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ABSTRACT In order to address the problem of achieving the poor performance of a single-channel receiver
operated at a low signal-to-noise ratio (SNR) based on the existing source number estimation method,
an effective source enumeration approach for the single-channel receiver operated at a low SNR is proposed
in this paper. The proposed method is based on the empirical mode decomposition (EMD) with the auto-
correlation coefficient matrix (ACCM) and the jackknifing method. First, the received single-channel signal
is decomposed into several intrinsic mode functions and a residue via the EMD. Both the components and
the original signal are employed to simulate the signals obtained from a pseudo-uniform linear array (ULA).
After applying the multiple jackknifing methods to the signals obtained from the pseudo-ULA without
complete overlap, we acquire a series of subsample datasets. Consequently, the ACCM instead of the
conventional auto-covariance matrix is constructed for each subsample. After performing the eigenvalue
decomposition of all the ACCMs, we acquire several sets of eigenvalues. For each set of eigenvalues, either
moving increment criterion or moving standard deviation criterion is employed to determine the source
number. Since more than one ACCM is employed because of using the multiple jackknifing methods,
we have the statistics for the estimation of each ACCM. Then, we take the one that occurs the most frequently
as the final result of source enumeration. The experiments validate the proposed method and show the
excellent performance of our proposed algorithm. Finally, we also present the optimal scheme for selecting
the important parameters, such as the jackknifing ratio and the jackknifing times in the approach.

INDEX TERMS Source enumeration for single channel receiver, empirical mode decomposition (EMD),
jackknifing, auto correlation coefficient matrix, moving increment criterion, moving standard deviation
criterion.

I. INTRODUCTION
It is well known that estimation of source number and direc-
tion of arrival (DOA) [1] are two syntrophic challenges in
the array signal processing. Some algorithms such as the
high resolution direction estimation such as the multiple
signal classification (MUSIC) algorithm [2] and the sig-
nal parameter estimation algorithm via rotational invariance
techniques (ESPRIT) [3] are widely applied to the signal
processing in the fields for radar, sonar, communication and
so on in the past decades. However, the implementations of
the direction estimation algorithms are based on the priori
knowledge of the total source number. The performance of
the DOA algorithms will be greatly deteriorated if the source

number estimation is inaccurate. So the source enumeration
plays a critical role in the DOA procedure.

For the source number estimation, the classical types of
signal source estimators include the Akaike information cri-
terion (AIC) based estimator [4], the minimum description
length (MDL) based estimator [5], the Bayesian information
criterion (BIC) [6] based estimator as well as the improved
ones based on the above estimators [7]–[10]. In general,
there are two functions as the likelihood function and the
penalty function in these above estimators. More precisely,
the eigenvalues of the ACM of the received signal [11]
by the array antennas are employed to perform the source
number estimation through the estimators mentioned above.
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Here, it assumes that the minimal and almost equal eigen-
values stands by the eigenvalues in the noise subspace, and
the results of the source number estimation are acquired
by the dimension of the ACM of the samples of the ACM
minus the number of the noise eigenvalues in the sample of
the ACM of the samples. That is to say, all the algorithms
mentioned above are relevant to the eigenvalues of the ACM
of the received signal samples. However, it is necessary
to set an appropriate threshold in these methods. Besides,
the eigenvectors of the sample ACM are also used in the
source enumeration [12]–[14]. More precisely, the number of
the sources is detected by combining the blind beamforming
technique and the peak to average power ratio based on
the frequency estimation algorithm [12]. Zhang et al. [13]
took the advantage of the orthogonality between the signal
subspace and the noise subspace. The bootstrap technique
was combined with the Capon minimum power estimator
based the DOA method to calculate the weighted inner prod-
uct vectors. Then, the mean of the weighed inner product
vectors after the above procedure iteration was employed
to conduct the signal source enumeration through a cluster-
ing algorithm. Zhang et al. [14] presented a source number
estimation approach based on the square of the Euclidean
norm between the vectors, which were the inner product
of the steering matrix and the left singular vectors of the
Hankel matrix. But there is a common point of all the meth-
ods mentioned above that their performing are based on the
assumption of multichannel received signals, which denotes
multiple received antennas. Nevertheless, if we only consider
the extreme case of utilizing the observed signals from single
channel to finish source number estimation, the methods
mentioned above seem to be helpless. Thus, it is very neces-
sary for the received signals from single channel to virtually
extend to higher dimensions.

Compared with the multiple channels, the single channel
only needs one sensor. In addition to this, the single channel
enjoys a number of benefits such as a simple construction,
a low cost implementation, avoiding the interferences among
the sensors, etc. In the past few years, the single channel
model is widely used in a lot of fields such as in the speech
signal processing [15], the biomedical signal processing [16],
signal processing for the mechanical vibration [17], signal
processing for communications [18], blind source separa-
tions [19], [20], etc. An accurate source enumeration via
the received signals of a single channel plays an important
role for the subsequent signal processing. For performing
the source enumeration of the received signal of a single
channel, the conventional methods are based on combining
the dimension extension method by increasing the array ele-
ments and the existing source number estimation methods.
A matching pursuit algorithm [21] based on the genetic algo-
rithm method is used to select the optimal Gabor atoms in the
complete dictionary. Then, the singular signal is described by
the weighted sum of the selected atoms to create the pseudo
multiple channels signals. In [22], Kouchaki et al. adopt the
singular spectrum analysis (SSA) to construct a delay matrix

and perform the EVD of the delay covariance matrix to
obtain a set of eigenvalues and eigenvectors. Then, a series of
projections and signal reconstructions are employed to per-
form the dimension extension of the single channel signals.
Unfortunately, most of the computations are on the above
two algorithms. Shao et al. [23] decomposed the signal of the
single channel into that of the pseudo multiple channels by
performing the wavelet transform. Then, a fast independent
component analysis (ICA) is employed to perform the source
signal separation in order to determine the number of the
signal sources. However, it is the difficulty to choose an
appropriate wavelet basis for performing the decomposition.
In [24], the data of the single channel is converted into that
of the multiple channels through a delay processing. The
algorithms based on the information criterion are employed
to estimate the number of signal sources subsequently. The
experiment results show that it can achieve an excellent per-
formance of the source enumeration with a huge number of
snapshots. Barbedo et al. [25] developed a two stage algo-
rithm by the single channel signal to estimate the number of
sources. Here, one stage is harmonically related to the number
of sources and another one is not closely harmonically related
to the number of sources. The final estimated number of
sources is the sum of the estimated numbers of sources in
these two stages. However, the average detection accuracy of
this approach is only about 80%.

Besides, the algorithms of the dimension extension men-
tioned above such as the EMD [26] are also capable of
decomposing the signal of a single channel into several IMFs.
Furthermore, as it is an adaptive decomposition method with-
out any predefined function, EMD is widely used in the
blind source separation for the signal of the single chan-
nel [27], [28]. In [29], the observed signal of single channel
is decomposed into several IMFs, which are regarded as the
signals received by pseudo multiple channels. Then, either
AIC or MDL is employed to detect signal source number.
A method of source enumeration based on diagonal loading
to the ACM eigenvalues [30] is proposed for smoothing the
eigenvalues in order to eliminate the inequality of noise eigen-
values. With the diagonal loading method being introduced
in [29], the source enumeration performance is improved.
However, the more excellent performance of source number
detection acquired will partially scarify the SNR. The thought
of resampling by multiple sampling without an overlap is
employed to enhance the accuracy of estimation [31]. This
method was invented by Quenouille in 1949 to construct the
sub-sample datasets. Since the approach of resampling is not
only subject to the assumption of the signal model, it also
can effectively eliminate the estimated deviation of the sub-
sample datasets. For the sake of its stronger robustness, it is
widely applied in a lot of fields [32]–[34]. The method of
resampling, which is also called jackknifing, is utilized to
improve the source number estimation performance in the
case of low SNR [24], [33]. However, the drawback of the
method in [24] needs a great amount of snapshots to perform
the time delay processing before jackknifing. By the way,
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the delay processing is important to dimension extension for
the single channel signal. Besides, the approach in [33] is
only applied to multiple channels signal. Salman et al. [35]
presented a source enumeration algorithm, which took the
advantage of the eigenvalues after the EVD of the ACCM
rather than the conventional ACM to make the difference
between the signal eigenvalues and the noise eigenvalues
more accentuated. In this paper, an effective sources enu-
meration approach is presented. The new algorithm combines
with the merits of EMD, jackknifing and ACCM, such as the
self-adaptivity of EMD [26], to achieve the stronger robust-
ness in jackknifing leading to the improvement on the source
number estimation performance at low SNR [24], [33] and
the greater discrimination between the signal eigenvalues and
the noise eigenvalues from the ACCM [35]. The observed
signal received by a single channel is decomposed into a
series of IMF components and a residual component by EMD.
The pseudo multiple channel signals are simulated by the
combination of both the original signal and the components.
After performing the jackknifing on the signals from the
pseudo multiple channels without the overlap, we acquire a
series of subsample datasets. Then, we use each subsample
dataset to construct the corresponding ACCM. The eigen-
values of the ACCM acquired by the EVD processing, are
made up of the signal eigenvalues and the noise eigenvalues.
Subsequently, either MIC or MSTDC is utilized to detect the
source number. Since more than one ACCM are obtained
because of performing the jackknifing without the overlap,
we have the statistics of the detection source number of each
ACCM and regard the one that occurs the most frequently as
the final result of source enumeration.

The rest of the paper is organized as follows. In Section II,
the related theoretical basis such as the single channel signal
model, the EMD algorithm and the jackknifing processing are
introduced simply. In Section III, the construction of both the
conventional ACM and the ACCM of a subsample dataset are
presented. Then, the comparison between the performance
of the ACM and that of the ACCM in source enumeration
through a concrete example analysis is presented to verify
the outperformance of the ACCM. Both the MIC and the
MSTDC for source number detection are also introduced.
In Section IV, our proposed algorithm will be demonstrated
in details. Section V will present the computer numerical
simulations as well as the corresponding analysis. Finally,
Section VI concludes the paper.

II. RELATED THEORETICAL BACKGROUND
In this section, the related theoretical basis will be intro-
duced including single channel signal model, EMD process-
ing which can converts the single channel signal into the
signals from a pseudoULA, and the processing of jackknifing
which is a general data-resampling method.

A. SINGLE CHANNEL SIGNAL MODEL
Suppose that there are p independent far field narrow band
signal sources impinging on an antenna at the time instant t

with the incident angle θi for i = 1, 2, . . . , p. The sources
are described as S(t) = [s1(t), s2(t), . . . , sp(t)]T . Hence, the
received single channel signal x(t) is expressed as

x(t) = AS(t)+ n(t), (1)

where A = [a(θ1), a(θ2), . . . , a(θp)] ∈ R1×p is a steering
matrix and n(t) is the Gaussian white noise with the zero
mean and the variance σ 2. It is impossible for us to directly
estimate the source number by the observed single channel
signal especially in the case of p ≥ 1. This is because it is
actually an underdetermined problem. Thus, it is necessary
to convert the observed single channel signal into pseudo
multiple channel signals for the subsequent processing of
source number detection.

B. EMD ALGORITHM
EMD, as an adaptive decomposition method being applied
to both nonlinear and non-stationary signal, is capable to
decompose the original signal into several IMF components
and a residual component. All the components have the obvi-
ous physical meanings of characteristic time scales. For each
IMF component, it has to meet the following two conditions:
1) The number of extreme points is equal to the number of
zero crossing points. 2) The average value of the upper enve-
lope and the lower envelope that defined by themaximum and
the minimum, respectively, is zero. For an observed single
channel signal x(t), let r(t) = x(t), i = 1 and k = 0, where
i and k being the index of the IMF and the time index of
iteration during one IMF decomposition, respectively. Hence,
the process of EMD can be shown as follows:

1) Search for all the local maxima and minima and use
cubic spline interpolation to get the upper envelope emax(t)
and the lower envelope emin(t), respectively. Then, compute
the mean described as m(t) via

m(t) =
emax(t)+ emin(t)

2
. (2)

2) Let

hik (t) = r(t)− m(t), (3)

where hik (t) is defined as the proto-mode function after the
k th iteration in the process of the generation of ci(t), and let
r(t) = hik (t).
3) Repeat Step 1) and 2) until hik (t) becomes an IMF,

which means that it meets the two conditions mentioned in
the above. Hence, ci(t) = hik (t) is acquired.
4) Let r(t) = r(t) − ci(t). If the number of the local

extremum values in r(t) is more than three, then let i = i+1,
k = 0 and go to Step 1). Else, the process of EMD is over
and r(t) is defined as a residual component.
Hence, the original signal x(t) can be expressed as the sum

of all the components in (4) as follows:

x(t) =
n−1∑
i=1

ci(t)+ r(t). (4)
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That is to say, the single channel signal is also treated as the
signals from a ULA containing n + 1 pseudo elements by
EMD. The pseudo multiple channel signals is described as
y(t) = [y1(t), y2(t), . . . , yn+1(t)]T , where yi(t) is the signal
of the ith pseudo channel for i = 1, 2, . . . , n+ 1, and y1(t) =
x(t), y2(t) = c1(t), . . . , yn(t) = cn−1(t), yn+1(t) = r(t).

C. JACKKNIFING PROCESSING
Jackknifing, as a general data-resampling method used in
statistical analysis, performs repeated computation for the
statistical data, in order to make full use of the limited
information in the original signal as much as possible [33].
Through the leaving out one or more observations at a time
from the sample set, a newly subsample dataset is con-
structed. A series of subsample datasets generated from the
jackknifing processing instead of directly utilizing the whole
sample dataset is performed, because of the elimination of
the estimated deviation of the subsample datasets. And the
resultant stronger robustness in source enumeration is also
desired. In fact, the jackknifing processing has been shown
to be a novel data extraction strategy for sources number
detection [33].

Supposing there are L snapshots in the single channel
signal x(t), and the sample dataset is defined as

= {xl} (l = 1, 2, . . . ,L), (5)

where xl is the sampled data at the l th snapshot
in x(t). Therefore, we also acquire L observations
in the corresponding pseudo multiple channels signals
y(t) to construct the other sample dataset YYY defined
as

YYY = {yil} (i = 1, 2, . . . , n+ 1 l = 1, 2, . . .L), (6)

where yil is the sampled data of yi(t) at the l th snapshot.
Subsequently, Lr snapshots in each pseudo channel are ran-
domly picked up from YYY , where Lr = [r × L] and r is a
jackknifing ratio satisfying 0.5 < r < 1, and [.] represents
round numbers. After performing the jackknifing at the zth

time, the corresponding zth subsample datasetYYY z
r is obtained

as

YYY z
r = {y

z
ij} (i = 1, 2, . . . , n+ 1 j = 1, 2, . . . ,Lr ), (7)

where yzij ∈ YYY and YYY z
r ⊂ YYY . With the performing

jackknifing of the data in the sample dataset YYY without
completely overlap for the total Z times, a sequence of sub-
sample datasets expressed as YYY 1

r ,YYY
2
r , . . . ,YYY

Z
r is acquired.

It means that there are Z subsample datasets being con-
structed. In the next section, how to take the advantage
of the data in the constructed subsample datasets to detect
sources number is introduced, including the ACCM con-
struction with data of the subsample datasets as well as
the two subsequent source enumeration criterions of the
ACCM eigenvalues.

III. AUTO-CORRELATION COEFFICIENT MATRIX
CONSTRUCTION AND TWO SOURCE ENUMERATION
CRITERIONS
The greatest difference between our proposed algorithm and
the other conventional algorithms is the type of matrix with
the observed signal, where the ACCM rather than the ACMof
the data in the sample dataset is constructed. In this section,
the performance of the ACCM is compared with that of the
ACM through a specific instance analysis. It is worth noting
that both the ACCM and the ACM are constructed with the
same data in the pseudo multiple channels sample dataset
transformed from the same single signal by EMD. On the
other side, the same conventional estimation criterions are
utilized for the eigenvalues of both the ACCM and ACM.
That is to say, both the performances of the ACCM and
ACM are compared in the same case to reveal the superiority
of the ACCM. Based on the analysis, it was found that the
performance of the source detection is still unsatisfied, when
the conventional criterions such as AIC andMDL are adopted
for the ACCMeigenvalues. Thus, the two source enumeration
criterions named MIC and MSTDC are introduced here.

A. CONVENTIONAL AUTO COVARIANCE MATRIX
CONSTRUCTION AND ANALYSIS
Suppose YYY is a sample dataset from the observed pseudo
multiple channels signal y(t). According to equation (6), there
are total L snapshots in YYY . So the conventional ACM of the
sample datasetYYY is expressed as

R = E(YYY ×YYY H ), (8)

where R is the ACM of the data of the sample dataset YYY
for R ∈ C (n+1)×(n+1) and (.)H is the conjugate transpose
transformation. Perform the EVD of R as

R = U3UT , (9)

where3 is a diagonal matrix, in which the diagonal elements
being λi, and U is defined as a matrix composed of the
eigenvectors of R. Then, a set of eigenvalues expressed as
λi is acquired, for i = 1, 2, . . . , n + 1, and rearrange the
eigenvalues in descending order as

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ . . . ≥ λn ≥ λn+1. (10)

There are total n + 1 eigenvalues for R as the number of the
pseudo multiple channels is n + 1. In general, the former p
eigenvalues in (10) mean signal eigenvalues and the others
denote noise eigenvalues. Subsequently, either the AIC [4] or
the MDL [5] is utilized to detect the source number, which
are expressed by (11) and (12), respectively.

pAIC = argmin
k

2L(n+ 1− k) log f (k)

+ 2k(2k(2(n+ 1)− k), (11)

pMDL = argmin
k

L(n+ 1− k) log f (k)

+
1
2
k(2(n+ 1)− k) logL, (12)
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TABLE 1. Eigenvalues λi of auto covariance matrix R of single channel signal for varying with SNR.

where pAIC and pMDL are the detection results by the AIC and
the MDL respectively for k = 1, 2, . . . , n + 1 and f (k) is a
maximum likelihood function described as

f (k) =

1
n+1−k

n+1∑
i=k+1

λi

(
n+1∏
i=k+1

λi)
1

n+1−k

. (13)

Unfortunately, neither the AIC nor the MDL can correctly
detect the source number [28]. Because both the AIC and the
MDL are applied to the case of the number of the received
antennas being more than that of the detected sources [4], [5],
while the signal discussed in this paper is physically only
from a single received antenna, even though it is decomposed
into pseudo multiple channels signals by EMD. For example,
it supposes a scenario of three difference far field Gaussian
signals impinging on a received antenna with the incident
angles of θ1 = 10◦, θ2 = 20◦, θ3 = 30◦ for simplicity and
without loss of generality. The SNR value varies from−15dB
to 15dB with the step of 5dB. After the EMD processing
to get seven IMF components and a residual component,
the sampling processing with L = 500 and the EVD process-
ing, it acquires the nine eigenvalues in different SNR shown
in Table.1. So both the AIC and the MDL fail to detect the
three sources in the all SNR scales in Table.1 and it should be
consistent with the conclusion in [28]. From the eigenvalues
in each SNR scale in Table.1, according to (10) the former
three eigenvalues are corresponding to the signal and the other
eigenvalues mean the noise. The multiplicity of the smallest
eigenvalues is only one, which means the detection number
being eight, even though in the cases of SNR = 10dB and
SNR = 15dB. In conclusion, the misjudgment on sources
number resulting from the physical single channel signal
leads to the mutual interference among signals [28].

Themethod of diagonal loading [29] is proposed to smooth
the eigenvalues in the ACM in order to improve the per-
formance of sources number detection for the subsequent
processing of the AIC or the MDL in some cases. Thus,

the diagonal loading is introduced before the performing of
the AIC or the MDL to reduce the risk of misjudgment of the
source number for the single channel signal. The procedure
of the diagonal loading can be described as (14) and (15)

λDL =

√√√√n+1∑
i=1

λi, (14)

λ̃i = λi + λDL, (15)

where λDL is the value of the heaped capacity and λ̃i denotes
the modified eigenvalue after the diagonal loading. Then
all the modified eigenvalues in different SNR are shown
in Table 2. Both the AIC and the MDL are employed to
determine the sources number as

p̃AIC = argmin
k

2L(n+ 1− k)

× log f̃ (k)+ 2k(2(n+ 1)− k), (16)

p̃MDL = argmin
k

L(n+ 1− k)

× log f̃ (k)+
1
2
k(2(n+ 1)− k) logL, (17)

where p̃AIC and p̃MDL are the detection result of the AIC
and the MDL respectively, and f̃ (k) is a maximum likelihood
function described as

f̃ (k) =

1
n+1−k

n+1∑
i=k+1

λ̃i

(
n+1∏
i=k+1

λ̃i)
1

n+1−k

. (18)

Both the AIC and the MDL are capable to correctly detect
the three sources only in the cases of both SNR = 10dB and
SNR = 15dB. When the SNR scale decreases to 5dB or less,
both the AIC and the MDL are failure. Although the tech-
nique of diagonal loading can improve the source enumera-
tion performance for either the AIC or theMDL in some cases
[28], the result implies that the ACM of the sample dataset
is not applied to the source number detection for the single
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TABLE 2. Eigenvalues λ̃i of modified auto covariance matrix R of single channel signal for varying with SNR.

channel signal especially in the case of low SNR. Thus, it is
necessary for us to continue to exploit other more suitable
type of sample dataset matrix for the single channel signal.

B. AUTO CORRELATION COEFFICIENT MATRIX
CONSTRUCTION AND ANALYSIS
It still supposes YYY as a sample dataset from the observed
pseudo multiple channels signal y(t). In the same way, there
are total L snapshots in Y. Then the ACCM, R̂, of the data of
the sample datasetYYY is defined by

R̂ = (diag(V ))−
1
2 × V × (diag(V ))−

1
2 , (19)

where R̂ ∈ C (n+1)×(n+1) and V is a covariance matrix of Y,
and V is described as

V = E[(YYY − µ)(YYY − µ)H ], (20)

for µ = E(YYY ) and diag(v) is a diagonal matrix. Both diag(v)
and V have the same diagonal elements. The EVD of R̂ is
performed as

R̂ = Û3̂ÛH , (21)

where 3̂ = diag(λ̂1, λ̂2, . . . , λ̂n+1) is a diagonal matrix
composed of the eigenvalues of R̂, and Û denotes a matrix
composed of the eigenvectors of R̂. Thus, a series of eigen-
values λ̂i of the ACCM is acquired. All the eigenvalues are
rearranged in descending order as

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p ≥ . . . ≥ λ̂n ≥ λ̂n+1. (22)

In (22), the former p eigenvalues mean signal eigenvalues and
the others denote noise eigenvalues. Then both the AIC and
the MDL are employed to determine the source number as

p̂AIC = argmin
k

2L(n+ 1− k) log f̂ (k)

+ 2k(2(n+ 1)− k), (23)

p̂MDL = argmin
k

L(n+ 1− k) log f̂ (k)

+
1
2
k(2(n+ 1)− k) logL, (24)

where p̂AIC and p̂MDL are the detection result of the AIC
and the MDL respectively, and f̂ (k) is a maximum likelihood
function described as

f̂ (k) =

1
n+1−k

n+1∑
i=k+1

λ̂i

(
n+1∏
i=k+1

λ̂i)
1

n+1−k

. (25)

For the scenario mentioned above and in the same way,
the nine eigenvalues of the ACCM can be easily obtained. All
the eigenvalues in the different SNR are shown in Table. 3.
According to (23) or (24), the source number can be cal-
culated. It finds that both the AIC and the MDL are capa-
ble to correctly detect the three sources in the cases of
SNR = 5dB, SNR = 10dB and SNR = 15dB. It is obvious
that using the ACCM can bring about the correctly sources
number detection in the case of lower SNR compared with
that of the ACM in this instance. It should be noting that
the comparison between the ACCM and the ACM is under
the same condition. On the other side, it also finds that
the difference between the signal eigenvalues and the noise
eigenvalue is more distinct, and the multiplicities of the
smallest eigenvalues in the right three columns are obviously
six. It implies that the utilizing of the ACCM of the data of
the sample dataset leads to the improvement on the source
enumeration for the single channel signal in the lower SNR.
However, when the SNR scale decreases to 0dB or less, it is
difficult for both the AIC and the MDL to correctly detect the
source number. Thus, it is necessary for us to continue to find
the other source enumeration criterions to further improve
on the performance of the source number detection in lower
SNR. In the following, the two sources enumeration criterions
called MIC and MSTDC [35] for the ACCM eigenvalues are
introduced.
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TABLE 3. Eigenvalues λ̂i of the ACCM R̂ of single channel signal for varying with SNR.

C. MOVING INCREMENT CRITERION FOR EIGENVALUES
A series of eigenvalues λ̂i of the ACCM R̂ is acquired
through (21). The eigenvalues are rearranged ascendingly as

λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂n ≤ λ̂n+1. (26)

Denote the increment between the two neighbor eigenvalues
in (26) as δi

δi = λ̂i − λ̂i−1 (i = 2, . . . , n+ 1) . (27)

The value of δi should reach the maximum, when λ̂i and λ̂i−1
are the signal eigenvalue and the noise eigenvalue, respec-
tively. So IMIC denoting the subscript of the maximal δi is
easily obtained by

IMIC = argmax
i

δi. (28)

Then the signal sources number pMIC detection is described
as

pMIC = (n+ 1)− IMIC + 1. (29)

D. MOVING STANDARD DEVIATION METHOD FOR
EIGENVALUES
The MSTDC for the ACCM eigenvalues is another signal
sources detection criterion, which is parallel to the MIC. And
it also utilizes the eigenvalues λ̂i from the ACCM R̂. Suppos-
ing the bias standard deviation of two neighbor eigenvalues
is done by

STDi =

√(
λ̂i − ui

)2
+
(
λ̂i−1 − ui

)2 (i = 2, 3, . . . , n+ 1),

(30)

where ui is the average of the two neighbor eigenvalues as

ui =
λ̂i + λ̂i−1

2
, (31)

so the increment of eigenvalues deviation αi is described as

αi = STDi − STDi−1 (i = 3, 4, . . . , n+ 1). (32)

When λ̂i and λ̂i−1 are the signal eigenvalue and the noise
eigenvalue respectively, the value of αi reaches themaximum.
IMSTDC, which is the subscript of the maximal αi can be
computed by

IMSTDC = argmax
i

αi (33)

Then the signal sources number estimation is described as

pMSTDC = (n+ 1)− IMSTDC + 1 (34)

E. COMPARISON OF FOUR SOURCE ENUMERATION
CRITERIONS
Compared with the conventional criterions of the AIC or the
MDL, both the MIC and the MSTDC are unnecessary to
construct the penalty function and the log-likelihood function
of eigenvalues, which needs the greater computational cost.
Besides, it is more important that the difference between the
signal eigenvalues and the noise eigenvalues becomes more
obvious after performing the EVD to the ACCM especially
in the lower SNR. In addition, in Table 3, both the MIC and
theMSTDC can accurately detect the three sources, when the
SNR scale decreases to 0dB.

IV. THE PROPOSED SOURCE ENUMERATION ALGORITHM
In this Section, our complete source enumeration algorithm
based on EMD, jackknifing, ACCMandMIC orMSTDCwill
be introduced, whose flowchart is shown in Fig. 1.

An observed single channel signal is decomposed into
a series of IMFs and a residual component at first, which
converts the single channel signal into the pseudo multiple
channels signals. Performing the jackknifing on the observed
signal of the pseudomultiple channels, a sequence of subsam-
ple datasets to eliminate the deviation of source enumeration
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FIGURE 1. Overview of the proposed algorithm for single channel source
enumeration.

is acquired. Then, for each subsample dataset, the ACCM
of the data is constructed. After performing the EVD to the
ACCM, it acquires a series of eigenvalues. Subsequently,
either the MIC or the MSTDC for the ACCM eigenvalues
is employed to detect the source number for the subsample
dataset. Since there is a series of subsample datasets based
on the jackknifing processing, it has to take all the subsam-
ple dataset to perform the source number detection, which
implies that the number of the detection results is the same as
the jackknifing times. Finally, the statistics of the detection of
each ACCM is obtained and then take the one that occurring
the most frequently as the final result of source enumeration.

V. COMPUTER NUMERICAL SIMULATION RESULTS
In this section, a lot of computer numerical simulations are
presented to validate and demonstrate the estimation per-
formance of our proposed algorithm. The source enumer-
ation performance of our approach which combined with
EMD, jackknifing, ACCM and MIC (EJAMIC) or EMD,
Jackknifing, ACCM andMSTDC (EJAMSTDC) is compared
with that obtained by the algorithms of the combination
of EMD and conventional AIC (EAIC) [29], the combina-
tion of EMD and the conventional MDL (EMDL) [29], the
combination of EMD and the eigenvalues diagonal load-
ing AIC (EDLAIC) [29], the combination of EMD and
the eigenvalues diagonal loading MDL (EDLMDL) [29],
MDL after dimension extension based on delay processing
(DMDL) [24] and the eigenvalues diagonal loading DMDL
(DDLMDL) [24]. It is worth noting that the experimental
single channel signal converts into the pseudo multiple chan-
nels signal by EMD as well as EAIC, EMDL, EDLAIC and
EDLMDL in [29], while the method of delay processing is
utilized for dimension extension in both DMDL and DLD-
MDL in [24]. Compared to other algorithms, the main differ-
ence is that the ACCM is utilized in our proposed approach
while the ACM is adopted in the other compared algorithms.

There are five experiments in this section. In the former
two experiments, the three independent narrow-band far field
signals are impinging on an antenna with the incident angles
of 20◦, 30◦ and 45◦ respectively for simplicity and without
loss of generality. The SNR of the signal varies from −15dB
to 15dB with the step size of 1dB and L = 500. In order to
validate the processing of EMD, the curves of the observed
single channel signal, the IMF components and the residual
component are shown in Fig. 2 in the case of SNR = 5dB
and L = 500.

Algorithm 1: The EJAMIC and EJAMSTDC methods
Step 1: Acquire an observed single channel signal x(t).
Step 2: Decompose x(t) into a series of IMFs described
as ci(t) for i = 1, 2, . . . , n − 1 and a residual compo-
nent defined as r(t) by EMD in terms of (4). Then con-
struct signals of multiple channels y(t) denoted by y(t) =
[y1(t), y2(t), . . . , yn+1(t)]T for y1(t) = x(t), y2(t) =
c1(t), . . . , yn(t) = cn−1(t) and yn+1(t) = r(t). Therefore,
y(t) are the resulting pseudo multiple channel signals.
Step 3: Suppose there are L snapshots in x(t), and the sample
dataset YYY in the corresponding pseudo multiple channels
signal is acquired by (5) and (6).
Step 4: The random Lr data picked up from the sample
dataset YYY is treated as a jackknifing processing. After the
jackknifing of the sample datasetYYY for Z timeswithout com-
pletely overlap, we obtain a sequence of subsample datasets
YYY z

r defined by (7) for z = 1, 2, . . . ,Z , which contains Z sub-
sample datasets, and the subsample dataset produced at the
zth jackknifing isYYY z

r .
Step 5: For each subsample dataset YYY z

r in the sequence
of subsample datasets expressed as YYY 1

r ,YYY
2
r , . . . ,YYY

Z
r ,

the ACCM R̂zr of the data in YYY z
r is constructed by (19) and

(20), where YYY changes into YYY z
r and R̂ changes into R̂zr .

Perform the EVD to R̂zr through (21), a series of eigenvalues
described as λ̂zri for i = 1, 2, . . . , n + 1 is acquired, and in
(22), λ̂i substitutes into λ̂

z
ri.

Step 6: Resort the eigenvalues λ̂zri ascendingly as (26), then
utilize MIC by (27) to (29) or MSTDC by (24) to (28)
to obtain the signal sources estimation result expressed as
pzr(MIC) or p

z
r(MSTDC) respectively for the sub-sample dataset

YYY z
r , where δi, IMIC, pMIC, STDi, ui, αi, IMSTDC and pMSTDC

are replaced by δzri, I
z
r(MIC), p

z
r(MIC), STD

z
ri, u

z
ri, α

z
ri, I

z
r(MSTDC)

and pzr(MSTDC) respectively.
Step 7: Statistics the values of pzr(MIC) (or p

z
r(MSTDC) ) for z =

1, 2, . . . ,Z to find the one that occurs the most frequently.
Then, regard it as the final sources enumeration result.

FIGURE 2. Decomposition result of an observed single channel data
when three independent narrow band far field signals impinging on an
antenna. (SNR = 5dB).

In experiment A, the jackknifing, as one of the most impor-
tant parts of our proposed method, is eliminated in order to
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FIGURE 3. Probability of detection against SNR obtained by our proposed
algorithm without jackknifing (EAMIC and EAMSTDC), EAIC, EMDL,
EDLAIC, EDLMDL, DMDL and DDLMDL.

independently further verify the validation of the ACCM in
signals source enumeration. And our method without jack-
knifing is shortened as EAMIC or EAMSTDC. Experiment
B firstly presents the performances of the algorithms of
EJAMIC, EJAMSTDC, EAMIC and EAMSTDC in order to
verify the improvement on our proposed method of jackknif-
ing performing especially in the case of low SNR. Then the
experiment also demonstrates the performance comparison of
our proposed algorithms including EJAMIC and EJAMSTDC
and the other algorithms such as EAIC, EMDL, EDLAIC,
EDLMDL, DMDL and DLDMDL. In experiment C, with the
number of narrow band far field signals increasing, the num-
ber estimation performances of our proposed approaches
including both EJAMIC and EJASTDC which are expressed
by probability of detection under different SNR is presented
to find the maximal detection signal numbers by our pro-
posed approach. Experiment D focuses on the optimum of
resampling ratio r in the case of general scenario to improve
the performance of both EJAMIC and EJASTDC. Finally,
experiment E exhibits the optimal jackknifing times Z of our
proposed scheme in different SNR under the condition of
white noise. All of the following experiments take 100 times
Monte-Carlo simulations and the probability of detection is
defined by

p =
Fk
F
, (35)

where F means the times of Monte-Carlo simulations and Fk
denotes the times of the correct detection.

A. SIMULATION ON AUTO COVARIANCE COEFFICIENT
MATRIX VALIDATION OF SOURCES ENUMERATION
In this experiment, it only focuses on whether the ACCM
can be employed to estimate signal source number or not.
Jackknifing, as an important step to enhance the probability
detection in our proposed algorithm, is eliminated in order to
individually verify the validation of the ACCM in the source
enumeration, while the other comparison algorithms utilize
the ACM to detect signal source number. The performance
of the algorithms including our proposed methods without
jackknifing are shown in Fig. 3

FIGURE 4. Probability of detection against SNR obtained by our proposed
algorithm without jackknifing (EAMIC and EAMSTDC) and our whole
proposed algorithm (EJAMIC and EJAMSTDC).

It can be seen from Fig. 3 that EAIC, EMDL, DMDL
and DDLMDL are almost invalid, while EDLAIC, EDLMDL
and our proposed algorithm (both EAMIC and EAMSTDC)
achieve better performance of the source enumeration. When
the SNR reaches 10dB, the probability of detection obtained
by both EDLAIC and EDLMDL is nearly 100%. By contrast,
our proposed algorithm including EAMIC and EAMSTDC
is able to acquire the same excellent performance in the case
of SNR = 5dB even without jackknifing. Even in the case
of SNR = 3dB, our approach can still acquire the detection
probability of more than 80%. It implies that the ACCM is not
only valid but also more suitable than the conventional ACM
for the source enumeration. However, the case of SNR =
3dB should not mean the low SNR. So maybe it can further
improve the performance of sources enumeration with the
combination of the jackknifing operation.

B. SIMULATION ON JACKKNIFING OF SOURCE
ENUMERATION
This experiment presents the contrast effect between our
whole algorithm (EJAMIC and EJAMSTDC) and our algo-
rithm without jackknifing (EAMIC and EAMSTDC) to
reveal the improvement with the participation of jackknifing.
The experimental environment is the same as that in experi-
ment A. The comparison results are shown in Fig.4.

It is obvious that our proposed whole algorithm (EJAMIC
and EJAMSTDC) acquires more excellent performance of
sources estimation than our proposed algorithm without jack-
knifing (EAMIC and EAMSTDC). From Fig. 4, the probabil-
ity detection of both EJAMIC and EJAMSTDC reaches more
than 90% even in the case of SNR = −2dB, while the proba-
bility detection of both EAMIC and EAMSTDC reaches 90%
in the case of SNR ≈ 4dB. In conclusion, with the jackknif-
ing introduction, the performance of probability detection in
low SNR is greatly improved. Combined Fig. 3 with Fig. 4,
the probability of detection against SNR obtained by our
proposed algorithm (EJAMIC andEJAMSTDC) and the other
comparison approaches are shown in Fig. 5.

As shown in Fig. 5, compared to other algorithms, for
example, the probability of detection of EDLAIC, which has
the best performance in the state of the art, reaches to more
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FIGURE 5. Probability of detection against SNR obtained by our proposed
algorithm (EJAMIC and EJAMSTDC), EDLAIC, EDLMDL, DMDL and DDLMDL.

FIGURE 6. Probability of detection against number of sources in different
SNR obtained by our proposed algorithm (EJAMIC and EJAMSTDC).

than 90% only in the case of SNR = 8dB. It implies that it
processes source enumeration by single channel in underde-
termined case in low SNR, when our proposed approach is
utilized.

C. SIMULATION ON THE MAXIMUM DETECTION NUMBER
BY SINGLE CHANNEL
In the previous experiments, it shows that it can easily esti-
mate sources number accurately by single channel in under-
determined and low SNR case, when the proposed algorithm
(EJAMIC and EJAMSTDC) is employed. So it is necessary
for us to know the specific maximum of the correctly detec-
tion number by our proposed algorithm. In this experiment,
there are eight independent narrow-band far field signals,
which are impinging on an antenna with the incident angles
of 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦ and 80◦ respectively for
simplicity and without loss of generality. The SNR of signals
vary from −5dB to 10dB with the step size of 5dB and L =
500. Then there are p selected sources in the eight sources at
random, which are impinging on an antenna simultaneously
for p = 1, 2, . . . , 8. So the probability of detection against
number of sources by our proposed algorithm in the case of
different SNR is described in Fig. 6.

In Fig. 6, one source can be accurately detected in all of the
SNR from −5dB to 10dB. In the case of SNR = −5dB, nei-
ther EJAMIC nor EJAMSTDC can correctly source enumer-
ation in underdetermined case. With the scale of SNR being
0dB, both EJAMIC and EJAMSTDC can correctly detect

FIGURE 7. Probability of detection against jackknifing ratio r by obtained
by our proposed algorithm (EJAMIC and EJAMSTDC).

three signal sources at most. However, when the sources num-
ber rises to 4, the probability of detection of both EJAMIC
and EJAMSTDC rapidly descends to less than 40%, which
means its failure in source enumeration. While with the SNR
increasing, the detection of the sources number rises to 4.
For example, when SNR = 5dB and SNR = 10dB, the
probability of detection is nearly 100% in the case of p = 4.
However, if five narrow band far field signals were impinging
on the antenna, the probability of detection declines to 70%,
which means nearly failure. It also seems that the curves in
the case of SNR = 5dB is nearly the same as the curves in
the case of SNR = 10dB. It implies that with the value of
SNR continues to increase, the curve of probability against
number of sources only have little change. So it concludes
that four signal sources at most can be detected successfully
with single channel signal by our proposed method (EJAMIC
and EJAMSTDC), when SNR ≥ 5dB. If SNR = 0dB,
our proposed algorithm can only correctly detect 3 sources
number at most, which is in accordance with the conclusion
in experiment B.

D. SIMULATION ON PROBABILITY OF DETECTION
INFLUENCED BY JACKKNIFING RATIO
In this experiment, the influence to the performance of our
proposed algorithm by the jackknifing ratio is studied. It also
supposed three narrow-band far field signals were impinging
on a received antenna with the incident angles of 10◦, 35◦

and 50◦ in white noise for simplicity and without loss of
generality, for SNR = −2dB and L = 500. The time of
jackknifing is 20 and the jackknifing ratio r varies from 0.5 to
1 with the step of 0.05. So the probability of detection against
the jackknifing ratio r is shown in Fig. 7.
It can be seen from Fig. 7 that the detection probability

is influenced by the jackknifing time. In the environment of
the experiment, the probability of detection is in the state of
fluctuation with r varying from 0.5 to 1. In summary, too big
or too small value of r causes the probability of detection
declines in our proposed algorithm including both EJAMIC
and EJAMSTDC. An appropriate r has to be selected to
ensure the more excellent performance of our method. In this
experiment, the optimal values of r are 0.75 and 0.7 in
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FIGURE 8. Probability of detection against SNR in different jackknifing
times Z by our proposed algorithm (EJAMIC and EJAMSTDC). (a) EJAMIC.
(b) EJAMSTDC.

TABLE 4. (a) Optimal r and its corresponding maximal probability of
detection by EJAMIC in different snapshots L. (b) Optimal r and its
corresponding maximal probability of detection by EJAMSTDC in different
snapshots L.

EJAMIC and EJAMSTDC respectively. On the other hand,
the number of snapshots L also influences the selection of r .
The relationship between the number of snapshots and the
optimal r by JAMIC and JAMSTDC are shown in Table 4(a)
and Table 4(b) respectively. With the number of snapshots
increasing, the value of the optimal jackknifing ration is
decreasing.

E. SIMULATION ON PROBABILITY OF DETECTION
INFLUENCED BY TIME OF JACKKNIFING
The performance of our proposed algorithm being influenced
by time of jackknifing is also studied in the experiment. It is
well known that the enhancement of jackknifing times should
improve the performance of our algorithm in the probability
of detection because of taking full advantage of the limited
information. On the other hand, too many times of jacking
also cause too much computational expense. So it is neces-
sary for us to select an optimal jackknifing times Z . In this
experiment, it also supposes three narrow-band far field sig-
nals were impinging on a received antenna with the incident
angles of 40◦, 55◦ and 70◦ in white noise for simplicity and
without loss of generality, for SNR = −2dB, L = 500,
r = 0.8 and the value of SNR varying from −15dB to 15dB
with the step of 1dB.

TABLE 5. (a) Optimal Z by EJAMIC in different snapshots L. (b) Optimal Z
by EJAMSTDC in different snapshots L.

Then the curves of probability of detection against SNR
in different Z are shown in Fig. 8. There are five curves of
probability of detection against SNR in the case of Z = 5,
Z = 10, Z = 20, Z = 30 and Z = 40 respectively
in Fig. 8. It is obvious that with the jackknifing times Z
increasing, the performance of our algorithm is improved.
However, when the value of Z is more than 20, the perfor-
mance improvement is no longer inconspicuous. Consider-
ing the compromise between the performance improvement
and the time expense cost, Z = 20 is selected to be the
optimum.

On the other hand, the number of snapshots L also influ-
ences the selection of Z . The relationship between the number
of snapshots and the optimal Z by EJAMIC and EJAMSTDC
are shown in Table 5(a) and Table 5(b) respectively. With
the number of snapshots increasing, the value of the optimal
jackknifing times is decreasing.

VI. CONCLUSIONS
This paper proposed an effective sources enumeration algo-
rithm based on EMD, jackknifing and ACCM, in order to
improve the signal sources estimation by single channel in
case of low SNR. The received single channel signal is
decomposed into a series of IMFs and a residual component
to construct a pseudo multiple channels signal at first for
the dimension extension. Secondly, a multiple jackknifing to
the signals in the pseudo ULA without completely overlap
to acquire a series of sub-sample datasets is proposed. Con-
sequently, the ACCM of the data in each subsample dataset
is calculated. After the performing EVD of ACCM, a series
of eigenvalues is obtained. Then, either MIC or MSTDC of
ACCM eigenvalues is utilized to detect the sources number.
Finally, it is necessary for us to regard the one that occurs
the most frequently as the final sources enumeration result.
Computer numerical simulations verify the validation and
even more excellent performance of our proposed algorithm.
The major important of this work is to allow using single
channel signal to sources enumeration under low SNR. The
experiments shows that we are able to accurately detect three
narrow-band far field signals in the case of SNR = −2dB,
when our proposed algorithm is employed. With respect to
the jackknifing ratio and the jackknifing times, which are the
most important parameters in resampling and are influenced
by the number of snapshots, it also presents the scheme of the
optimum in the case of SNR = −2dB.
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