement matrix multiplication kernel. It allows changing
parameters such as number of PEs, precision, and FM size.
Caffeine further maximizes the FPGA computing capability
by optimizing multi-level data parallelism discussed in [55]
and pipeline parallelism using polyhedral-based optimization
framework given in [163]. Caffeine framework also handles
the weights and biases reorganization in off-chip DRAM
to maximize the underlying memory bandwidth utilization.
In addition, the double-buffering technique is employed to
prefetch the next data tile for each PE. Caffeine has been
evaluated by implementing AlexNet and VGG-16 CNNs on
Ultrascale KU060 (20nm and 200MHz) and on Virtex7 690T
(28nm and 150 MHz) considering different precisions. The
VGG-16 implementation with 16-bit fixed-point on Ultra-
scale KU060 and Virtex7 690T provided 43.5× and 65×
overall throughput enhancement, respectively, compared to
implementation on a two-socket server, each with a 6-core
Intel CPU (E5-2609 at 1.9 GHz).

A special case of dataflow, referred to as synchronous
dataflow (SDF) [164], is a paradigm of computation that
allows for representing a computing system as a stream-
ing problem. In this way, SDF model can represent the
hardware implementation of CNNs using linear algebra and
directed SDF graph (SDFG). Each node of SDFG represents a

7836 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

hardware building block that can immediately start its com-
putation as soon as the data are available through its input
arcs. Such representation of CNN model offers a fast design
space exploration. Venieris and Bouganis [165] employed
SDF model to optimize the mapping of CNNs onto FPGAs
based on HLS.

In particular, the proposed fpgaConvNet framework
in [165] takes as input a high-level script programmed by DL
expert describing the CNN model, along with specifications
of the targeted FPGA platform. Thereafter, it parses the input
script through a developed domain-specific language (DSL)
processor to model the CNN in the form of a directed acyclic
graph (DAG) where each node corresponds to a CNN layer.
Then, the DAG-based CNN is transformed into an SDFG
representation and modeled as a topology matrix. The topol-
ogy matrix contains the number of incoming parallel streams,
the width of each data stream, and the production or con-
sumption rates at each node. In addition, the DSL proces-
sor extracts information about the platform-specific resource
constraints.

Unlike other attempts, instead of exploring the design
space for the optimal parameters of loop unrolling and tiling,
fpgaConvNet explores the design space of the topology
matrix components while considering the resource con-
straints. In doing so, fpgaConvNet performs graph partition-
ing, coarse-grained folding, and fine-grained folding. The
graph partitioning splits the original SDFG into subgraphs
and each subgraph is then mapped to a distinct bitstream
as shown in Fig. 15. Note that the proposed multi-bitstream
architecture might have multiple CONV layer processors
(CLPs), as in the provided example. This away, on-chip
RAM is used for intermediate results and data reuse within
the subgraph, while accesss of off-chip memory is mini-
mized and limited for input and output streams of the sub-
graph. However, this scheme adds reconfiguration penalty
due to the need for reconfiguring the FPGA when the data
flows between adjacent subgraphs. To amortize this over-
head, several input data streams are processed in a pipelined
manner.

FIGURE 15. SDF Graph Partitioning [165].

Thereafter, each bitstream architecture is optimized using
coarse-grained folding and fine-grained folding. In coarse-
grain folding, CONV, pooling, non-linear, and other major
operations of each layer are unrolled to provide the high-
est possible throughput by having several parallel units of
each operation. The fine-grain folding controls the unrolling
and pipelining of the dot-product operations inside CONV
and average pooling units. Instead of fully unrolling the

implementation of dot-product which produces a 1 dot-
product per cycle, with the use of a high number ofmultipliers
and adders, fpgaConvNet uses a smaller number of MAC
units and schedules the execution of different operations
using time-multiplexing. A trade-off between the perfor-
mance and the required hardware resources can be achieved
by changing the unroll factor and the degree of multiplex-
ing. Therefore, fpgaConvNet employed simulated anneal-
ing [166] to find the optimal partitioning points and folding
factors. Finally, fpgaConvNet uses optimal components to
derive the configuration of PEs and buffers, and generates
a synthesizable Vivado HLS hardware design.

fpgaConvNet framework has been evaluated by mapping
LeNet-5 and scene labeling [167] small CNN models
with Q8.8 fixed-point representation onto a Zynq-7000
XC7Z020 FPGA platform working at 100 MHz. In mapping
LeNet-5, fpgaConvNet achieves up to 1.62× the performance
density of CNP [127]. Compared to Tegra K1 GPU imple-
mentation of scene labeling CNN, fpgaConvNet surpasses
Tegra K1’s power efficiency by 1.05×.

Ma et al. [78] proposed a Python-based modularized
RTL compiler to accelerate CNNs by employing loop
unrolling optimization [55], [79] for CONV layer operations.
A detailed review article of this work has been recently pub-
lished and referred to as ALAMO [168]. The proposed com-
piler integrates both the RTL finer level optimization and the
flexibility of HLS to generate efficient Verilog parameterized
RTL scripts for ASIC or FPGA platform under the available
number of parallel computing resources (i.e., the number of
multipliers (Nm)). If Nm is greater than the number of input
FMs (Nif), the proposed compiler fully unrolls Loop-3 (Nif ,
refer to subsection II-A.1 for more details) while it partially
unrolls Loop-4 (Nof) to exploit the data reuse of shared
features among Nm/Nif output FMs. Otherwise, it partially
unrolls Loop-3 which results in Nif /Nm repeated sliding of
kernel window. On the other hand, Loop-2 (X ×Y) is serially
computed after Loop-1 (K) to minimize the number of partial
sums.

The overall modules of the proposed CNN accelerator
are shown in Fig. 16. The controller is responsible for
directing and ensuring in-order computation of CNNmodules

FIGURE 16. ALAMO Overall Acceleration Modules [78].

VOLUME 7, 2019 7837

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

for each layer. The data routers oversee the selection of data
read and data write of two adjacent modules as well as the
assignment of buffer outputs to shared or pool multipliers of
the multiplier bank. The feature buffers hold the FMs using
on-chip RAMs. The weight buffers are used to ensure the
availability of CONV and FC layers’ weights before their
computation as well as to overlap the transfer of FC layer
weights with its computation. The CONV module consists
of control logic, groups of adder trees, and ReLU compo-
nents. The control logic component parameterizes the loop
unrolling factors based on the configuration of each layer
(Nif , Nof , X , Y , and K). The CONVmodule contains Nm/Nif
adders to sum Nif parallel multiplier results and accumulate
them. Moreover, the adder trees can be shared by layers with
identical Nif to be as one single module. The ReLU compo-
nent checks the input pixel sign bit to either output zero or the
data pixel itself. The POOL module contains accumulators
or comparators to perform average or maximum operation,
respectively. TheNORMmodulemaintains the required com-
ponents to perform the operations of local response normal-
ization such as square, non-linear (using look-up table), and
multiplication operations. Finally, the FC module shares the
multiplier bank module with the CONV module to perform
the matrix-vector multiplication (MVM).

ALAMO architecture permits the output pixels to be only
stored in the feature buffers, which makes ALAMO suitable
for CNNs with only small intermediate data volumes. The
proposed RTL compiler has been tested by accelerating two
CNNmodels; AlexNet and NiN [169]. The generated param-
eterized RTL scripts for AlexNet and NiN are synthesized
using Altera Quartus synthesis tool and implemented on
DE5-Net FPGA board. The experimental results for AlexNet
model are compared with the results for OpenCL-based
design [80] as both use the same FPGA board with similar
hardware resources for AlexNet. ALAMO achieved 1.9×
and 1.3× improvement for throughput and power consump-
tion, respectively. Moreover, the overall throughput of NiN
model is 1.03× better than that of AlexNet. This is because
NiN has more CONV layers and many of them have the
same Nif .

Liu et al. [170] proposed a parallel framework for
FPGA-based CNN accelerators that exploits four levels of
parallelism; task level, layer level, loop level, and operator
level. Task-level parallelism involves executing multiple
image prediction tasks simultaneously. Layer-level paral-
lelism exploits pipelining across layers to enable parallel
execution of all layers with different images. Loop-level par-
allelism utilizes loop unrolling in performing convolutions
and this can be achieved either through intra-output or inter-
output parallelism. Finally, operator-level parallelism is
achieved by parallelizing the k × k MACs operations needed
for convolution operation in convolutional layers or the
n MACs needed for inner-product computation in fully con-
nected layers. Fig. 17 shows the parallel framework exploit-
ing these four levels of parallelism.

The authors have used 16-bit fixed-point format for repre-
senting pixels in input feature maps and output feature maps.
However, they have used 32 bits for intermediate results
which get truncated to 16 bits. In addition, they have used
8 bits for representing kernels and weights. They have pre-
sented a systematicmethodology for design space exploration
to find the optimal solution that maximizes the throughput
of an FPGA-based accelerator under given FPGA constraints
such as on-chip memory, computational resources, external
memory bandwidth, and clock frequency.

The proposed technique has been evaluated by imple-
menting three CNN accelerators on the VC709 board for
LeNet, AlexNet, and VGG-S. It has achieved a throughput
of 424.7 GOPS, 445.6 GOPS, and 473.4 GOPS for LeNet,
AlexNet, and VGG-S accelerators, respectively. In addition,
the performance has been compared with MatConvNet tool
running the CNN models on Intel Core i7-4790K CPU
(4.0 GHz) and NVIDIA GTX-770 GPU (1,536 CUDA cores,
2 GB GDDR5, 224.3 GB/s memory bandwidth). Compared
to the CPU implementations, the accelerators for LeNet,
AlexNet, and VGG-S achieved 14.84×, 6.96×, and 4.79× in
performance, respectively, and 51.84×, 24.69×, and 16.46×
in power efficiency, respectively. Compared to the GPU
implementations, the accelerators achieved better perfor-
mance in the small-scale network LeNet (3.17×), comparable

FIGURE 17. Parallel Framework Exploiting Four Levels of Parallelism [170].

7838 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

performance in the medium-scale network AlexNet (0.96×),
and worse performance in the large-scale network VGG-S
(0.56×). However, the accelerators achieved higher power
efficiency than the GPU implementations in all three net-
works with 28.3× for LeNet, 8.7× for AlexNet and 4.98×
for VGG-S.

FP-DNN [171] is an end-to-end framework that auto-
matically generates optimized FPGA-based implementa-
tions of deep neural networks (DNNs) using an RTL-HLS
hybrid library. FP-DNN compiler, programed using C++
and OpenCL, takes TensorFlow symbolic descriptions [172]
of DNNs, and then performs model inference through the
use of model mapper, software generator, and hardware gen-
erator modules. The model mapper extracts the topological
structure and layers configurations of DNN model from the
TensorFlow descriptions and generates an execution graph for
the target model. The execution graph shows layer-by-layer
operations and read/write data transactions.

FP-DNN compiler allocates off-chip DRAM data buffers
to store intermediate data, weights, and model parameters
and configurations. Themodel mappermaximizes the storage
resource reuse through minimizing the number of required
physical buffers. Specifically, it formulates the data reuse
problem as a graph coloring problem [173], and then the left-
edge algorithm is applied to generate kernel configuration and
kernel schedule. Subsequently, the software generator uses
the kernel schedule to generate a host C++ program which
initializes the model, manages the data buffers, and sched-
ules the kernel execution. On the other hand, the hardware
generator uses the kernel configuration and the execution
graph to generate the FPGA hardware codes by instantiating
the corresponding optimized templates from an expandable
RTL-HLS hybrid library. Each template is comprised of
Verilog-based computational engine and OpenCL-based con-
trol logics engine.

The architecture of the proposed FPGA-based accelerator
consists of matrix multiplication and data arranger modules.
Matrix multiplication module is a hand-written Verilog code
that is designed and optimized based on the hardware
constraints of Altera Stratix-V GSMD5 FPGA. It applies
tiling and ping-pong double buffers techniques to improve
the throughput. On the other hand, data arranger is an
OpenCL-based module that is responsible for mapping
the computational part of a layer to matrix multiplica-
tion as well as performing data communication with off-
chip memory and matrix multiplication module. Mapping
DNNs computational operations to matrix multiplication has
been widely applied in prior studies [80], [132], [174].
FP-DNN maps FC layer to matrix multiplication by batch-
ing input vectors together. Before model deployment, FMs
and weights are rearranged in DRAM using the channel-
major scheme to optimize the communication between the
accelerator and off-chip DRAM. On the other hand, both
floating-point and fixed-point representations have been sup-
ported for implementation, and they can be adjusted by the
user.

The proposed RTL-HLS hybrid framework has been
evaluated by accelerating VGG-19, LSTM-LM [175],
ResNet-152 DNNs on Stratix-V GSMD5 FPGA. Note that
this is the first work that implements ResNet-152 on FPGA.
The experimental results demonstrated that the speedup of
FP-DNN for 16-bit fixed-point implementations are about
1.9× - 3.06× compared with the server that includes 2 pro-
cessors each with 8-core Intel Xeon E5-2650v2 at 2.6 GHz.

In line with the current trends towards compressed neu-
ral networks, with dramatically reduced weights and activa-
tions bit-width using 1-bit or 2-bit quantization [176]–[180],
Umuroglu et al. [181] conducted a set of experiments to
estimate the trade-off between the network size and precision
using the roofline model. They found that binarized neural
networks (BNNs) [180] require 2 to 11 times more operations
and parameters than an 8-bit fixed-point CNN to achieve
a comparable accuracy on MNIST [71] dataset. However,
the performance of BNN is found to be 16× faster than the
fixed-point network.

Subsequently, the authors proposed a framework, referred
to as FINN [181], that maps a trained BNN onto FPGA.
FINN generates a synthesizable C++ network description of
a flexible heterogeneous streaming architecture. The archi-
tecture consists of pipelined compute engines that commu-
nicate via on-chip data streams. Each BNN layer has been
implemented using dedicated compute engines with 1-bit
values for weights and FMs;+1 and−1 are used to represent
a set bit and unset bit, respectively.
The authors have optimized accumulation, batch normal-

ization (batchnorm), activation, and pooling operations of
BNNs. In particular, the accumulation of a binary dot-product
has been implemented as a counter of set bits (popcount
operation). The popcount-accumulate reduces the number of
required look-up tables (LUTs) and flip-flops (FFs) by a half,
compared to the implementation of signed-accumulation.
BNN batchnorm and activation operations have been sim-
plified and implemented together as unsigned comparison
with a threshold τk , +1 is produced when the input value
is greater than or equals to τk , and −1 otherwise. The value
of τk is computed during run-time. Such an implementation
of batchnorm-activation operations requires much smaller
number of LUTs, without the need for DSPs and FFs, com-
pared to regular implementation of batchnorm-activation.
Max-pooling, average-polling, and min-pooling have been
effectively implemented with Boolean OR-operator, Boolean
majority function, and Boolean AND-operator, respectively.

The accelerator architecture is composed of building
blocks from the FINN hardware library. The matrix-vector-
threshold unit (MVTU) is the core computational building
block as matrix-vector operations followed by thresholding
form the majority of BNN operations. The design of MVTU
consists of an input buffer, an array of P parallel PEs each
with S SIMD lanes, and an output buffer. BNN weight
matrix is distributed across the PEs and stored locally in on-
chip memory. Subsequently, the input images are streamed
through the MVTU and multiplied with the weight matrix.

VOLUME 7, 2019 7839

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

Particularly, the PE computes the dot-product between an
input vector and a row of weight matrix, each of S-bits wide,
using an XNOR gate, as shown in Fig. 18. Then, it compares
the number of set bits to a threshold and produces a 1-bit
output value as previously discussed.

FIGURE 18. The Architecture of MVTU PE [181].

Umuroglu et al. [181] implemented the CONV layer using
a sliding window unit (SWU) and an MVTU, where convo-
lutional operation is transformed to matrix-multiplication of
image matrix and filter matrix. SWU generates the image
matrix to MVTU by moving the sliding window over the
input FMs, while the filter matrix is generated by packing
the weights from the convolution filters as shown in Fig. 19.
In order to meet the user throughput requirement, MVTU
is folded (time-multiplexed) by controlling the values of
P and S. Folding of MVM decides partitioning of the matrix
across PEs. Every row ofmatrix tile is mapped to a distinct PE
and every column of PE buffer is mapped to a distinct SIMD
lane. In this away, the required number of cycles to compute
oneMVM (total fold) is obtained as (X×Y)/(P×S), where X
and Y are the dimensions of the matrix. The folding factors
of BNN layers have been determined such that every BNN
layer takes nearly the same number of cycles.

To evaluate FINN, the authors implemented CNV topology
on Xilinx Zynq-7000 board at 200 MHz to accelerate BNNs

FIGURE 19. Transforming CONV to Matrix-Multiplication [181], where, ifm
and ofm are the input and output feature maps, respectively.

inference on CIFAR-10 [182]. CNV contains three repeti-
tions of two 3 × 3 CONVs and 2 × 2 max-pooling layers.
Its topology is inspired by VGG-16 and BinaryNet [180].
Although CNV accepts images with 24-bits/pixel as an input
and produces a 10-element vector of 16-bit values, 2-bits
are used for representing intermediate results while 1-bit is
used for representing CONV and FC weights. Experimen-
tal results demonstrated that the proposed design provides
high performance (2.5 TOPS) while incurring low energy
consumption (11.7 Watts). FINN outperforms the design by
Ovtcharov et al. [152] by over 13.8× for throughput.

In [83], loop optimization techniques [55], [79] have been
employed in FPGA to design a customized CNN acceler-
ator through speeding up CONV layer operations. Firstly,
an in-depth analysis is provided to numerically characterize
loop unrolling, loop tiling, and loop interchange optimization
techniques. In doing so, 8 CONV dimensions parameters
(N ∗), 8 loop unrolling design variables (P∗), and 8 loop tiling
design variables (T ∗) have been used with a constraint, as for
a specific loop level, 1 ≤ P∗ ≤ T ∗ ≤ N ∗. Note that unrolling
Loop-1 and Loop-3 requires Pkx × Pky and Pif multipliers,
respectively, an adder tree with fan-in of Pkx × Pky and Pif ,
respectively, and an accumulator. On the other hand, unrolling
Loop-2 requires Pix ×Piy parallel units of MAC to reuse the
same weight for Pix×Piy times, while the input feature pixel
can be reused by Pof times when unrolling Loop-4 with the
use of Pof parallel MAC units. Thus, Pkx × Pky × Pif ×
Pix×Piy×Pof multipliers are required. Please refer to Fig. 2
for more details on CONV loops levels and their parameters.
In loop tile optimization, the authors have numerically set the
lower bound on the required size of the input pixel buffer,
the weight buffer, and output pixel buffer that ensures reading
each input feature pixel and weight from the off-chip memory
only once. On the other hand, loop interchange technique
has a great impact on the times of memory access as well
as the number of partial sums since it determines the order of
computing CONV loops.

Secondly, the authors have provided a quantitative anal-
ysis of the design variables to minimize each of computing
latency, partial sum storage, on-chip buffer access, and off-
chip DRAM access. Subsequently, MATLAB scripts are used
to randomly sample a subset of the solution space to find the
optimal design configurations. This is due to the large solu-
tion space, more than 7.2× 1013 possible configurations for
loop tiling variables of width (Pox) and height (Poy) output
FM alone. According to the randomly sampling results for
VGG-16 CNN model on Arria 10 GX 1150 FPGA, uniform
unrolling factors for CONV layers are used with Pix =
Pox = Piy = Poy = 14 and Pof = 16 for Loop-2 and
Loop-4, respectively, to reuse input feature pixels and
weights. On the other hand, Loop-1 and Loop-3 are seri-
ally computed to prevent the movement of the partial sums
between the MAC units and consume them ASAP since both
Loop-1 and Loop-3 need to be finished in order to obtain
one final output pixel. More importantly, the order of loops
computation has been found to be as follows. Loop-1 is

7840 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 20. CONV Acceleration Architecture and Dataflow [83], where, Pix = Pox = 3,
Piy = Poy = 3, and Pof = 3.

computed first, then comes Loop-3, and finally Loop-2 and
Loop-4 are computed in any order.

Finally, a customized convolution accelerator module with
efficient dataflow has been designed based on the previous
results and used for all VGG-16 CONV layers. The CONV
accelerator consists of 3,136 (Pix × Piy× Pof) independent
MAC units and 14 (Pof) input pixel buffers. Fig. 20 shows an
example of the designed CONV accelerator when Pix, Piy,
and Pof are all equal to 3. The input pixels are shifted after
fetching them out of the input pixel buffers. Subsequently,
they can be reused among the input register arrays. Then,
the input pixels are fed into the associated MAC units. The
figure also shows that the input pixels and weights are shared
by Pof and Pix × PiyMAC units, respectively.
The overall CNN acceleration system mainly consists

of two SDRAM banks that hold the input feature pixels
and weights, two modular Scatter-Gather DMA (mSGDMA)
engines to facilitate the simultaneous read/write from/to the
SDRAMs, and a controller to govern the sequential compu-
tation of layers as well as the iterations of the four CONV
loops. On the other hand, dual weight buffers have been used
to increase the throughput of FC layer through overlapping
the inner-product computation with off-chip communication.
The acceleration system has been written as parameterized
Verilog scripts. The experimental results show that the pro-
posed accelerator has a throughput of 645.25 GOPS, which
is more than 3.2× enhancement compared to prior VGG-16
FPGA-based implementations [80], [98].

Venieris and Bouganis [183] further extended fpgaCon-
vNet framework [165] to allow for optimizing either through-
put or latency depending on the size of theworkload. For large
workloads, weights reloading transformation has been intro-
duced to efficiently design latency-critical CNNs on FPGA.
In contrast with fpgaConvNet, where a distinct architecture
is designed for each subgraph, the weights reloading trans-
formation allows for generating a single flexible architec-
ture, named as the reference architecture and derived using
pattern matching, to execute the workloads of all subgraphs
by transitioning to different modes. Upon the execution of a

new subgraph, the subgraph’s weights are read into the on-
chip memory and the multiplexers are configured to form
the appropriate datapath. Fig. 21 demonstrates how weights
reloading is applied. The authors have mentioned that the
required time for transferring subgraph’s weights is much
smaller than the average time for full FPGA reconfiguration,
272.7× less when loading 4.5 MB of weights for a VGG-16
layer on Zynq XC7Z045.

FIGURE 21. Weights Reloading [183].

In the situation discussed above, due to limited on-chip
memory capacity, it might not be possible to load all weights
required for a single CONV layer. To handle this, the authors
introduced an input FMs folding factor (fin) with each
CONV layer. A CONV layer (CONV i) is partitioned into
fini subgraphs in which each subgraph executes a fraction
of CONV i to produce a fraction of the output FMs. The
proposed latency-driven methodology has been evaluated
by implementing AlexNet and VGG-16 with 16-bit fixed-
point precision for both on Zynq XC7Z045 at 125 MHz. The
experimental results showed 1.49× and 0.65× higher CONV
throughput thanDeepBurning [155] and the embedded FPGA

VOLUME 7, 2019 7841

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

accelerator in [98] for AlexNet and VGG-16 implementa-
tions, respectively.

Lavin and Gray [184] demonstrated that CNN algorithms
with small filters can be efficiently derived using Winograd
algorithm [185] and fast Fourier transform (FFT) algo-
rithm [186] due to their advantages in improving resource
efficiency and reducing arithmetic complexity. Winograd
computation involves a mix of element-wise (Eltwise) and
general-purpose matrix multiplication, where some of the
matrices need to be transformed. In particular, Winograd
algorithm exploits the structure similarity among n × n tiled
input FM pixels given a filter of size r × r to generate m×m
tiled pixels of the output FM, where m represents the stride
between Winograd tiles (m = n − r + 1), while minimizing
the number of required CONV multiplications from m2r2

for conventional CONV algorithm to n2. In another work,
Zhang et al. [187] implemented FFT algorithm for CNN
on FPGA platform. However, their proposed implementation
shows little reduction of computation complexity with small
filters such as 3× 3.

Aydonat et al. [188] presented a deep learning architec-
ture (DLA) based on OpenCL. Their proposed architecture
reduces the external memory bandwidth requirements by
an order-of-magnitude for both the convolutional and fully
connected layers. This is achieved by caching all intermediate
feature maps on-chip in stream buffers. For fully connected
layers, image batching is used where a batch of images
are processed together through the fully connected layers.
The approach utilizes the Winograd transformation to reduce
the multiply-accumulate operations, which could reduce the
number of needed operations by about 50%. In addition,
it uses half-precision (FP16) floating-point operations with
shared exponents, which significantly reduces the needed
computational resources.

The overall DLA architecture is shown in Fig. 22. Each PE
consists of dot-product units, accumulators, and caches, for
performing dot-products for convolution and fully connected
layers. Caches are used for storing filter weights. To avoid
idle computation cycles, double-buffering is used such that
filter weights for the next convolution layer are prefetched
onto the caches while filter weights are loaded from the
caches for a particular convolution layer. Stream buffers store
feature data and stream it to PEs. Each stream buffer is
double-buffered similar to filter caches. Images are loaded

FIGURE 22. Overall DLA Architecture [188].

from the DDR and are stored in stream buffers before the
first convolution layer starts execution. During a convolution
layer execution, while feature data for a convolution layer is
being streamed into the PEs, the outputs of convolutions are
simultaneously stored in the buffers. The StreamBuffer unit
applies theWinograd transformations to features, and streams
the transformed features to the first PE which are forwarded
through all the PEs via the daisy-chained input connections
between them. The ReLU unit receives the outputs of the
PEs via daisy-chained output connections. Then, the nor-
malization unit receives the outputs of the ReLU unit and
applies the normalization formula across the feature maps.
The pooling unit receives the outputs of the normalization
unit and computes the maximum value in a window. The
output of the pooling unit is stored back in the stream buffer
for further processing, if more convolution layers are to fol-
low. Otherwise, the outputs of the pooling unit are stored in
external memory. For the fully connected layers, features data
are stored on PEs caches while filter weights are stored in
stream buffers. For the first fully connected layer, features
data are read back from external memory and loaded onto the
PE caches. The ReLU output is sent directly to DDR, without
applying normalization or pooling. The sequencer generates
the control signals to control the operation of the various
blocks in DLA according to the topology of the executed
CNN. Executing a different CNN requires just changing the
sequencer configuration.

The DLA has been evaluated by implementing AlexNet
CNN on Intel’s Arria 10 dev kit which contains a A10-1150
device (20nm) using a 96 batch size for the fully connected
layers. It achieved a performance of 1020 images/s. In addi-
tion, it achieved 8.4x more GFLOPS than the latest Ultrascale
(KU 20nm) result reported in [162], which uses a 32 batch
size for the fully connected layers, and 19× more GFLOPS
than the latest Stratix V result reported in [80]. Furthermore,
it has achieved energy efficiency at 23 images/s/W, which
is similar to what is achieved with the best publicly known
implementation of AlexNet on NVIDIA Titan X GPU.

Unlike DLA architecture [188] where a 1D Winograd
algorithm was employed to reduce arithmetic complexity,
Lu et al. [189] implemented a novel FPGA architecture with
a two-dimensional Winograd algorithm [185] to accelerate
convolutional computation of CNNs. The overall architecture
consists of line buffer structure and Winograd PE engine,
as shown in Fig. 23. Particularly, n + m input lines and m
output lines of on-chip buffers are used to effectively reuse
FM data among different tiles. While Winograd PE engine
reads the first n input lines to performWinograd computation,
the next m input lines load pixels from off-chip memory
using FIFOs to overlap the data transfer and computation.
Thereafter, the input lines are rotated in a circular fashion
to make the next n input lines ready. On the other hand,
Winograd PE engine composed of 4 pipelined stages per-
forms transformation, element-wise matrix multiplication,
additional transformation, and accumulation of output tiles,
respectively.

7842 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 23. Winograd-based CNN Accelerator [189], where, m is the size
of the input FM tile, n is the size of the output FM tile, M is the number of
input channels, N is the number of output channels, W is the maximal
width of all input FMs, C is the width of the output FMs.

A vector of PEs is employed to achieve parallelism through
unrolling Loop − 4 (Pof) and Loop − 3 (Pif) similar to that
in [55]. To implement FC layer, the proposed accelerator
uses the input line buffers to hold FC weights while input
neurons are stored on the filter buffers. Then, Winograd PE
engine is reused to implement FC operation but with bypass-
ing the transformation stages. Moreover, a batch (Nbatch) of
input FMs are assembled and processed together in order
to improve the memory bandwidth. An analytical model has
been proposed for a fast design space exploration of optimal
design parameters (n, Pof , Pif , Nbatch) constrained by FPGA
configurationwith a 16-bit fixed-point representation for both
FM data and filter.

The proposed accelerator has been evaluated by imple-
menting AlexNet and VGG-16 on Xilinx ZCU102 FPGA.
AlexNet CONV layers have 3 different filters. Conventional
CONV algorithm has been applied to the first CONV layer as
it has a filter of size 11×11 while a uniform filter of size 3×3
for Winograd algorithm has been used to implement the rest
of the layers. The design parameters are found to be equal to
(6, 4, 8, 128) and (6, 4, 16, 128) for AlexNet and VGG-16,
respectively. The experimental results demonstrated that the
proposed Winograd-based CNN accelerator has an aver-
age performance of 854.6 GOPS and 2940.7 GOPS for
AlexNet and VGG-16, respectively, with power consumption
of 23.6 Watts for both. The proposed accelerator has also
been evaluated on Xilinx ZC706 platform where the design
parameters are found to be as (6, 2, 8, 32) and (7, 4, 4, 32) for
AlexNet and VGG-16, respectively. The experimental results
demonstrated that Winograd-based CNN accelerator has an
average performance of 201.4 GOPS and 679.6 GOPS for
AlexNet and VGG-16, respectively, with power consumption
of 23.6 Watts for both. Compared to the implementation of
VGG-16 on NVIDIA Titan X with the latest CuDNN 5.1,
Titan X gives better performance than Xilinx ZC706 but
the implementation on Xilinx ZC706 achieves 1.73× higher
energy efficiency.

Zhang and Li [190] presented an OpenCL-based architec-
ture for accelerating CNNs on FPGA. They also proposed
an analytical performance model to identify the bottleneck

in OpenCL-based acceleration of VGG-19 CCN model on
modern FPGA platforms such as Altera Arria 10 GX 1150.
Based on roofline mode analysis, it is shown that the band-
width requirement of VGG-19 workload is higher than what
is provided by the FPGA board. Thus, they identified on-
chip memory bandwidth as the key performance bottleneck.
In addition, they observed that exploited data-level paral-
lelism in the existing Altera OpenCL library [191] leads to
wasteful replication of on-chip memory (BRAM). This is due
to connecting each PE with a dedicated BRAM port.

Therefore, a Verilog-based accelerator kernel has been
designed and warped to an OpenCL IP in order to opti-
mally balance on-chip memory bandwidth with workload
computational throughput and off-chip memory accesses.
In particular, the proposed kernel consists of a compute sub-
system, a local memory subsystem, and a 2D dispatcher. The
compute subsystem is organized hierarchically into compute
units (CUs) and PEs. At PE level, the authors have designed a
2D multi-cast interconnection between BRAMs (32-bit data
width) and PEs to improve the efficiency of on-chip BRAM
usage by sharing the data of one BRAM port with several PEs
as shown in Fig. 24. The CU has been designed as a 2D PE
array of size 16 × 16 to match the computational bandwidth
with the maximum streaming bandwidth (512-bit data bus)
provided by off-chip memory. The 2D dispatcher divides the
work items into work groups each of size (X0, X1) as shown
in Fig. 25. Thereafter, it adaptively schedules the work items
within each work group to the CUs starting with the lowest
dimension to balance the memory bandwidth with capacity.
The 2D dispatcher is also responsible for host/device mem-
ory data transfers. In addition, the authors have limited the
maximum fan-out for registers to 100 in order to guarantee a
higher frequency.

FIGURE 24. Compute Unit with a 2D BRAM-to-PE Interconnection [190].

The CONV layer has been implemented as a matrix mul-
tiplication by flattening and rearranging the data using line
buffer [154], as shown in Fig. 26, in a similar fashion to that
in [80]. The line buffer converts continuous address stream
from external memory into a stream conducive for CONV
operation to substantially reduce the bandwidth requirement
of off-chip memory. To implement FC layer, the proposed
accelerator uses one column of PEs in the CU. The proposed
implementation has achieved 866 GOPS and 1790 GOPS

VOLUME 7, 2019 7843

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 25. 2D Dispatcher [190], where, X0 is the column size of kernel
buffer as well as the row size of the input feature buffer, and X1 is the
row size of kernel buffer.

FIGURE 26. Line Buffer Design [190].

with the use of 32-bit floating-point and 16-bit fixed-point,
respectively, under 370 MHz and 385 MHz working frequen-
cies, respectively.

All previously discussed FPGA-based CNN accelerators,
except the ones discussed in [165] and [170], have employed
a single CLP to maximize the aggregate throughput of
performed consecutive convolutional operations. However,
Shen et al. [192] noted that using a single globally-optimized
CLP design for the computation of CONV layers of radically
different configurations and dimensions leads to sub-optimal
performance and insufficient utilization of FPGA resources.
Fig. 27a demonstrates the use of a single CLP to iteratively

FIGURE 27. Operation of CONV Layer Processors (CLPs) on CNN with
three CONV Layers [192].

process L1, L2, and L3 CONV layers where the dimensions
of the hardware (CLP, CLP1, and CLP2) and the layers are
represented by the size and shape of the boxes. It is clear
that computing L1 and portions of L3 leaves FPGA resources
unutilized as their dimensions are smaller than the dimension
of the used CLP. Note that processing a CONV layer with
a dimension bigger than the dimension of CLP, such as L3,
requires the repeated use of CLP to process different portions
of the layer.

The authors have also followed the methodology
in [55] to derive an optimal single CLP, through finding
the optimal unrolling factor 〈Tm,Tn〉, for implementing
SqueezeNet [193] and AlexNet on Virtex7 690T FPGA
with a single precision floating-point and 16-bit fixed-point
arithmetic units, respectively. They found that one quarter of
DSP slices of SqueezeNet’s CLP remain unused. Even more
worse utilization has been observed for AlexNet. The optimal
single CLP has not utilized, on average, more than one quarter
of the arithmetic unit resources.

On the other hand, they also noted that using one CLP
for each stage of CONV layer in a fashion similar to that
in [194] is not efficient due to three reasons. First, it reduces
the on-chip BRAM buffer size of each CLP which minimizes
overall data locality. Second, such one-to-one mapping of
CONV layers and CLPs requires orchestrating many off-
chip memory accesses which incurs latency and bandwidth
overheads. Third, the overall control overhead scales with the
number of CLPs which leaves insufficient resources for the
computation of CNN.

To address the above inefficiencies, Shen et al. [192] pro-
posed a multi-CLP accelerator system for CNNs where the
available PFGA hardware resources are partitioned across
multiple smaller CLPs. EachCLP is tailoredwith a dimension
that closely matches the dimensions of a subset of CONV
layers. Thereafter, these specialized CLPs are used to con-
currently operate on a batch of images to achieve a higher
overall throughput, as shown in Fig. 27b, where the same
hardware in Fig. 27a is partitioned into two parallel CLPs;
CLP1 and CLP2.
Shen et al. [192] developed an optimization search algo-

rithm that uses dynamic programming to find optimal
designs. For given configurations of CNNmodel (i.e., CONV
layers descriptions) and resource constraints of the targeted
FPGA platform (i.e., number of DSP slices, BRAM-18Kb
units, and off-chip memory bandwidth), it derives the optimal
number of CLPs (along with their 〈Tm,Tn〉 dimensions) as
well as the optimal mapping between CONV layers and CLPs
that maximize the performance. The assignment of CNN
layers to CLPs is static, where each CNN layer is mapped and
bounded to a particular CLP. Subsequently, CNN layers are
pipelined to their CLP, as shown in Fig. 27b, where L1 and L3
are pipelined to CLP1 while L2 is repeatedly processed on
CLP2 with very little idle hardware which improves the
performance compared to single CLP approach. Moreover,
the optimization algorithm also finds the optimal partition
of on-chip BRAM resources of each CLP that minimizes

7844 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

the overall off-chip memory accesses. Note that the optimal
dimension of each CLP is found based on the work in [55].

Subsequently, C++ (HLS) templates are parameterized
to design CLPs and to form a complete implementation of
CNN. A standard AXI crossbar is used to interconnect the
independent CLPs. The ping-pong double-buffering tech-
nique is also used for input FMs, output FMs, and weights to
allow for transferring data while computation is in progress.
The experimental results of implementing AlexNet with a
single precision floating-point using multi-CLP accelerator
on Virtex7 485T and 690T FPGAs at 100 MHz demonstrate
1.31× and 1.54× higher throughput than the state-of-the-
art single CLP design in [55], respectively. For the more
recent SqueezeNet network, the proposed multi-CLP accel-
erator results in speedup of 1.9× and 2.3× on Virtex7 485T
and 690T FPGAs at 170 MHz with 16-bit fixed-point,
respectively.

Xuechao et al. [195] presented a systolic architecture for
automatically implementing a given CNN on FPGA based
on OpenCL description, maximizing clock frequency and
resource utilization. The proposed systolic architecture is
shown in Fig. 28. Each PE shifts the data of the weights (W)
and inputs (IN) horizontally and vertically to the neighboring
PEs in each cycle. The 2D structure of PEs is designed
to match the FPGA 2D layout structure to reduce routing
complexity and achieve timing constraints.

FIGURE 28. Systolic Array Architecture for CNN [195].

The technique first finds a feasible mapping for the given
CNN to the systolic array to guarantee that proper data
is available at specific locations in the PE array at every
cycle. Then, the size of PE array (dimensions) is deter-
mined which has an impact on the required number of DSPs,
the clock frequency, and the DSPs efficiency. Finally, the data
reuse strategy is determined by choosing proper tiling sizes.
The proposed technique has been evaluated using AlexNet
and VGG16 on Intel’s Arria 10 GT 1150 board. The tech-
nique has explored the use of both 32-bit floating-point and
fixed-point using 8-bits for weights and 16-bits for data.
Evaluation results show that, for the VGG16 CNN, the tech-
nique achieves up to 1,171 GOPS on Intel’s Arria 10 device
with a clock frequency of 231.85 MHZ and (8-16)-bit
fixed-point representation.

In another recent research work, Ma et al. [196] gener-
alized the previously proposed accelerator in [83] to effi-
ciently accelerate ResNet-50 and ResNet-152 onArria 10 GX
1150 FPGA. In doing so, they designed flexible and scalable
CONV, ReLU, BatchNorm, scale, pooling, FC, and Eltwise
primitives. In addition, local control logic and registers have
been used with each primitive to control their computation
order and to hold their configurations, respectively. By doing
so, ResNets primitives can be efficiently reused for different
parameters of each layer.

For ResNets scalable CONV primitive, there are four
(kernel, stride) size configurations; (3 × 3, 1), (1 × 1, 1),
(1×1, 2), and (7×7, 2). Therefore, a similar architecture and
dataflow to that shown in Fig. 20 has been used for CONV
but with the use of two sets of register arrays; with shifting
between the registers (which is shown in Fig. 20, Set-1), and
without shifting between the registers (Set-2). The CONV
primitive with 3× 3 kernel and stride of 1 uses Set-1 register
array, while Set-2 is used with (1 × 1, 1), (1 × 1, 2), and
(7 × 7, 2) configurations. In CONV primitive with Set-2,
the input pixels are fed from the input pixel buffers into the
corresponding registers without shifting, and then to MAC
units. The skipped input pixels in (1 × 1, 2) configuration
are not stored to the input pixel buffers. On the other hand,
the (7 × 7, 2) configuration of the kernel and stride sizes is
retained as the (1 × 1, 1) case while transferring repeated
input pixels into the input pixel buffers and rearranging their
storage patterns. The CONV primitive also takes care of zero-
paddings for different (kernel, stride) size configurations.

The loop unrolling and tiling techniques in [83] have also
been employed to accelerate CONV primitive with a uniform
mapping of PEs to all ResNets CONV layers. However,
designing of efficient CNN modules is not enough, as the
memory accesses and data movements between these mod-
ules must also be minimized. Therefore, the authors have
designed a layer-by-layer computation flow. The global con-
trol logic is responsible for governing the sequential oper-
ations of primitives and their dataflow through predefined
and preloaded layered-based execution flowchart, as shown
in Fig. 29. In addition, it has been modeled to reconfig-
ure ResNet primitives according to the parameters of each
layer during runtime. For instance, it maps a particular num-
ber of PEs to CONV layer based on loop unrolling parameters
as well as it controls the selection of register array type
(Set-1 or Set-2) based on CONV (kernel, stride) parameters.

On the other hand, a custom DMA manager has been
designed to control the operations of DMA. Note that the
DMA is responsible for transferring the input FM pixels,
weights, and output FM pixels between off-chip memory and
on-chip buffers. UnlikeALAMOarchitecture [168] where the
output pixels are only stored in on-chip buffers, this work as
well as the work discussed in [83] store the output pixels in
off-chip memory with the use of loop tiling technique in order
to have a flexible architecture that can process large-scale
CNNs. The dual weight buffers technique has not been used
in this work due to the current trend in CNNs where either

VOLUME 7, 2019 7845

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 29. Execution Flowchart of ResNets Layers [196].

the size of FC weights has been significantly reduced (2 M in
ResNet compared with 123.6 M in VGG) or the FC layers are
completely removed such as in NiN. The experimental results
demonstrated that the achieved throughput for ResNet-50 and
ResNet-152 are 285.1 GOPS and 315.5 GOPS, respectively.
Finally, the authors mentioned that higher throughput can be
achieved using batch computing [194].

Wang et al. [197] proposed a scalable design on FPGA for
accelerating deep learning algorithms. In order to provide a
scalable architecture and support various deep learning appli-
cations, the proposed architecture utilizes the tiling technique
in which the large-scale input data is partitioned into small
subsets. The size of the tile is configured to leverage the trade-
off between the hardware cost and the speedup. Moreover,
the authors explored hot spots profiling to determine the
computational parts that need to be accelerated to improve the
performance. The experimental results illustrated that matrix
multiplication and activation functions are the key operations
in deep learning algorithms as they consume about 98.6%
and 1.1% of the overall execution time, respectively. Thus,
the proposed accelerator is responsible for speeding up both
matrix multiplication and activation function computations.

The main components of the proposed architecture are the
embedded processor, the DDR3memory controller, the DMA
module, and the deep learning acceleration unit (DLAU),
as shown in Fig. 30. The embedded processor utilizes
the JTAG-UART to communicate with the acceleration
unit [198]. The DLAU unit accesses the DDR3 memory to
read the tiled input data and to write the results back through
the DMA module during the execution. The DLAU utilizes
three fully pipelined processing units to improve the through-
put, while minimizing the memory transfer operations. These
units are tiled matrix multiplication unit (TMMU), partial
sum accumulation unit (PSAU), and activation function
acceleration unit (AFAU). TMMU is responsible for multi-
plication and generating the partial sums. To optimize the
performance, TMMU is structured as a pipelined binary adder
tree. Moreover, it uses two sets of registers alternately to
overlap the computation with the communication, one group

FIGURE 30. DLAU Accelerator Architecture [197].

is used for the computation, while in parallel, the other group
is loaded with the next node data every clock cycle. On the
other hand, PSAU is responsible for accumulating the partial
sums generated from TMMU. Finally, AFAU implements
the sigmoid function using piecewise linear interpolation
to speed up the computation with negligible accuracy loss.
Since the processing units in DLAU might have inconsistent
throughput rates, each unit has input FIFO buffer and output
FIFO buffer to prevent data loss.

The authors implemented the proposed architecture on
Xilinx Zynq Zedboard with ARM Cortex-A9 processors
clocked at 667 MHz. In addition, they used the MNIST
dataset as a benchmark considering the network size as
64×64, 128×128, and 256×256. The experimental results
demonstrated that the speedup of the DLAU accelerator is
up to 36.1× compared with the Intel Core2 processors at
256×256 network size. In addition, the results depict that
the proposed architecture is quite energy-efficient as the total
power consumption was only 234 mW.

In [199], a generalized end-to-end acceleration sys-
tem of the previously proposed accelerators in [78], [83],
[168], and [196] has been developed to support diverse
CNN models. In doing so, a user-friendly interface and an
RTL-level compiler have been proposed to automatically
generate customized FPGA designs. The authors have devel-
oped an expandable optimized RTL-based library containing
the most commonly used CNN operations. These operations
have been coded in Verilog and designed based on the quan-
titative analysis and optimization strategies discussed in [83].
The compiler generates a DAG-based structure for the used
CNN model and then compiles it with RTL modules in the
library. The proposed compiler allows the user to input the
high-level information of the used CNN model (previously
designed on Caffe framework [58]) as well as the design
variables (i.e., loop unrolling and loop tiling variables) with
the resource constrains of the targeted FPGA platform. Such
utility facilitates the exploration of the best trade-off between
the resource usage and the performance.

Unlike the architecture in [168] where individual CONV
module is assigned to each CONV layer, the scalable RTL
computing module proposed in this work is reused by

7846 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

all CNN layers of the same type for different CNNs as
shown in Fig. 31. Note that it is not necessary to have all
these modules in the architecture. For instance, the RTL
compiler will not compile or synthesize Eltwise and com-
bined batch normalization with scale (Bnorm) modules for
VGG-16 model which greatly saves the hardware resources.

FIGURE 31. Overall Architecture and Dataflow [199].

On the other hand, the authors categorized CNN layers into
key layers (i.e., CONV, pool, and FC layers) and affiliated
layers (e.g., ReLU, Bnorm, Eltwise, and all other layers).
They have also defined layer combos, where each combo is
composed of a key layer and several affiliated layers. Layer
combos are sequentially executed according to their order
in the DAG. Moreover, the layer combo is also divided into
several sequential tiles. The computation of each combo tile
starts by reading its input pixels from off-chip DRAM and
ends by writing back its output pixels to off-chip DRAM.
The global control logic, inter-tile control logic, and intra-
tile control logic are responsible for governing the sequential
operations of layer combos and reconfiguring the modules,
combo tiles, and tile layers (key and affiliated layers), respec-
tively, through predefined flexible execution schedule similar
to that in [196].

The authors have also employed special storage pattern of
both input pixels and weights on off-chip memory before the
acceleration process to maximize data reuse and minimize of
data communication. The architecture of CONV module is
designed based on the acceleration strategies in [83] and [196]
but with a different organization of MAC units as shown
in Fig. 32. The MAC units of CONV module have been
organized into Piy×Pof independent MAC blocks, with each
MAC block containing Pix MAC units to further minimize
the buffer read operations and the partial sums movements.
Moreover, such organization enables to handle varying (ker-
nel, stride) sizes configurations through generating different
variants of CONV register arrays during the compilation.

Experimental results demonstrated that the achieved
throughput on Intel Stratix V GXA7 for NiN, VGG-16,
ResNet-50, andResNet-152 are 282.67GOPS, 352.24GOPS,
250.75 GOPS, and 278.67 GOPS, respectively. On the other
hand, the achieved throughput on Intel Arria 10 GX 1150

FIGURE 32. CONV Reconfigurable Computing Module [199].

was 587.63 GOPS, 720.15 GOPS, 619.13 GOPS, and
710.30 GOPS for NiN, VGG-16, ResNet-50, and ResNet-
152, respectively. More than 2× throughput improvements
have been achieved on Intel Arria 10 GX 1150 since it has
1.8× and 5.9× more logic elements and DSPs than the Intel
Stratix V GXA7, respectively, which allows for larger loop
unrolling variables.

Recently, the programmable solutions group at Intel has
developed an FPGA software-programmable and run-time
reconfigurable overlay for deep learning inference [200]. The
developed overlay is referred to as the deep learning acceler-
ator (DLA). For the hardware side of Intel’s DLA, the team
has partitioned the configurable parameters into run-time and
compile-time parameters. The run-time parameters allow for
easy and quick use of different neural network frameworks,
while the compile-time parameters provide a tunable archi-
tecture for performance. Intel’s DLA uses a lightweight very
long instruction word (VLIW) network, an 8-bit unidirec-
tional ring network, to support the control and reprogram-
ming logic. Compared with typical overlays, Intel’s DLA
comes with only ∼1% overhead while other typical overlays
tend to always come with larger overheads [201]. The repro-
gramming of Intel’s DLA overlay allows for consecutive runs
of multiple NNs in a single application run [202] without the
need for reconfiguring and recompiling the FPGA.

Fig. 33 shows that a 1D array of PEs is used to perform
convolution, multiplication, or any other matrix operations.
Each PE contains a double-buffered filter cache allowing
for pre-loading of next filters while computing. The stream
buffer employed the double-buffering mechanism as well to
store the inputs and the intermediate data on-chip. To have
flexible NN architecture, Intel’s DLA employs an Xbar inter-
connect that connects all the core functions required. Thus,
deep learning functions can be easily added to the over-
lay through the Xbar by picking them from a suite of pre-
optimized functions of the select frameworks that Intel’s
DLA uses. The width adaptation module has been used to
control the throughput of the function. In addition, Intel’s
DLA supports vectorization across the input width (Q_VEC),
input height (P_VEC), input depth (C_VEC), output depth
(K_VEC), filter width (S_VEC), and other dimensions as

VOLUME 7, 2019 7847

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 33. Intel’s DLA: Neural Network Inference Accelerator [200].

depicted in Fig. 33. The authors mention that vectorization
depends on the layers’ dimensions of the considered frame-
work. However, they did not provide a systematic way for
finding the optimal balance for the number of used PEs and
the size of the caches. For efficient use of resources, Intel’s
DLA maps AVG pooling and FC primitives to convolutions
in order to avoid having under-utilized (over time) dedicated
auxiliary functions.

For the software side of Intel’s DLA, the proposed accel-
erator uses a graph compiler to map a NN architecture to the
overlay for maximizing the hardware efficiency through slic-
ing, allocation, and scheduling. In the slicing pass, the graph
compiler breaks down the architecture into subgraph (a chain
of functions) in such a way that they fit within the computing
and storage resources of the overlay. A single CONV layer
followed by a pooling layer is an example of CNN subgraph.
The graph compiler optimizes the external memory spill-
points by group slicing technique. The group slicing allows
several sequential convolutions, for instance, of a single slice
to be computed before moving onto the next slice while
using the whole stream buffer. During the allocation pass,
the graph compiler optimizes the use of a custom developed
filter caches and stream buffer bymanaging the read andwrite
from the stream buffer for each slice. Moreover, it assigns an
external memory address when the stream buffer is not big
enough to hold the slice data.

Finally, Intel’s DLA compiler schedules the execution of
subgraphs using cost-based (the ratio of the output size to the
effective input size) priority queue. The authors utilized the
software-programmable and run-time reconfigurable overlay
to optimize the software and hardware implementation of
GoogleNet [31] and ResNet [49] CNNs. The benchmark
results on an Arria 10 GX 1150 FPGA demonstrated that
Intel’s DLA has a throughput of 900 fps on GoogLeNet. The
team pointed that multi-FPGA deployment [203] might be
used to further improve the throughput of Intel’s DLA.

Guo et al. [60] proposed a complete design flow, referred
to as Angel-Eye, for mapping CNNs onto FPGA. It includes
a data quantization strategy, a parameterizable and run-time
configurable hardware architecture to support various CNNs,
FPGA platforms, and a compiler to map a given CNN onto
the hardware architecture. It adopts the approach of using a
flexible hardware architecture and maps different CNNs onto
it by changing the software. The proposed design flow from
CNN model to hardware acceleration is shown in Fig. 34.

FIGURE 34. Design Flow from CNN Model to Hardware Acceleration [60].

Due to the large dynamic range of data across different
layers, the best radix point is found for each layer for a given
bit width. They demonstrated that their strategy can simplify
state-of-the-art CNNs to 8-bit fixed-point format with negli-
gible accuracy loss. Although 8-bits are used for representing
data, 24 bits are used for representing intermediate data in
layers, which is then aligned and quantized to 8 bits. Fig. 35
and Fig. 36 show the overall architecture of Angel-Eye and
the structure of a single PE, respectively. The architecture is
designed for supporting an instruction interface that supports
three types of instructions; LOAD, SAVE, and CALC.

FIGURE 35. Overall Architecture of Angel-Eye [60].

The overall architecture is divided into four main compo-
nents; PE array, on-chip buffer, external memory, and con-
troller. The PE array implements the convolution operations

7848 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

FIGURE 36. Structure of a Single PE [60].

in CNN and supports kernel level parallelism, and input and
output channel parallelisms. It uses a 3×3 convolution kernel,
as this size is most popular in state-of-the-art CNN models.
However, larger kernel sizes are supported based on the use
of multiple 3 × 3 kernels. The use of on-chip buffers allows
data I/O and convolution calculation to be done in parallel.
The controller is responsible for receiving the instructions and
issuing them to the other components. The compiler maps the
CNN descriptor to the set of instructions that will be executed
by the hardware. It follows basic scheduling rules to fully
utilize data localization in CNN and reduce data I/O.

The block partition step partitions the calculation of one
layer to fit each block into the hardware. The memory map-
ping step allocates memory for communication between the
host CPU and the CNN accelerator. Based on the block
partition result, on-chip memory is allocated for the input
and output feature map blocks and for the convolution ker-
nels and bias values. The dependency check step checks
data dependency among instructions and sets appropriate
instruction flags to maximize parallelism between convolu-
tion calculation and data I/O. Based on experimental results,
it is shown that the 8-bit implementation of Angel-Eye on
XC7Z020 achieves up to 16× higher energy efficiency than
NVIDIA TK1 and 10× higher than NVIDIA TX1. In addi-
tion, the 16-bit implementation of Angel-Eye on XC7Z045 is
6× faster and 5× higher in power efficiency than peer FPGA
implementation on the same platform [148].

In [83] and [199], a special register array architecture has
been designed to rearrange buffers data and direct them into
PEs for the purpose of implementing CONVmodule that sup-
ports specific stride and zero-padding settings. Although the
designed CONV module is not generalized for any (kernel,
stride) size configurations, it is composed of complex wire
routing and control logic as shown in Fig. 20. To have flexibil-
ity in directing the dataflow of CONV pixels, Ma et al. [204]
replaced the register array architecture in [199] with a data
router as shown in Fig. 37.
The data router is a scalable set of data bus from buffer

to PE (BUF2PE). The BUF2PE data bus consists of simple
register arrays with FIFOs in between to form a line buffer
similar to that in [154]. The register array uses the FIFO to
pass its input pixels to the adjacent registers. Each BUF2PE
data bus has different data movements within its register
arrays to implement specific stride and kernel size settings.
Unlike the register array architecture in [83] where the west
zero-paddings are handled by changing the storage pattern
within the input pixel buffer, the BUF2PE handles such kind

FIGURE 37. CONV Acceleration Architecture and Dataflow using Data
Router [204], where, Pix = Pox , and Piy = Poy .

of paddings by shifting the connection between the register
arrays and the input pixel buffers to simplify the data trans-
ferring from off-chip memory to on-chip buffers. However,
there is still a need for adjusting the storage pattern within
the input buffers in order to handle other zero-paddings.

The global control logic is responsible for selecting the
suitable BUF2PE data bus from the data router as well as the
suitable storage pattern within the input buffers based on the
(kernel, stride) size configuration of CONV layer. The CONV
module has also been optimized by reducing the required
number of parallel adders that add the partial sums with
biases as well as the number of parallel multipliers and adders
needed to performBnorm operation by serializing the parallel
outputs using multipliers. In addition, 16-bit fixed-point has
been used to represent both weights and pixels, while dynam-
ically adjusting the decimal point in different layers to fully
utilize the existing data width [60]. The proposed compiler
in [199] has been used to configure the parameterized Verilog
scripts of the overall CNN acceleration system. Experimen-
tal results show throughput degradation on both Intel Arria
10 GX 1150 and Intel Stratix V GXA7 in comparison to the
results in [199].

In Table 2 and Table 3, we summarize the reviewed FPGA-
based deep learning networks acceleration techniques. For
each technique, we list the year the technique was introduced,
the key features employed for acceleration, the used deep
learning model, the number of needed operations per image,
the FPGA platform used to implement the technique, the pre-
cision used for the FMs and weights, the clock frequency
used, the design entry for describing the modeled deep learn-
ing network, the type of LUT for the used platform, the num-
ber of resources available by the used platform in terms
of BRAMs, LUTs, FFs, and DSPs, the percentage of each
resource utilization, the performance inGOPS, the speedup in
comparison to a given baseline model, and finally the power
efficiency (GOPS/W).

IV. METAHEURISTICS IN THE DESIGN OF
CONVOLUTIONAL NEURAL NETWORKS
Currently, convolutional neural network (CNN) structures are
designed based on human expertise. For a given application,

VOLUME 7, 2019 7849

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

TABLE 2. Implementation and performance summary of FPGA-based accelerators.

TABLE 3. Implementation and performance summary of FPGA-based accelerators.

this consists of determining the number of convolution layers,
number of fully connected layers, sizes of feature maps in
each layer, along with other operators. Recent research has

demonstrated that a large number of weights in fully con-
nected layers could be eliminated with minimal impact on
accuracy. In addition, although the suggested CNN structures

7850 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

by experts perform well for various applications, the question
arises whether the suggested structures could be optimized
for performance with minimal impact on accuracy. Since
the designed CNN has a significant impact on the complex-
ity of its implementation, we review in this section some
approaches attempting to optimize the design of CNNs using
metaheuristics.

NP-hard combinatorial optimization problems [206]
appear in the design of CNNs. Some examples of areas
include design of CNN structures, selection of weights and
bias values to improve accuracy, and determination of optimal
values of variables to reduce run-time. Below, we briefly
touch upon some existing literature in these areas.

A. CNN STRUCTURE OPTIMIZATION
In the design of CNNs, the number of possible network
structures increases exponentially with the number of layers.
Xie and Yuille [207] used genetic algorithm in learning deep
network structures. The objective was to find the best CNN
structure that wouldminimize the error rate. The cost function
was the CNN accuracy. They proposed an elegant encoding
of chromosome using a fixed length binary string to represent
each network structure. A CNN string represents only the
convolution layers.

In each generation, using standard genetic operations new
individuals are generated and weak ones eliminated. The
quality of an individual was assessed by its recognition
accuracywhich is obtained via the time consuming operation
of training the network, and evaluating it on a validation set.
Two small data sets were used (MNIST and CIFAR-10) to
run the genetic implementation via which they demonstrated
the discovery of new structures.

B. CNN WEIGHTS AND BIAS VALUES OPTIMIZATION
An attempt to train CNNs using metaheuristics (that is,
determine weights and bias values) is presented in [208].
The objective again was to improve accuracy and minimize
the estimated error. The authors experiment with three meta-
heuristic algorithms, namely; simulated annealing, differen-
tial evolution, and harmony search. The algorithms compute
the values of weights and bias in the last layer. These values
are used as the solution vector denoted by x which is to be
optimized. The move comprised adding a small value of 1x
to perturb the state. The cost function y is modeled as

y =
1
2

(∑N
i=n(o− u)

2

N

)0.5

(4)

where, o is the expected output, u is the real output, and N is
the number of used samples. The stopping criterion is when
the iteration count is reached or when the cost function goes
below a pre-specified value.

C. CNN DESIGN VARIABLES OPTIMIZATION
Suda et al. [80] presented a systematic methodology for
design space exploration with the objective of maximizing
the throughput of an OpenCL-based FPGA accelerator for

a given CNN model (please see subsection III-C). FPGA
resource constraints such as on-chip memory, registers, com-
putational resources and external memory bandwidth are con-
sidered. The optimization problem comprises finding the best
combination of NCONV , SCONV , NNORM , NPOOL , and NFC
variables, where
• NCONV is size of the filter (or neuron or kernel);
• SCONV is the factor by which computational resources
are vectorized to execute in a single-instruction stream
multiple-data streams (SIMD) fashion;

• NNORM represents the number of normalization opera-
tions performed in a single cycle;

• NPOOL is the number of parallel outputs of the pooling
layer in a single cycle to achieve acceleration; and,

• NFC is the number of parallel multiply and accumu-
late (MAC) operations preformed in a single work-item
within the fully connected layer.

The objective function to be minimized is the run-time
(RT), and is given by

TL∑
i=0

RTi[NCONV , SCONV ,NNORM ,NPOOL ,NFC] (5)

subject to digital signal processing (DSP) slices, logic, and
memory constraints, where TL represents the total number of
CNN layers including the repeated layers. The convolution
layer run-time (RTCONV) is analytically modeled as a func-
tion of design variables as

RTCONV i =
of Convolution Opsi

NCONV × SCONV × Frequency
(6)

As for the other layers, that is, normalization, pooling, and
fully connected, the following general model is proposed

RT Layer i =
of Layer Opsi

Unroll factor × Frequency
(7)

The above analytical models are later validated by per-
forming full synthesis at selective points and running them
on the FPGA accelerator.

Clearly, in order to determine the best values of the dis-
cussed design variables, exhaustive search, especially if the
number of variables and or FPGA resources is large, is infea-
sible. We have to resort to iterative non-deterministic heuris-
tics [206] such as simulated annealing, simulated evolution,
tabu search, genetic algorithm, particle swarm optimization,
cuckoo search, etc., or any of the modern metaheuristics,
to efficiently traverse the search space to find acceptable
solutions.

The proposed methodology employing genetic algorithm
was demonstrated by optimizing the implementation of two
representative CNNs, AlexNet and VGG, on two Altera
Stratix-V FPGA platforms, DE5-Net and P395-D8 boards,
both of which have different hardware resources. Peak per-
formance is achieved for both, for the convolution operations,
and for the entire CNN network.

One major issue related to use of non-deterministic
iterative heuristics in the design of neural networks and

VOLUME 7, 2019 7851

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

CNNs is the large amount of memory required to store the
state of solution and the amount of time taken to deter-
mine the cost of the solution, be it accuracy/error estimation,
run-time, or any other objective. Reasonable estimation
techniques and analytical formulations are required to effi-
ciently traverse the design space in search of efficient
solutions.

V. SUMMARY AND RECOMMENDATIONS
In this section, we highlight the key features discussed in the
acceleration of convolutional neural networks (CNNs) imple-
mented on FPGAs, and provide recommendations to enhance
the effectiveness of employing FPGAs in the acceleration of
CNNs.

All reviewed techniques are centered around accelerating
the convolution (CONV) operation as it consumes around
90% of the computational time. This is achieved by utilizing
parallel multiply-accumulate operations bounded by resource
limitations. In addition, careful design of data access patterns
are targeted tominimize thememory bandwidth requirements
utilizing internal memory structures and maximizing data
reuse. This is crucial in the acceleration process due to the
large memory data that needs to be accessed including feature
maps (FMs) and weights. To minimize the memory foot-
print and to achieve effective utilization of resources, some
techniques optimize the number of bits used to represent the
feature maps and weights with minimal impact on accuracy.
This is combined with the optimized selection of the number
of fraction bits used for each layer. Other techniques optimize
the number of used weights in the fully connected (FC)
layers as they are memory-intensive. Coprocessors are also
employed to automatically configure both the software and
the hardware elements to fully exploit parallelism [100].

To optimize parallelization of convolution operations, sev-
eral approaches have been attempted. Work load analysis has
been tried to determine computations that can be structured as
parallel streams [132]. The roofline model based accelerator
uses polyhedral-based data dependence analysis to find the
optimal unrolling factor for every convolutional layer [150],
and to fully utilize all FPGA computational resources through
loop pipelining. To optimize performance, tiled matrix multi-
plication is structured as a pipelined binary adder tree for per-
forming multiplication and generating partial sums [198]. An
optimization framework has been proposed by Suda et al. [80]
who identified the key variables of the design and optimize
them to maximize parallelism.

To reduce computational complexity of CONV layers and
improve resource efficiency, a number of approaches such as
[184], [188], and [189] utilized Winograd transformation in
performing CONV operations as this reduces the computa-
tional complexity by around 50%.

To maximize throughput, several techniques such
as [165], [170], and [192] have used multiple CONV layer
processors (CLPs) instead of using a single CLP that is
optimized for all CONV layers. This pipelines the operation
of the multiple CLPs achieving layer-level parallelism which

maximizes resource utilization and enhances performance in
comparison to using a single CLP.

Since the computational requirement of FC layers is
significantly less than that of CONV layers, to improve
performance, and maximize resource utilization, a number
of techniques such as [153], [162], [188], and [189] create
batches by grouping different input FMs and processing them
together in FC layers.

Complex access patterns and data locality are used in
DeepBurning tool [155] for better data reuse.
Wang et al. [197] explored hot spots profiling to determine
the computational parts that need to be accelerated to improve
the performance. Acceleration is accomplished by reducing
the memory bandwidth requirements. Techniques proposed
exploit data reuse to reduce off-chip memory communica-
tions. Loop transformations have also been used by reducing
tiling parameters to improve data locality, and to reduce
redundant communication operations to maximize the data
sharing/reuse.

Efficient buffering, where the weight buffers are used to
ensure the availability of CONV and FC layers’ weights
before their computation, as well as to overlap the transfer
of FC layer weights with its computation, helps in improv-
ing performance [78], [168]. In the Catapult project, FPGA
boards were integrated into data center applications and
achieved speedup. Microsoft Research’s Catapult utilized
multi-banked input buffer and kernel weight buffer to provide
an efficient buffering scheme of feature maps and weights,
respectively. To minimize the off-chip memory traffic, a spe-
cialized network on-chip was designed to re-distribute the
output feature maps on the multi-banked input buffer instead
of transferring them to the external memory [152].

To further reduce memory footprint and bandwidth
requirement, optimal fractional length for weights and fea-
ture maps in each layer are used. Singular value decomposi-
tion (SVD) has also been applied to the weight matrix of FC
layer in order to reduce memory footprint at this layer [98].
Tiling techniques have been proposed where large-scale input
data is partitioned into small subsets or tiles whose size is
configured to leverage the trade-off between the hardware
cost and the speedup [197].

Automation tools have been developed that auto-
matically build neural networks with optimized perfor-
mance [155]. They employ pre-constructed register transfer
level (RTL) module library that holds hardware (including
logical and arithmetic operations) and configuration scripts.
DeepBurning, for example, generates the hardware descrip-
tion for neural network scripts. Another modularized RTL
compiler, ALAMO, integrates both the RTL finer level opti-
mization and the flexibility of high-level synthesis (HLS)
to generate efficient Verilog parameterized RTL scripts for
ASIC or FPGA platform under the available number of
parallel computing resources (i.e., the number of multipliers)
[78], [168]. Acceleration is achieved by employing loop
unrolling technique for CONV layer operations. Some
of the reviewed techniques also help minimize the size

7852 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

TABLE 4. Optimization mechanisms employed for FPGA-based acceleration of deep learning networks.

TABLE 5. Optimization mechanisms employed for FPGA-based acceleration of deep learning networks.

of FPGA on-chip memories to optimize energy and area
usage [146], [147].

In Table 4 and Table 5, we list the optimizationmechanisms
utilized by each of the reviewed techniques to maximize

performance and throughput of FPGA-based deep learning
networks.

To enhance utilization of FPGAs in CNNs acceleration
and to maximize their effectiveness, we recommend the

VOLUME 7, 2019 7853

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

development of a framework that includes a user-friendly
interface that allows the user to easily specify the CNNmodel
to be accelerated. This includes specifying the CNN model
parameters in terms of number of convolution layers and their
sizes, and number of fully connected layers along with other
intermediate operations. The specified CNN model weights
will be read from a file. In addition, the user should have
the option of specifying the FPGA platform that will be used
for implementing the CNN accelerator and the maximum
tolerable error, along with the selection of a library from a set
of applications to be used for model optimization and evalu-
ation. The framework then should perform optimizations to
find the minimum number of bits that need to be used for
representing the weights and feature maps and the number of
fraction bits to be used for each layer. In addition, optimiza-
tion of fully connected layers is performed to minimize the
memory requirements. All such optimizations are carried out
bounded by the maximum error specified by the user for the
specified application library.

The framework should be designed based on the devel-
opment of a scalable hardware architecture that works for
any given FPGA platform and achieves higher speedup with
the availability of higher resources. Based on the available
resources, specified by the FPGA platform, the tool will per-
form optimizations to maximize parallelism and data reuse,
given the resource limitations. The tool will then automati-
cally generate the CNNmodel that will fit on the given FPGA
platform and will allow the user to evaluate the performance
based on the chosen application library. This will allow the
user to evaluate the performance gains while evaluating dif-
ferent FPGA platforms with different resources. The tool
should have the option to generate performance measures
based on different performancemetrics as selected by the user
such as number of frames processed per second or number
of operations performed per second. In addition, the tool
will report other design metrics such as resource utilization,
memory sizes and bandwidth, and power dissipation.

Furthermore, it is desired to have the option for the user
to specify the desired performance for a given CNN model
and have the tool perform necessary analysis and evaluation
and recommend to the user candidate FPGA platforms for
achieving the desired performance levels. This will require
the development of reasonably accurate analytical models
that will estimate the needed resources for achieving the
desired performance. The user can then choose the recom-
mended FPGA platform and perform complete evaluation to
verify that the desired performance levels are met.

VI. CONCLUSION
In this paper, we reviewed recent developments in the area
of acceleration of deep learning networks and, in particular,
convolution neural networks (CNNs) on field programmable
gate arrays (FPGAs). The paper begins with a brief overview
of deep learning techniques highlighting their importance,
key operations, and applications. Special emphasis is given
on CNNs as they have wide applications in the area of image

detection and recognition and require both CPU and mem-
ory intensive operations that can be effectively accelerated
utilizing FPGA inherent ability to maximize parallelism of
operations.

While the paper briefly touches upon the acceleration
techniques for deep learning algorithms and CNNs from
both software and hardware perspectives, the core of this
article has been the review of recent techniques employed
in the acceleration of CNNs on FPGAs. A thorough up-to-
date review is provided that illustrates the employment of
various possibilities and techniques such as exploitation of
parallelism utilizing loop tiling and loop unrolling, effective
use of internal memory to maximize data reuse, operation
pipelining, and effective use of data sizes to minimize mem-
ory footprint, and, to optimize FPGA resource utilization.

The paper also presented the use of tools for generating
register transfer level (RTL) scripts that not only help in
automating the design process, but also help in exploring the
design space and suggesting efficient hardware. The paper
discusses the use of analytics such as: (i) work load analysis
in determining the computations that can be parallelized,
(ii) optimal loop unrolling factors, (iii) determining access
patterns to improve data locality, etc. In addition, a brief
review of the use of non-deterministic heuristics in solving
NP-hard combinatorial optimization problems in the design
and implementation of CNNs has been presented. Finally,
the paper summarizes the key features employed by the vari-
ous FPGA-based CNN acceleration techniques and provided
recommendations for enhancing the effectiveness of utilizing
FPGAs in CNNs acceleration.

ACKNOWLEDGMENT
The authors would like to thank King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, for all sup-
port. They would also like to thank Dr. Blair P. Bremberg
andMs. Sumaiya Hussain Sadiq for their help in professional
English editing of this manuscript.

REFERENCES
[1] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.

Learn., vol. 2, no. 1, pp. 1–127, 2009.
[2] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’ Neu-

ral Netw., vol. 61, pp. 85–117, Jan. 2015.
[3] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,

vol. 1. Cambridge, MA, USA: MIT Press, 2016.
[4] L. Zhang, S. Wang, and B. Liu, ‘‘Deep learning for sentiment analysis:

A survey,’’ in Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery. Hoboken, NJ, USA: Wiley, 2018, p. e1253.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning represen-
tations by back-propagating errors,’’ Nature, vol. 323, no. 6088, p. 533,
1986.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning represen-
tations by back-propagating errors,’’ in Neurocomputing: Foundations of
Research. Cambridge, MA, USA: MIT Press, 1988, pp. 696–699.

[7] M. A. Nielsen,Neural Networks andDeep Learning, vol. 25.Washington,
DC, USA: Determination Press, 2015.

[8] T.Weyand, I. Kostrikov, and J. Philbin, ‘‘PlaNet—Photo geolocation with
convolutional neural networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 37–55.

[9] MathWorks. (2018). What Is Deep Learning? [Online]. Available:
https://www.mathworks.com/discovery/deep-learning.html/

7854 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

[10] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[11] A. Deshpande. (2018). A Beginner’s Guide To Understanding Convolu-
tional Neural Networks. https://adeshpande3.github.io/A-Beginner%27s-
Guide-To-Understanding-Convolutional-Neural-Networks/

[12] J. E. Dayhoff,Neural Network Architectures: An Introduction. New York,
NY, USA: Van Nostrand Reinhold, 1990.

[13] Y. LeCun and Y. Bengio, ‘‘Convolutional networks for images, speech,
and time series,’’ in The Handbook of Brain Theory and Neural Networks,
vol. 3361, no. 10. Cambridge, MA, USA: MIT Press, 1995.

[14] J. Hauswald et al., ‘‘DjiNN and Tonic: DNN as a service and its impli-
cations for future warehouse scale computers,’’ ACM SIGARCH Comput.
Archit. News, vol. 43, no. 3, pp. 27–40, 2015.

[15] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, ‘‘Beyond short snippets: Deep networks for video classi-
fication,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 4694–4702.

[16] Y. LeCun et al., ‘‘Handwritten digit recognition with a back-propagation
network,’’ in Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 396–404.

[17] P. Barros, S. Magg, C. Weber, and S. Wermter, ‘‘A multichannel convo-
lutional neural network for hand posture recognition,’’ in Proc. Int. Conf.
Artif. Neural Netw. Cham, Switzerland: Springer 2014, pp. 403–410.

[18] A. Graves, A.-R. Mohamed, and G. Hinton, ‘‘Speech recognition with
deep recurrent neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2013, pp. 6645–6649.

[19] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and
L. Heck, ‘‘Learning deep structured semantic models for web search
using clickthrough data,’’ in Proc. 22nd ACM Int. Conf. Conf. Inf. Knowl.
Manage., 2013, pp. 2333–2338.

[20] O. Abdel-Hamid, A.-R.Mohamed, H. Jiang, L. Deng, G. Penn, andD. Yu,
‘‘Convolutional neural networks for speech recognition,’’ IEEE/ACM
Trans. Audio, Speech Lang. Process., vol. 22, no. 10, pp. 1533–1545,
Oct. 2015.

[21] P. Y. Simard, D. Steinkraus, and J. C. Platt, ‘‘Best practices for convolu-
tional neural networks applied to visual document analysis,’’ in Proc. 7th
Int. Conf. Document Anal. Recognit., Aug. 2003, pp. 958–963.

[22] S. Lai, L. Xu, K. Liu, and J. Zhao, ‘‘Recurrent convolutional neu-
ral networks for text classification,’’ in Proc. AAAI, vol. 333, 2015,
pp. 2267–2273.

[23] Y. Kim. (2014). ‘‘Convolutional neural networks for sentence classifica-
tion.’’ [Online]. Available: https://arxiv.org/abs/1408.5882

[24] R. Collobert and J. Weston, ‘‘A unified architecture for natural language
processing: deep neural networks with multitask learning,’’ in Proc. 25th
Int. Conf. Mach. Learn., 2008, pp. 160–167.

[25] R. Sarikaya, G. E. Hinton, and A. Deoras, ‘‘Application of deep belief
networks for natural language understanding,’’ IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 22, no. 4, pp. 778–784, Apr. 2014.

[26] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neu-
ral networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 1725–1732.

[27] J. Mutch and D. G. Lowe, ‘‘Multiclass object recognition with sparse,
localized features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 1, Jun. 2006, pp. 11–18.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[29] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

[30] O. Russakovsky et al., ‘‘ImageNet large scale visual recognition chal-
lenge,’’ Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[31] C. Szegedy et al. (Sep. 2015). ‘‘Going deeper with convolutions.’’
[Online]. Available: https://arxiv.org/abs/1409.4842

[32] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[33] K. Korekado, T. Morie, O. Nomura, T. Nakano, M. Matsugu, and
A. Iwata, ‘‘An image filtering processor for face/object recognition using
merged/mixed analog-digital architecture,’’ in Symp. VLSI Circuits Dig.
Tech. Papers, 2005, pp. 220–223.

[34] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, ‘‘A convolutional neural
network cascade for face detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 5325–5334.

[35] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, ‘‘Off-road
obstacle avoidance through end-to-end learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2006, pp. 739–746.

[36] R. Hadsell et al., ‘‘A multi-range vision strategy for autonomous offroad
navigation,’’ in Proc. Robot. Appl. (RA), vol. 1, no. 7, 2007, pp. 457–463.

[37] P. Sermanet et al., ‘‘A multirange architecture for collision-free off-road
robot navigation,’’ J. Field Robot., vol. 26, no. 1, pp. 52–87, 2009.

[38] B. Blanco-Filgueira, D. García-Lesta, M. Fernández-Sanjurjo,
V. M. Brea, and P. López. (2018). ‘‘Deep learning-based multiple object
visual tracking on embedded system for IoT and mobile edge computing
applications.’’ [Online]. Available: https://arxiv.org/abs/1808.01356

[39] P. D. McNelis, Neural Networks in Finance: Gaining Predictive Edge in
the Market. New York, NY, USA: Academic, 2005.

[40] P. J. G. Lisboa and E. C. Ifeachor, Artificial Neural Networks in
Biomedicine. London, U.K.: Springer, 2000.

[41] P.W.Mirowski, Y. LeCun, D.Madhavan, and R. Kuzniecky, ‘‘Comparing
SVM and convolutional networks for epileptic seizure prediction from
intracranial EEG,’’ inProc. IEEEWorkshopMach. Learn. Signal Process.
(MLSP), Oct. 2008, pp. 244–249.

[42] G. E. Dahl, T. N. Sainath, and G. E. Hinton, ‘‘Improving deep neural
networks for LVCSR using rectified linear units and dropout,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2013,
pp. 8609–8613.

[43] R. Hadsell et al., ‘‘Learning long-range vision for autonomous off-road
driving,’’ J. Field Robot., vol. 26, no. 2, pp. 120–144, Feb. 2009.

[44] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’
Found. Trends Signal Process., vol. 7, nos. 3–4, pp. 197–387,
Jun. 2014.

[45] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierar-
chies for accurate object detection and semantic segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[46] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, ‘‘SqueezeDet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving,’’ in Proc. CVPR Workshops, 2017,
pp. 446–454.

[47] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ in
Proc. IEEE Int. Conf. Comput. Vis., Jun. 2015, pp. 1026–1034.

[48] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolu-
tional networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2014, pp. 818–833.

[49] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[50] Image-Net. (2018). The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). [Online]. Available: http://image-net.org/
challenges/LSVRC/

[51] A. Mohamed, G. E. Dahl, and G. Hinton, ‘‘Acoustic modeling using deep
belief networks,’’ IEEE Trans. Audio, Speech, Language Process., vol. 20,
no. 1, pp. 14–22, Jan. 2012.

[52] O. Nomura and T. Morie, ‘‘Projection-field-type VLSI convolutional
neural networks using merged/mixed analog-digital approach,’’ in Proc.
Int. Conf. Neural Inf. Process. Berlin, Germany: Springer, 2007,
pp. 1081–1090.

[53] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, ‘‘Project
Adam: Building an efficient and scalable deep learning training system,’’
in Proc. OSDI, vol. 14, 2014, pp. 571–582.

[54] Y. LeCun et al., ‘‘Backpropagation applied to handwritten zip code
recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[55] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015,
pp. 161–170.

[56] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, ‘‘Neural acceleration for GPU throughput processors,’’
in Proc. 48th Int. Symp. Microarchitecture, 2015, pp. 482–493.

[57] G. Hinton et al., ‘‘Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,’’ IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[58] Y. Jia et al., ‘‘Caffe: Convolutional architecture for fast feature embed-
ding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[59] A. Vasudevan, A. Anderson, and D. Gregg, ‘‘Parallel multi channel
convolution using general matrix multiplication,’’ in Proc. IEEE 28th Int.
Conf. Appl.-Specific Syst., Archit. Process. (ASAP), Jul. 2017, pp. 19–24.

VOLUME 7, 2019 7855

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

[60] K. Guo et al., ‘‘Angel-eye: A complete design flow for mapping CNN
onto embedded FPGA,’’ IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 37, no. 1, pp. 35–47, Jan. 2018.

[61] E. Nurvitadhi et al., ‘‘Can FPGAs beat GPUs in accelerating next-
generation deep neural networks?’’ in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, 2017, pp. 5–14.

[62] J. Misra and I. Saha, ‘‘Artificial neural networks in hardware: A sur-
vey of two decades of progress,’’ Neurocomputing, vol. 74, nos. 1–3,
pp. 239–255, 2010.

[63] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, ‘‘Neural
acceleration for general-purpose approximate programs,’’ in Proc.
45th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2012,
pp. 449–460.

[64] S. Han et al., ‘‘EIE: Efficient inference engine on compressed deep
neural network,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 243–254.

[65] L. Du et al., ‘‘A reconfigurable streaming deep convolutional neural
network accelerator for Internet of Things,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 1, pp. 198–208, Jan. 2018.

[66] W. Vanderbauwhede and K. Benkrid, High-Performance Computing
Using FPGAs. New York, NY, USA: Springer, 2013.

[67] A. Putnam et al., ‘‘A reconfigurable fabric for accelerating large-scale
datacenter services,’’ ACM SIGARCH Comput. Archit. News, vol. 42,
no. 3, pp. 13–24, 2014.

[68] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen, ‘‘High-level
synthesis: Productivity, performance, and software constraints,’’ J. Elect.
Comput. Eng., vol. 2012, p. 1, Jan. 2012.

[69] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[70] A. Canis et al., ‘‘LegUp: High-level synthesis for FPGA-based proces-
sor/accelerator systems,’’ in Proc. 19th ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2011, pp. 33–36.

[71] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[72] R. Hameed et al., ‘‘Understanding sources of inefficiency in general-
purpose chips,’’ ACM SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 37–47, Jun. 2010.

[73] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
‘‘GPUs and the future of parallel computing,’’ IEEEMicro, vol. 31, no. 5,
pp. 7–17, Sep./Oct. 2011.

[74] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks,’’
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367–379,
2016.

[75] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, ‘‘Robust
object recognition with cortex-like mechanisms,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.

[76] P. Joshi. (2018).What is Local Response Normalization in Convolutional
Neural Networks. [Online]. Available: https://prateekvjoshi.com/2016/
04/05/what-is-local-response-normalization-in-convolutional-neural-
networks/

[77] J. Cong and B. Xiao, ‘‘Minimizing computation in convolutional neural
networks,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham, Switzerland:
Springer, 2014, pp. 281–290.

[78] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S. Vrudhula, ‘‘Scalable and
modularized RTL compilation of convolutional neural networks onto
FPGA,’’ in Proc. 26th Int. Conf. Field Program. Logic Appl. (FPL),
Aug. 2016, pp. 1–8.

[79] D. F. Bacon, S. L. Graham, and O. J. Sharp, ‘‘Compiler transformations
for high-performance computing,’’ ACM Comput. Surv., vol. 26, no. 4,
pp. 345–420, Dec. 1994.

[80] N. Suda et al., ‘‘Throughput-optimized opencl-based FPGA accelerator
for large-scale convolutional neural networks,’’ in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2016, pp. 16–25.

[81] M. Denil, B. Shakibi, L. Dinh, and N. De Freitas, ‘‘Predicting param-
eters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2148–2156.

[82] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
boltzmann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[83] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Optimizing loop operation
and dataflow in FPGA acceleration of deep convolutional neural net-
works,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
2017, pp. 45–54.

[84] A. Karpathy. (2018). Convolutional Neural Networks for Visual
Recognition. [Online]. Available: http://cs231n.github.io/convolutional-
networks/

[85] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ inProc. Eur. Conf. Comput. Vis.Cham, Switzerland: Springer,
2016, pp. 630–645.

[86] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. AAAI, vol. 4, 2017, p. 12.

[87] J. Villasenor and W. H. Mangione-Smith, ‘‘Configurable computing,’’
Sci. Amer., vol. 276, no. 6, pp. 66–71, 1997.

[88] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays, vol. 180. Boston, MA, USA: Springer, 2012.

[89] M. C. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani, andM. Chiu,
‘‘Computing models for FPGA-based accelerators,’’ Comput. Sci. Eng.,
vol. 10, no. 6, pp. 35–45, Nov. 2008.

[90] B. S. C. Varma, K. Paul, and M. Balakrishnan, Architecture Exploration
of FPGA Based Accelerators for BioInformatics Applications. Singapore:
Springer, 2016.

[91] G. Lacey, G. W. Taylor, and S. Areibi. (2016). ‘‘Deep learning on
FPGAs: Past, present, and future.’’ [Online]. Available: https://arxiv.org/
abs/1602.04283

[92] C. Farabet et al., ‘‘Large-scale FPGA-based convolutional networks,’’
in Scaling up Machine Learning: Parallel and Distributed Approaches.
Cambridge, U.K.: Cambridge Univ. Press, 2011, pp. 399–419.

[93] A. Munshi, ‘‘The OpenCL specification,’’ in Proc. IEEE Hot Chips 21
Symp. (HCS), Aug. 2009, pp. 1–314.

[94] J. E. Stone, D. Gohara, and G. Shi, ‘‘OpenCL: A parallel programming
standard for heterogeneous computing systems,’’ Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66–73, 2010.

[95] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural
Networks, vol. 365. Boston, MA, USA: Springer, 2006.

[96] H. M.Waidyasooriya, M. Hariyama, and K. Uchiyama,Design of FPGA-
Based Computing Systems With OpenCL. Cham, Switzerland: Springer,
2018.

[97] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, ‘‘Hardware for
machine learning: Challenges and opportunities,’’ in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), Apr./May 2017, pp. 1–8.

[98] J. Qiu et al., ‘‘Going deeper with embedded FPGA platform for convolu-
tional neural network,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, 2016, pp. 26–35.

[99] S. Han et al., ‘‘ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2017, pp. 75–84.

[100] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynami-
cally configurable coprocessor for convolutional neural networks,’’ ACM
SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 247–257, 2010.

[101] C. F. Van Loan, Matrix Computations (Johns Hopkins Studies in the
Mathematical Sciences). Baltimore, MD, USA: The Johns Hopkins Univ.
Press, 1996.

[102] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploit-
ing linear structure within convolutional networks for efficient evalua-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[103] G. Guennebaud et al. (2015). Eigen V3, 2010. [Online]. Available:
http://eigen.tuxfamily.org

[104] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[105] Y. LeCun, J. S. Denker, and S. A. Solla, ‘‘Optimal brain damage,’’ inProc.
Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.

[106] S. J. Hanson and L. Y. Pratt, ‘‘Comparing biases for minimal network
construction with back-propagation,’’ in Proc. Adv. Neural Inf. Process.
Syst., 1989, pp. 177–185.

[107] B. Hassibi and D. G. Stork, ‘‘Second order derivatives for network
pruning: Optimal brain surgeon,’’ in Proc. Adv. Neural Inf. Process. Syst.,
1993, pp. 164–171.

[108] S. Han, H. Mao, andW. J. Dally. (2015). ‘‘Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding.’’ [Online]. Available: https://arxiv.org/abs/1510.00149

7856 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

[109] T. Chen et al., ‘‘DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,’’ ACM Sigplan Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[110] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[111] Y. Chen et al., ‘‘DaDianNao: A machine-learning supercomputer,’’ in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture. Washington,
DC, USA: IEEE Computer Society, Dec. 2014, pp. 609–622.

[112] T. Luo et al., ‘‘DaDianNao: A neural network supercomputer,’’ IEEE
Trans. Comput., vol. 66, no. 1, pp. 73–88, Jan. 2017.

[113] D. Liu et al., ‘‘Pudiannao: A polyvalent machine learning accelerator,’’
ACM SIGARCH Comput. Archit. News, vol. 43, no. 1, pp. 369–381,
Mar. 2015.

[114] Z. Du et al., ‘‘Shidiannao: Shifting vision processing closer to the sensor,’’
Acm Sigarch Comput. Archit. News, vol. 43, no. 3, pp. 92–104, 2015.

[115] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing
of deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[116] A. Shafiee et al., ‘‘ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,’’ ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[117] P. Chi et al., ‘‘PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,’’ ACM
SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 27–39, 2016.

[118] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, ‘‘FlexFlow: A flexible
dataflow accelerator architecture for convolutional neural networks,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 553–564.

[119] J. Cloutier, E. Cosatto, S. Pigeon, F. R. Boyer, and P. Y. Simard, ‘‘VIP:
An FPGA-based processor for image processing and neural networks,’’
in Proc. IEEE 5th Int. Conf. Microelectron. Neural Netw., Feb. 1996,
pp. 330–336.

[120] D. F. Wolf, R. A. Romero, and E. Marques, ‘‘Using embedded processors
in hardware models of artificial neural networks,’’ in Proc. Simposio
Brasileiro de automação Inteligente, Brasília, Brasil, 2001.

[121] K. R. Nichols, M. A. Moussa, and S. M. Areibi, ‘‘Feasibility of floating-
point arithmetic in FPGA based artificial neural networks,’’ in Proc.
CAINE, 2002, pp. 8–13.

[122] K. Benkrid and S. Belkacemi, ‘‘Design and implementation of a 2D
convolution core for video applications on FPGAs,’’ in Proc. IEEE 3rd
Int. Workshop Digit. Comput. Video (DCV), Nov. 2002, pp. 85–92.

[123] F. Cardells-Tormo, P.-L. Molinet, J. Sempere-Agullo, L. Baldez, and
M. Bautista-Palacios, ‘‘Area-efficient 2D shift-variant convolvers for
FPGA-based digital image processing,’’ in Proc. IEEE Workshop Signal
Process. Syst. Design Implement., Aug. 2005, pp. 209–213.

[124] R. G. Gironés, R. C. Palero, J. C. Boluda, and A. S. Cortés, ‘‘FPGA
implementation of a pipelined on-line backpropagation,’’ J. VLSI Signal
Process. Syst. Signal, Image Video Technol., vol. 40, no. 2, pp. 189–213,
2005.

[125] H. Zhang, M. Xia, and G. Hu, ‘‘A multiwindow partial buffering scheme
for FPGA-based 2-D convolvers,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 54, no. 2, pp. 200–204, Feb. 2007.

[126] A. W. Savich, M. Moussa, and S. Areibi, ‘‘The impact of arithmetic
representation on implementing MLP-BP on FPGAs: A study,’’ IEEE
Trans. Neural Netw., vol. 18, no. 1, pp. 240–252, Jan. 2007.

[127] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, ‘‘CNP: An FPGA-based
processor for convolutional networks,’’ in Proc. IEEE Int. Conf. Field
Program. Logic Appl. (FPL), Aug./Sep. 2009, pp. 32–37.

[128] Y. LeCun et al. (2015). LeNet-5, Convolutional Neural Networks.
[Online]. Available: http://yann.lecun.com/exdb/lenet

[129] M. Sankaradas et al., ‘‘Amassively parallel coprocessor for convolutional
neural networks,’’ in Proc. 20th IEEE Int. Conf. Appl.-Specific Syst.,
Archit. Processors (ASAP), Jul. 2009, pp. 53–60.

[130] H. P. Graf et al., ‘‘A massively parallel digital learning processor,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 529–536.

[131] S. Cadambi et al., ‘‘A massively parallel FPGA-based coprocessor for
support vector machines,’’ in Proc. 17th IEEE Symp. Field Program.
Custom Comput. Mach., Apr. 2009, pp. 115–122.

[132] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
‘‘A programmable parallel accelerator for learning and classification,’’
in Proc. ACM 19th Int. Conf. Parallel Archit. Compilation Techn., 2010,
pp. 273–284.

[133] J. C. Platt, ‘‘12 fast training of support vector machines using sequential
minimal optimization,’’ Adv. Kernel Methods, pp. 185–208, 1999.

[134] B. Bai et al., ‘‘Learning to rank with (a lot of) word features,’’ Inf. Retr.,
vol. 13, no. 3, pp. 291–314, 2010.

[135] J. MacQueen, ‘‘Some methods for classification and analysis of multi-
variate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[136] A. Sato and K. Yamada, ‘‘Generalized learning vector quantization,’’ in
Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 423–429.

[137] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, ‘‘Face recognition:
A convolutional neural-network approach,’’ IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jan. 1997.

[138] K. Chellapilla, S. Puri, and P. Simard, ‘‘High performance convolutional
neural networks for document processing,’’ in Proc. 10th Int. Workshop
Frontiers Handwriting Recognit., 2006.

[139] F. Nasse, C. Thurau, and G. A. Fink, ‘‘Face detection using GPU-based
convolutional neural networks,’’ in Proc. Int. Conf. Comput. Anal. Images
Patterns. Berlin, Germany: Springer, 2009, pp. 83–90.

[140] J. D. Dixon, ‘‘Asymptotically fast factorization of integers,’’Math. Com-
put., vol. 36, no. 153, pp. 255–260, 1981.

[141] P. L. Montgomery, ‘‘A survey of modern integer factorization algo-
rithms,’’ CWI Quart., vol. 7, no. 4, pp. 337–365, 1994.

[142] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello, ‘‘Hardware accelerated convolutional neural networks
for synthetic vision systems,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May/Jun. 2010, pp. 257–260.

[143] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, ‘‘NeuFlow: A runtime reconfigurable dataflow processor for
vision,’’ inProc. IEEEComput. Soc. Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2011, pp. 109–116.

[144] R. Collobert, C. Farabet, and K. Kavukcuoglu, ‘‘Torch,’’ in Proc. Work-
shop Mach. Learn. Open Source Softw. (NIPS), vol. 76, 2008, p. 113.

[145] D. Grangier, L. Bottou, and R. Collobert, ‘‘Deep convolutional networks
for scene parsing,’’ in Proc. ICML Deep Learn. Workshop, 2009, vol. 3,
no. 6, p. 109.

[146] M. Peemen, A. A. Setio, B.Mesman, and H. Corporaal, ‘‘Memory-centric
accelerator design for convolutional neural networks,’’ in Proc. IEEE 31st
Int. Conf. Comput. Design (ICCD), Oct. 2013, pp. 13–19.

[147] A. Beric, J. van Meerbergen, G. de Haan, and R. Sethuraman, ‘‘Memory-
centric video processing,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 4, pp. 439–452, Apr. 2008.

[148] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
‘‘A 240 G-OPS/S mobile coprocessor for deep neural networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 682–687.

[149] C. Farabet, C. Poulet, and Y. LeCun, ‘‘An FPGA-based stream pro-
cessor for embedded real-time vision with convolutional networks,’’ in
Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops (ICCV Workshops),
Sep./Oct. 2009, pp. 878–885.

[150] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[151] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, ‘‘Polyhedral-
based data reuse optimization for configurable computing,’’ in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2013, pp. 29–38.

[152] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, ‘‘Accelerating deep convolutional neural networks using
specialized hardware,’’ Microsoft Res., Washington, DC, USA, White
Paper 11, 2015, vol. 2, no. 11, pp. 1–4.

[153] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, ‘‘Caffeine:
Towards uniformed representation and acceleration for deep convolu-
tional neural networks,’’ IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., to be published, doi: 10.1109/TCAD.2017.2785257.

[154] B. Bosi, G. Bois, and Y. Savaria, ‘‘Reconfigurable pipelined 2-D con-
volvers for fast digital signal processing,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 7, no. 3, pp. 299–308, Sep. 1999.

[155] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, ‘‘DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,’’ in Proc. 53rd Annu. Design Autom. Conf., 2016, p. 110.

[156] Khronos OpenCL Working Group. (2011). The OpenCL Specifica-
tion Version 1.1. [Online]. Available: http://www.khronos.org/registry/cl/
specs/opencl-1.1.pdf

[157] M. S. Abdelfattah, A. Hagiescu, and D. Singh, ‘‘Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,’’ in
Proc. Int. Workshop OpenCL, 2014, p. 4.

VOLUME 7, 2019 7857

http://dx.doi.org/10.1109/TCAD.2017.2785257

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

[158] Altera. (2018). OpenCL Design Examples. [Online]. Available: https://
www.altera.com/support/support-resources/designexamples/design-
software/opencl.html/

[159] Nallatech. (2018). P395-D8 OpenCL FPGA Accelerator Cards.
[Online]. Available: http://www.nallatech.com/wp-content/uploads/
openclcardspb_v1_51.pdf/

[160] Altera. (2018). DE5-Net FPGA Kit User Manual. [Online]. Available:
ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE5/DE5_User_

[161] R. C. Whaley and J. J. Dongarra, ‘‘Automatically tuned linear
algebra software,’’ in Proc. IEEE/ACM Conf. Supercomput. (SC),
Nov. 1998, p. 38.

[162] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, ‘‘Caffeine:
Towards uniformed representation and acceleration for deep
convolutional neural networks,’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), 2016, pp. 1–8.

[163] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong, ‘‘Improving
high level synthesis optimization opportunity through polyhedral
transformations,’’ in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, 2013, pp. 9–18.

[164] E. A. Lee and D. G. Messerschmitt, ‘‘Synchronous data flow,’’ Proc.
IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[165] S. I. Venieris and C.-S. Bouganis, ‘‘fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,’’ in Proc. IEEE
24th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2016, pp. 40–47.

[166] C. R. Reeves,Modern Heuristic Techniques for Combinatorial Problems
(Advanced Topics in Computer Science). New York, NY, USA:
McGraw-Hill, 1995.

[167] L. Cavigelli, M. Magno, and L. Benini, ‘‘Accelerating real-time
embedded scene labeling with convolutional networks,’’ in Proc. 52nd
Annu. Design Autom. Conf., 2015, p. 108.

[168] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘ALAMO: FPGA
acceleration of deep learning algorithms with a modularized RTL
compiler,’’ Integration, vol. 62, pp. 14–23, Jun. 2018.

[169] M. Lin, Q. Chen, and S. Yan. (2013). ‘‘Network in network.’’ [Online].
Available: https://arxiv.org/abs/1312.4400

[170] Z. Liu et al., ‘‘Throughput-optimized FPGA accelerator for deep
convolutional neural networks,’’ ACM Trans. Reconfigurable Technol.
Syst., vol. 10, no. 3, 2017, Art. no. 17.

[171] Y. Guan et al., ‘‘FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs WITH RTL-HLS hybrid templates,’’ in
Proc. IEEE 25th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr./May 2017, pp. 152–159.

[172] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine
learning,’’ in Proc. OSDI, vol. 16. 2016, pp. 265–283.

[173] M. H. Alsuwaiyel, Algorithms: Design Techniques And Analysis, vol. 14.
Singapore: World Scientific, 2016.

[174] S. Chetlur et al. (2014). ‘‘cuDNN: Efficient primitives for deep learning.’’
[Online]. Available: https://arxiv.org/abs/1410.0759

[175] W. Zaremba, I. Sutskever, and O. Vinyals. (2014). ‘‘Recurrent neural
network regularization.’’ [Online]. Available: https://arxiv.org/abs/
1409.2329

[176] W. Sung, S. Shin, and K. Hwang. (2015). ‘‘Resiliency of deep neural
networks under quantization.’’ [Online]. Available: https://arxiv.org/
abs/1511.06488

[177] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[178] M. Kim and P. Smaragdis. (2016). ‘‘Bitwise neural networks.’’ [Online].
Available: https://arxiv.org/abs/1601.06071

[179] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. (2016).
‘‘DoReFa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients.’’ [Online]. Available: https://arxiv.org/abs/
1606.06160

[180] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
(2016). ‘‘Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1.’’ [Online]. Available:
https://arxiv.org/abs/1602.02830

[181] Y. Umuroglu et al., ‘‘FINN: A framework for fast, scalable binarized
neural network inference,’’ in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, 2017, pp. 65–74.

[182] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 4, 2009.

[183] S. I. Venieris and C.-S. Bouganis, ‘‘Latency-driven design for FPGA-
based convolutional neural networks,’’ in Proc. 27th Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2017, pp. 1–8.

[184] A. Lavin and S. Gray, ‘‘Fast algorithms for convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 4013–4021.

[185] S. Winograd, Arithmetic Complexity of Computations, vol. 33.
Philadelphia, PA, USA: SIAM, 1980.

[186] C. Van Loan,Computational Frameworks for the Fast Fourier Transform,
vol. 10. Philadelphia, PA, USA: SIAM, 1992.

[187] C. Zhang and V. Prasanna, ‘‘Frequency domain acceleration of convolu-
tional neural networks on CPU-FPGA shared memory system,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, pp. 35–44.

[188] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R.
Chiu, ‘‘An OpenCL deep learning accelerator on arria 10,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, pp. 55–64.

[189] L. Lu, Y. Liang, Q. Xiao, and S. Yan, ‘‘Evaluating fast algorithms for
convolutional neural networks on FPGAs,’’ in Proc. IEEE 25th Annu. Int.
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr./May 2017,
pp. 101–108.

[190] J. Zhang and J. Li, ‘‘Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,’’ in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2017, pp. 25–34.

[191] T. S. Czajkowski et al., ‘‘OpenCL for FPGAs: Prototyping a compiler,’’ in
Proc. Int. Conf. Eng. Reconfigurable Syst. Algorithms (ERSA), 2012, p. 1.

[192] Y. Shen, M. Ferdman, and P. Milder, ‘‘Maximizing CNN accelerator
efficiency through resource partitioning,’’ in Proc. ACM/IEEE 44th
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 535–547.

[193] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer. (2016). ‘‘SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5 MB model size.’’ [Online]. Available:
https://arxiv.org/abs/1602.07360

[194] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, ‘‘A high
performance FPGA-based accelerator for large-scale convolutional
neural networks,’’ in Proc. 26th Int. Conf. Field Program. Logic Appl.
(FPL), Aug./Sep. 2016, pp. 1–9.

[195] X. Wei et al., ‘‘Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,’’ in Proc. Design Autom. Conf.,
2017, pp. 1–6.

[196] Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘End-to-end scalable
FPGA accelerator for deep residual networks,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[197] C.Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, ‘‘DLAU: A scalable
deep learning accelerator unit on FPGA,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 3, pp. 513–517, Mar. 2017.

[198] Altera. (2018). JTAG UART Core. [Online]. Available: https://www.
altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii51009.pdf

[199] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘An automatic RTL compiler
for high-throughput FPGA implementation of diverse deep convolutional
neural networks,’’ in Proc. 27th Int. Conf. Field Program. Logic Appl.
(FPL), Sep. 2017, pp. 1–8.

[200] M. S. Abdelfattah et al. (2018). ‘‘DLA: Compiler and FPGA overlay for
neural network inference acceleration.’’ [Online]. Available: https://arxiv.
org/abs/1807.06434

[201] A. K. Jain, S. A. Fahmy, and D. L. Maskell, ‘‘Efficient overlay
architecture based on DSP blocks,’’ in Proc. IEEE 23rd Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), May 2015, pp. 25–28.

[202] W. Liu et al., ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[203] E. Chung et al., ‘‘Accelerating persistent neural networks at datacenter
scale,’’ in Proc. Hot Chips, vol. 27, 2017.

[204] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Optimizing the convolution
operation to accelerate deep neural networks on FPGA,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367,
Jul. 2018.

[205] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, ‘‘Energy-efficient
CNN implementation on a deeply pipelined FPGA cluster,’’ in Proc. Int.
Symp. Low Power Electron. Design, 2016, pp. 326–331.

[206] S. M. Sait and H. Youssef, Iterative Computer Algorithms With
Applications in Engineering: Solving Combinatorial Optimization
Problems. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999.

[207] L. Xie and A. Yuille, ‘‘Genetic CNN,’’ in Proc. ICCV, Oct. 2017,
pp. 1388–1397.

[208] L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy, ‘‘Metaheuristic
algorithms for convolution neural network,’’ Comput. Intell. Neurosci.,
vol. 2016, May 2016, Art. no. 1537325.

7858 VOLUME 7, 2019

A. Shawahna et al.: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification

AHMAD SHAWAHNA received the B.Sc. degree
in computer engineering from An-Najah National
University, Palestine, in 2012, and the M.S. degree
in computer engineering from the King Fahd
University of Petroleum and Minerals (KFUPM),
Saudi Arabia, in 2016, where he is currently pursu-
ing the Ph.D. degree with the Department of Com-
puter Engineering. He is currently with the Center
for Communications and IT Research, KFUPM.
His research interests include hardware accelera-

tor, deep learning, convolutional neural networks, field-programmable gate
array, wireless security, network security, the Internet of Things, and cloud
computing.

SADIQ M. SAIT was born in Bengaluru, India.
He received the bachelor’s degree in electronics
engineering from Bangalore University, in 1981,
and the master’s and Ph.D. degrees in electrical
engineering from the King Fahd University of
Petroleum and Minerals (KFUPM), in 1983 and
1987, respectively. He is currently a Professor
of computer engineering and the Director of the
Center for Communications and IT Research,
KFUPM. He has authored over 200 research

papers, has contributed chapters to technical books, and has lectured in over
25 countries. He is the principle author of two books. He is a Senior Member
of the IEEE. In 1981, he received the Best Electronic Engineer Award from
the Indian Institute of Electrical Engineers, Bengaluru.

AIMAN EL-MALEH received the B.Sc. degree
(Hons.) in computer engineering from the King
Fahd University of Petroleum and Minerals
(KFUPM), in 1989, the M.A.Sc. degree in elec-
trical engineering from the University of Victoria,
Canada, in 1991, and the Ph.D. degree in electrical
engineering, with dean’s honor list, from McGill
University, Canada, in 1995. He is currently a
Professor with the Computer Engineering Depart-
ment, KFUPM. He was a Member of Scientific

Staff with Mentor Graphics Corporation and the Leader in design automa-
tion, from 1995 to 1998. He holds five U.S. patents. His research interests
include synthesis, testing, and verification of digital systems, defect and
soft-error tolerance design, VLSI design, design automation, and efficient
FPGA implementations of deep learning algorithms and data compression
techniques. He received the Best Paper Award for the most outstanding
contribution to the field of test at the 1995 European Design and Test
Conference, the Excellence in Teaching Award from KFUPM, in 2001 and
2002, in 2006 and 2007, and in 2011 and 2012, the Excellence in Advising
Award fromKFUPM, in 2013 and 2014 and in 2017 and 2018, the Excellence
in Research Award from KFUPM, in 2010 and 2011 and in 2015 and 2016,
and the First Instructional Technology Award from KFUPM, in 2009 and
2010. His paper presented at the 1995 Design Automation Conference was
also nominated for the Best Paper Award.

VOLUME 7, 2019 7859

	INTRODUCTION
	APPLICATIONS OF DEEP LEARNING NETWORKS
	EMERGENCE OF DEEP LEARNING NETWORKS
	HARDWARE ACCELERATION OF DEEP LEARNING NETWORKS

	BACKGROUND AND TERMINOLOGY
	CONVOLUTIONAL NEURAL NETWORKS (CNNs)
	CONVOLUTION (CONV)
	ACTIVATION FUNCTIONS (AFs)
	NORMALIZATION
	POOLING
	FULLY CONNECTED LAYER (FC)

	EXAMPLES OF DEEP LEARNING NETWORKS
	FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)
	CHALLENGES OF FPGA-BASED IMPLEMENTATION OF DEEP LEARNING NETWORKS

	ACCELERATION OF DEEP LEARNING NETWORKS: CURRENT STATUS
	CNNs COMPRESSION
	ASIC-BASED ACCELERATORS
	FPGA-BASED ACCELERATORS

	METAHEURISTICS IN THE DESIGN OF CONVOLUTIONAL NEURAL NETWORKS
	CNN STRUCTURE OPTIMIZATION
	CNN WEIGHTS AND BIAS VALUES OPTIMIZATION
	CNN DESIGN VARIABLES OPTIMIZATION

	SUMMARY AND RECOMMENDATIONS
	CONCLUSION
	REFERENCES
	Biographies
	AHMAD SHAWAHNA
	SADIQ M. SAIT
	AIMAN EL-MALEH

