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ABSTRACT In order to obtain the respiratory condition unobtrusively and comfortably, a non-contact
method based on the commercial depth camera Realsense SR300 was proposed to extract respiratory
information from depth data. In this paper, a respiratory region detecting algorithm which is mainly based
on the morphological method was proposed to obtain the region of interest (ROI) with the depth images. The
proposed algorithm contains four steps: body edge extraction, noise reduction, ‘‘image skeleton’’ extraction,
and respiratory region estimation. As a result, the respiratory waveform can be derived from the depth data
in the ROI. For validation, experiments were carried out to verify the feasibility of obtaining the respiratory
information with this approach. In consideration of different application scenarios, 20 kinds of conditions
were designed and applied for the experiments. The respiratory rate extracted from the depth waveform can
be calculated, and the accuracy achieved was 95.20% for all data while utilizing polysomnography thorax
effort signal as gold standard. Through the Bland–Altman analysis, it represented that the proposed system
had a good agreement (r2 = 0.88) with the gold standard. In addition, the performances of the system in
the 20 different conditions were analyzed by statistics, and the results showed that the system has good
adaptability and robustness for different conditions. In conclusion, the proposed algorithm can fit different
scenarios, and this paper provides a novel option for extracting the physiological information with depth
data.

INDEX TERMS Unobtrusive monitoring, respiratory rate, depth imaging, Realsense SR300, respiratory
region detecting algorithm.

I. INTRODUCTION
Respiratory activity is one of the most important physio-
logical signals of human. In general, a healthy adult has
12-18 breaths in one minute and the infants can have more
rapid and short respiration which has more than 40 times in
one minute [1], [2]. In modern society, respiratory diseases
which requiremore attention and long-term care have become
the high incidence diseases due to the development of the
industrialization process, such as the sleep apnea-hypopnea

syndrome (SAHS) [3], chronic obstructive pulmonary dis-
eases (COPD) [4], apnea and sudden infant death syndrome
(SIDS) [5], [6]. If those respiratory diseases occurred during
the sleep, it is more dangerous. Therefore, the measurements
of respiration and relevant parameters such as respiratory rate,
respiratory pattern and pulmonary functions are important,
especially during the sleep. Until now, many respiratory mea-
surement methods have been developed, such as spirometry,
respiratory inductance plethysmography (RIP) [7], thoracic
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impedance [8], impedance pneumography (IP) [9], photo-
plethysmography (PPG) [10] and strain gauges [11]. During
the sleep, subjects’ respiratory condition can be monitored by
the air flow and respiratory effort band which are two parts
of the polysomnography (PSG) device [12] in specialized
sleep laboratories. The PSG plays an important role in the
SAHS, COPD, asthma and snore diagnosis. However, these
techniques are inconvenient to hold or wear the devices and
need to contact to subject while measuring which might
interfere the subject’s normal activity [13]. Furthermore,
the airflow method which was considered as the most precise
way in clinical is uncomfortable to patients [14]. Respiratory
measurement for the infants in neonatal intensive care unit
(NICU) is more harmful because the delicate skin and little
body can not suffer the attached devices for a long time [15].
Hence in the current practice many health care staffs in NICU
will observe the chest and abdomen fluctuations to count the
respiratory rates of the infants, thus the accuracy and time
efficiency will not be guaranteed.

Therefore, many researchers proposed unobtrusive tech-
niques for measuring the respiratory conditions, such as
the microwave-based method [16], [17], thermal imaging
method [18], [19] and pressure detecting method [20]–[22].
These methods do not cause the discomfort and inconve-
nience to the user, but still have some shortcomings. For
instance, microwave-based methods and thermal imaging
methods which used the commercial products require rela-
tive large and specific instruments which need complicated
setup procedure to measure the relevant signals. The pressure
detecting method requires the subject to lie or sit at specific
location to obtain the pressure signals caused by respiratory
movements.

With the development of a variety of cameras and the
Internet of Things (IoT), researchers began to use the image
data to detect respiratory conditions, such as RGB cameras
based method [23]–[25], RGB camera combined with depth
sensors method [26], [27] and complete depth information
method [28]–[34]. The camera based method is a novel way
to measure the respiratory activity. Many reported studies
extracted the respiratory information via the RGB images.
Another part of those studies measured the respiratory condi-
tion by the RGB images combined with depth information,
for example, built body model to tracking the respiration.
However, the RGB video stream and the body model would
invade individual privacy. In some relatively private applica-
tion scenarios, the subjects do not want the device to col-
lect their ‘‘real information’’ (the RGB video stream or the
body model). The complete depth information method is a
good choice for this case, but parts of studies only utilized
complete depth information to conduct normal respiratory
monitoring [28], [29]. The state of the art complete depth-
based researches performed the stationary clinical respira-
tory assessment and pulmonary function testing [30]–[34].
However, those studies only performed the basic exploration
without conducting the tests for a variety of environments

or conditions which are important in many application
scenarios.

There are many advantages by using only the depth data
to obtain the respiratory activity such as unobtrusiveness,
high adaptability and sensitivity. In addition, the depth data
does not invade the individual privacy because the depth
information can only reflects the distance between the scene
and the camera, unlike the RGB image which contains too
much privacy information. Therefore, the research about the
depth camera deserves further exploration.

This study aims to propose an unobtrusive and non-
contact respiratory measurement based on the depth data
only, which is simple and suitable for a variety of situa-
tions, such as the sleep monitoring and home health care.
The main contributions of this study can be described as
follows:

1) The designed system only collects the depth data,
which can protect subjects’ privacy. The equipment
employed by this system is compact and small which
is easy to set up, and the system is very cheap.

2) Based on the proposed respiratory region detecting
algorithm, the system can capture the respiratory region
and obtain the respiratory waveform for analysis only
by the depth data. The method is easy to realize and
implement, and does not need to collect a large amount
of images for learning features.

3) This study provides complete experimental testing in
different conditions to verify the performance and
robustness of the system, including different measur-
ing ranges, different clothes worn by the subjects and
different postures acted by the subjects to verify the
performance and stability of the system. The exper-
imental results were analyzed in terms of accuracy,
consistency and statistical differences, which showed
that the system has promising performance.

This paper mainly describes an unobtrusive and non-
contact method for detecting the respiratory activity with the
depth camera by utilizing depth image processing technique,
and experiments for verifying the performance on respiration
monitoring. The context is organized as follows. In Section II,
the principle of acquiring the depth information and the
characteristic of the employed commercial depth camera
Realsense SR300 are introduced. In addition, the algorithm
focused on detecting the respiratory activity region and
extracting the respiration condition from the depth data in the
ROI is presented. In Section III, the experimental procedure is
described by considering different experimental conditions,
four external environments and five subject postures which
combined 20 kinds in total. We calculated the accuracy of
respiratory rate (RR) through depth waveform during a period
of time under those conditions. In addition, we analyzed the
consistency of results and statistical difference between dif-
ferent experimental conditions. In Section IV, the discussion
with regard to the experimental results and the future work
which might be the feasible research direction about this
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study are put forward. In the last section, we summarize this
paper.

II. MATERIALS
This section proposed a technical solution based on the
Realsense SR300 depth camera to acquire the depth images
and the process of generating the depth waveform for extract-
ing respiratory condition after morphology operation.

A. PRINCIPLE OF ACQUIRING THE DEPTH
DATA BASED ON STRUCTURED LIGHT
The applications based on depth information can be used in
various fields, such as vision measurement, remote sensing
and control, video or computer games, model reconstruction,
and industrial automation [35]–[38]. There are many exten-
sive and in-depth studies in capturing the depth information
from scenes. Structured light method is one classical depth
measurement technique which gained increasing attention
due to its high speed and accuracy. This method can be
demonstrated in Fig.1.

FIGURE 1. The process of obtaining the depth information based on the
structured light method. The structured light method has a projector
which can emit specific structured light to scenes or objects. Then the
light is reflected by the objects, and the patterns in the light modulated
by objects would be captured by a camera. Finally, the depth information
can be calculated based on the reflected patterns and some prior
information including space relationship of these devices.

When the reflected pattern is captured by the camera,
it will be compared against a reference pattern. The refer-
ence pattern is obtained from a reference plane which is at
a known distance from the projector. If the object whose
distance to the projector is different with the reference plane,
the corresponding position of its reflected pattern in imaging
space would move. The move of the corresponding position
in the pattern can be obtained by decoding the patterns in
the imaging space [39]. Then the depth information of the
object can be calculated based on the triangulation [40]. After
obtaining the depth information of each point in the imaging
space, one frame depth image can be obtained.

B. THE REALSENSE SR300 DEPTH CAMERA
For various applications, depth cameras with different
specifications are produced, such as the Kinect [41],

TABLE 1. Basic parameters of the Kinect, Kinect V2, PrimeSensor and
RealSense SR300.

Kinect V2 [42], [43], PrimeSensor [44] and RealSense cam-
era SR300 [45], [46]. The basic parameters of those depth
cameras are summarized in Table 1. From the Table 1, we can
see that the SR300 is better than Kinect, Kinect V2 and
PrimeSensor in the resolution and the frame rate. As for the
effective depth range, the PrimeSensor seems have greater
depth range, however, the minimum effective range is 0.8 m,
which exceeds the practical range of possible scenarios such
as home care. Hence, the SR300 depth camera is more suit-
able for this study. The SR300 can generate the depth images
without the visible lights via 60 frames per second (FPS), and
the resolution of depth images can achieve 640×480. This
frame rate means that the depth image can capture the depth
information within 60 Hz which is enough for the respiratory
activities, the effective range of the SR300 is optimized from
0.2 to 1.5 m for using indoors [47]. The SR300 can use USB
3.0 port to transmit the depth data which ensures the stability
of the system.

FIGURE 2. The SR300 camera implements an infrared laser projector,
a fast VGA infrared camera, a color camera with integrated image signal
processor (ISP) and imaging application specific integrated circuit (ASIC).

Therefore, the Intel RealSense camera SR300 which
employed structured coded light technology is adopted in this
study as shown in Fig.2 [45]. The SR300 enables to output
synchronized color, depth and infrared image stream data
to the processor, however, this study only utilizes the depth
data stream. It should be noted that the emitted structured
light is infrared light, the system can work properly in dark
environments. In addition, the system can work in a normal
operating temperature of 0-35 ◦C, and a humidity of 90% RH
at 30 ◦C [45].
The process of generating one frame depth image is shown

in Fig.3. The infrared laser projector emits a set of prede-
fined, increasing spatial frequency coded infrared vertical
bar patterns to the object [47]. When these coded lights
contact the object, the vertical bar patterns would be warped
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FIGURE 3. The process of generating depth image by the SR300.

by the objects. Then the infrared camera will capture the
reflected, warped patterns to compare themwith the reference
patterns for decoding and calculating the depth information of
the objects as described in above section. In the SR300 sys-
tem, the infrared camera pixels are processed by the imaging
ASIC to generate one frame depth image. Finally, the depth
images are transmitted to the client system.

C. THE PROPOSED RESPIRATORY REGION
DETECTING ALGORITHM
To extract respiratory activity, the respiratory region needs
to be detected. Therefore, the respiratory region detection
algorithm is developed to process all depth images, Then the
depth waveform can be plotted by recording average depth
change in the respiratory region. The proposed respiratory
region detecting algorithm is mainly based on morphological
method, which contains four steps: body edge extraction,
noise reduction, ‘‘image skeleton’’ extraction and respiratory
region estimation as shown in Fig.4.

FIGURE 4. The architecture of the proposed respiratory region tracking
algorithm.

1) BODY EDGE EXTRACTION
After obtaining the depth images, background should be
segmented and removed. But in this system, the distant
background and objects can’t return the effective depth data
because they are beyond the effective distance of the camera.
As mentioned before, the effective range of this system is
0.2-1.5m, if the subject is within this range, the subject will
occupy a relatively large area, or cover other non-human
objects. When the subject leaves this range, the fixed non-
human object will not cause a depth change. Considering
our application scenario, the case that non-human objects
occupy majority area can be artificially avoided. In other
word, the depth camera can eliminate the distant background
automatically during acquiring the depth data. So traditional

background removal step is not needed which would greatly
reduce the processing time.

After the depth camera capturing the subject who is in the
effective range, the image is transformed into a binary image
by thresholding, and a contour-tracing algorithm based on
the Moore-Neighbor tracing algorithm with Jacob’s stopping
condition is used to determine the regions in the thresholded
binary image [48], [49]. This algorithm also obtains other
regions which belong to the small parts of the body, like
hands, patterns on the cloth, head and background near the
subject. But those regions’ contours comprise less pixels than
the contour of main body region, which means the body
contour would contain most pixels if the subject was in the
effective range of the camera. Thus, the body edge can be
extracted by selecting the contour which has most pixels.

2) NOISE REMOVAL PROCEDURE
The extracted body contour would have unsmoothed and
noisy edge, such as clothes’ fold, disturbance from other
objects. Those abrupt parts would lead to useless features
which influence the respiratory region estimation. Therefore,
the body contour should be smoothed to retain the main edge.

The Fourier descriptors can be utilized to describe the
contour and select main components [50]. Supposing that
the boundary in an image comprised of K points with a two
dimensional coordinate system. Starting at an arbitrary point
(x0, y0), coordinate pairs (x0, y0), (x1, y1), (x2, y2), . . . , (xK−1,
yK−1) are the points in traversing the boundary with the
counter-clockwise direction, and these coordinates can be
expressed in the form x(k) = xk and y(k) = yk . For
k = 0, 1, 2, . . . ,K − 1, the boundary can be represented as
the sequence of coordinates s(k) = [x(k), y(k)]. Moreover,
each coordinate pair can be treated as a complex number

s(k) = x(k)+ jy(k) (1)

where x(k) is considered as the real part and y(k) is treated as
the imaginary part of a sequence of complex numbers s(k),
for k = 0, 1, 2, . . . ,K − 1. The nature of the boundary did
not change while transforming the 2-D boundary to a 1-D
sequence.

From (2), the discrete Fourier transform (DFT) of s(k) is

a(u) =
K−1∑
k=0

s(k)e−j2πuk/K (2)

for u = 0, 1, 2, . . . ,K − 1. The complex coefficients
a(u) is the Fourier descriptors of the boundary. Obviously,
the inverse Fourier transform of these coefficients can be
drawn as s(k) in the following form:

s(k) =
1
K

K−1∑
u=0

a(u)ej2πuk/K (3)

for k = 0, 1, 2, . . . ,K − 1. Suppose only the first P coef-
ficients are used to describe the image instead of all coef-
ficients, namely setting a(u) = 0 for u > P − 1 in (3).
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The approximation expression can be drawn as the following
form:

ŝ(k) =
1
K

P−1∑
u=0

a(u)ej2πuk/K (4)

for k = 0, 1, 2, . . . ,K − 1. Although only P terms are
used to recover each component of ŝ(k), the same number
of points still exists in the reconstructed boundary. The high-
frequency components represent the detail information while
the low-frequency components determine the global infor-
mation. Hence many details of the boundary would be lost
if fewer terms are used for reconstruction which means the
small P. For instance, Fig.5 shows a boundary of the upper
part of a body which consists of 2996 points. The Fourier
descriptors of the boundary which contains 2996 items can
be obtained using (2). As the number of descriptors gradually
reduced, different boundaries reconstructed by partial Fourier
descriptors can be obtained.

FIGURE 5. The boundary of the upper part of the body which consisting
of 2996 points.

FIGURE 6. (a)-(f) The boundaries reconstructed from the Fourier
descriptors whose number are 80%, 50%, 40%, 30%, 20% and 10% of
original 2996 descriptors.

Fig.6(a) to Fig.6(f) show the boundaries reconstructed
from the Fourier descriptors whose number are 80%, 50%,
40%, 30%, 20% and 10% of 2996, respectively. These per-
centages are approximate to 2397, 1498, 1198, 899, 599, and
300, respectively. Fig.6(b) shows the reconstructed boundary
which only used half of the 2996 descriptors. It is notewor-
thy that there is no distinct difference between Fig.6(b) and
Fig.6(a) which reconstructed by 80% of original descriptors,
and the Fig.6(a) and Fig.6(d) are also very similar.

This phenomenon represented that when the coefficients
whose amount between 30% and 80% of original descriptors

were used to reconstruct images, the differences between
these reconstructed boundaries are very small. From Fig.6(d),
we can clearly see that 30% of 2996 descriptors were suf-
ficient enough to retain main shape of the original bound-
ary, a torso with two arms can be clearly distinguished.
However, Fig.6(e) and (f) recovered from only 20% and 10%
of original descriptors respectively are not good enough due
to lots of loss of human body edge information, for example,
the neck shape and the details of the edge of the body are
lost. If the descriptors were further reduced, the result would
tend to a circle. The top Fourier descriptors which relates to
low-frequency information control the global features of the
image, such as size, shape and profile. The high-frequency
information mainly control the detail information, such as
edge and texture. The information of the body posture shape
and size is controlled by the top Fourier descriptors, and 30%
of Fourier descriptors is enough to preserve those informa-
tion. As the preceding example demonstrates, most of the
Fourier descriptors can be thrown out, and a few descriptors
are significant enough to reflect the global feature of a body
boundary. This main body shape without the high-frequency
details can benefit a lot to the following process.

3) BODY ‘‘IMAGE SKELETON’’ EXTRACTION
After the body region being reconstructed by a few number
of Fourier descriptors, the binary image is used for extracting
‘‘image skeleton’’ of the main body part with employment
of morphology method. It’s worth noting that we extract the
‘‘image skeleton’’ of the body part instead of true skeleton of
the body for estimating the respiratory region. Because the
‘‘image skeleton’’ can concentrate the characteristic of the
body edge and reflect the real body region which contains
the respiratory region. However, the true skeleton cannot
consider the physical characteristic of subject such as bodily
form, which may result in misjudging the respiratory region.
As shown in Fig.7, the ‘‘image skeleton’’ of Fig.5 can be uti-
lized to roughly represent the body region, which is extracted
by a morphological image processing method.

FIGURE 7. The ‘‘image skeleton’’ of the body region extracted by the
morphological method.

Morphological image processing method is commonly
considered as a tool for extracting some image features such
as boundary, skeleton and convex hull, which could be useful
in representation or description of image characteristic. It also
can be used for pre-processing or post-processing the images,
such as filtering, thinning and pruning operation. The adopted
method utilizes some operating elements which have their
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own structure on the binary image, then a new image can be
generated by running these operating elements over original
image to make them visit every point of the original image.
In this study, the operation is a combination in terms of
‘‘erosions’’ and ‘‘openings’’ which are detailed in [51].

After the process, a lot of skeleton subsets can be obtained
for constituting an integrated skeleton image, by this way,
the skeleton is maximally thin which is one pixel wide. The
immediate advantage of the morphological method is that the
operation is simple and don’t require the RGB image used for
providing the information.

4) RESPIRATORY REGION OR RESPIRATORY
INFLUENCED REGION OBTAINING
The respiratory region can be estimated with the help of
‘‘image skeleton’’ which can reflect the body region, such as
thorax and abdomen region. If the location of the respiratory
region is acquired from the ‘‘image skeleton’’, the respiration
condition can be speculated based on the variation of depth
data in the ROI. It’s worth noting that people may have
lateral or prone posture instead of supine posture during
sleep, while it is difficult to extract the information of the
thorax or abdomen region from the images with this con-
dition. Nevertheless, the respiratory efforts always result in
alternating movements on the whole upper body, in other
words, although the depth camera can only capture the lat-
eral posture or the prone posture of subjects, the respiratory
information can also be extracted from the depth values in
shoulder region or back region. Therefore, it’s important to
be able to locate the respiratory influenced region such as the
shoulder, the back, and even upper arm based on the ‘‘image
skeleton’’ when the depth images didn’t contain the obvious
respiratory region like the thorax and abdomen. In this case,
the popular machine learning method for finding out the ROI
is not suitable for this condition [52], [53], due to lack of the
depth images for training and fewer features from those noisy
depth images. Hence, the morphological processing method
which can extract the ROI simply, would be more suitable for
processing the depth image.

FIGURE 8. The ‘‘image skeleton’’ extracted from the corresponding depth
images with the condition that the subject was in the front of the camera
with the three different directions.

With the help of the ‘‘image skeleton’’, the ROI can be esti-
mated in the following way. Fig.8 (a), (b), (c) show the depth
images and their corresponding ‘‘image skeleton’’ when the
subject was in the front of the camera with three different
directions. It can be seen that the ‘‘image skeleton’’ reflect
well the real region of the human body in those images. There
always has one approximate vertical skeleton which play the

role of ‘‘supporting’’ the structure of ‘‘image skeleton’’ just
like the spine in real skeleton structure, in addition, some
skeletons with different direction extended from the vertical
skeleton reflect the size of the body. So if the information of
those skeletons were obtained, it would facilitate the position-
ing of the ROI.

Many methods can be utilized to obtain the morphological
features like the skeletons and specific points in the binary
image. For example, the Hough Transform (HT) and Look
Up Table (LUT) are classic methods for detecting complex
and specific patterns of points in binary image data [54], [55].
The HF achieves this by converting the original points into
parameter space, then finding out specific values of param-
eters which can characterize the desired patterns. But prac-
tically, subjects are not always in front of the camera with a
standard posture, and ‘‘image skeletons’’ would have various
characteristics which make it complicated to extract useful
information with limited preconditions. The LUT is a simple
and efficient way to find out the specific patterns such as
endpoints, junction points or other patterns with complex
form. If the objective’s patterns are not complicated, the LUT
only needs a little memory to store the pre-computed patterns
of object point. For example, the endpoints in the binary
image can be represented as a 3×3 matrix with eight different
styles when the endpoint is in the centre of the matrix.

FIGURE 9. The (a), (b) and (c) represent the ‘‘image skeleton’’ extracted
from the Fig.8, and (d), (e) and (f) represent the corresponding ‘‘image
skeleton’’ after the twenty iterations pruning process.

In order to simplify the process of finding endpoints and
further avoid useless information, an iterative process was
conducted to obtain the final endpoints as shown in the Fig.9.
Fig.9 (a), (b), (c) represent the ‘‘image skeleton’’ extracted
from the Fig.8, the (d), (e), (f) is corresponding ‘‘image skele-
ton’’ after the twenty iterations pruning process. It can be seen
that most of the minutiae have been pruned, some redundant
endpoints are reduced, and new skeleton is simplified. The
final endpoints in the processed ‘‘image skeleton’’ are good
indicators for delimiting the respiratory and respiratory influ-
enced region.

Then the ROI could be approximately obtained by con-
necting the endpoints in sequence to enclose a polygon
region or constructing a rectangle ROI based on the max-
imum and minimum coordinates of those endpoints [32].
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FIGURE 10. The ROIs of original depth images whose points were labeled
with the white masks.

For example, let the final endpoints be represented by
the coordinate pairs (x1, y1), (x2, y2), . . . , (xn, yn), assume
xmin = min{x1, x2, . . . , xn}, xmax = max{x1, x2, . . . , xn},
ymin = min{y1, y2, ..., yn} and ymax = max{y1, y2, . . . , yn}.
Draw two vertical lines through point xmin and xmax, and
draw two horizontal lines through point ymin and ymax, then
enclosed the four lines to obtain a rectangle region, then
scale the rectangular region down to the original 80% to
obtain the rectangle ROI. To solve this problem with an easy
solution, the rectangle region is adopted to represent the ROI.
As shown in Fig.10, the coordinate positions of each points
in the ROI of the depth images shown in the Fig.8 can be
labeled with a white mask, then the depth data in the ROI can
be extracted via the location information.

D. PLOT DEPTH WAVEFORM AND CALCULATE
RESPIRATORY RATE FROM DEPTH CHANGE IN THE ROI
In order to obtain the respiratory state, the average depth
value of all points in the ROI was calculated. The average
depth value can reflect respiratory activity condition on the
shooting moment of a depth image. As shown in Fig.11,
along one 30-second epoch, the normalized average depth
values and processed depth waveform can be plotted with
black dots and red solid line, respectively. The trend of the
average depth values (black dots) reflected the alternating
respiratory movements, then the depth waveform could be
depicted by connecting those average depth values. Although
the primary trend can be observed without processing, it is
hard to extract some respiratory features automatically such
as the RR from the raw waves. Since the average depth value
of ROI would be polluted by noises caused by slight body
movements, the depth waveform should be processed for
removing the noises as post-processing, as the red solid line
drawn in the Fig.11. We applied the Butterworth low-pass
filter with cut off frequency of 15 Hz for filtering the system
error as a preliminary process, then utilized the piecewise
polynomial model to process the filtered depth signals and
obtain the desired information due to its powerful denoising
ability.

The piecewise polynomial model is defined by multiple
sub-models, each sub-model applied to a certain sub-interval
of the main domain (one epoch). The process of the sub-
model can be expressed as follows:

Let v represents a sequence of depth values v =
{v1, v2, . . . , vn} at their corresponding time indices t =
{t1, t2, . . . , tn} (in one epoch), then a relation between them

FIGURE 11. The normalized average depth values and the processed
depth waveform are plotted with black dots and red solid line
respectively, along one 30-second epoch. The abscissa axis and the
vertical axis in the coordinate system represent the time and the
normalized average depth value of the ROI, respectively. As mentioned
before, each depth value is obtained by averaging all depth values in the
ROI of the depth image at the corresponding frame. For example, five
depth data points in the purple box represent the averaged values of the
ROI in five images acquired at the moment of t−2, t−1, t, t+1, t+2.

can be modeled by

vi = h(ti)+ εi (i = 1, 2, ..., n) (5)

where h is a smoothing spline function, εi are independent
and identically distributed residuals. The smoothing function
can be estimated by minimizing the objective function such
that

ĥ = argmin
h

p n∑
i=1

[vi−h(ti)]2+(1− p)

tn∫
t

h′′(t)2dt

 (6)

where p is the smoothing parameter. The smoothing function
can be expressed by cubic splines and least squares approxi-
mation [56].

This smoothing process was realized by the curve fitting
tools in Matlab2016a, and it consist two steps, the first step
was pre-smoothing and the second step was fine-tuning.
In the first step, the curve was pre-smoothed by the piecewise
polynomial model with a predefined smoothing parameter
(p = 0.999976823063204) [57], and the larger the p value,
the more high-frequency information in the model retains,
on the contrary, more high-frequency information will be
reduced. The parameter value was chosen by initial experi-
mental exploration.

Once the smoothed depth waveform is generated, the RR
can be calculated. In general, the RR is calculated from the
time interval between adjacent end-inspiration points in the
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respiratory waveform for a certain time called one epoch. The
end-inspiration points can be easily obtained in the smoothed
curve by a peak detection process. For this study, we set
2 minutes as one epoch and calculate its RR. Many prelimi-
nary explorations suggested that if the object was closer to the
camera, the depth value extracted from the object was smaller.
So the valleys in the depth waveform represented the end of
inhalation, since the human body expanded and was closer
to the camera during the end of inhalation. Thus, the depth
waveform would be turned over and normalized before peak
detection. Then the RR for each epoch could be given by

INTi =

n−1∑
j=1

(ti,j+1 − ti,j)

n− 1
(7)

RRi =
60
INTi

(8)

in which ti,j is the moment of jth peak of the ith epoch, and
INTi is the mean peak interval for ith epoch, n is the number
of peaks, so the RR of ith epoch could be demonstrated by
RRi. The unit of the INT and RR is second (s) and times per
minute, respectively.

Since different subject’s respiratory rate is quite different
and the depth camera can capture components of various fre-
quencies, hence, themain component of the respiratory signal
of one subject may be noise to other subjects. For example,
for the subject whose RR is 23/min, the signal with relative
higher frequency components may be the desired respiratory
signal, but a component with the same frequency components
may be noise for subject whose RR is 8/min. Using a uniform
model for each subject to obtain the desired smooth respira-
tory waveform is not easy. In addition, the fitted curve would
also lose some information, and a single smoothing parameter
cannot adapt to the depth data of all cases. Therefore, after the
preliminary filtering process, the RR calculated by the first
step can be exploited as an indicator to reflect the respiratory
condition. Then we can adjust the smooth model to optimize
the morphology of the depth waveform based on respiratory
condition. So once obtaining the RR of one epoch, the piece-
wise polynomial model would be fine-tuned as the second
step of smoothing process.

The rule to select the smoothing parameter p of piecewise
polynomial model in the second step according to the RR of
the previous step is defined as follows:

p =


0.999905936547889 RR < 14
0.999976823063204 14 ≤ RR < 17
0.999991823797345 RR ≥ 17

(9)

where p is the smoothing parameter. As mentioned above,
p value can reflect the frequency components remained in
the waveform, thus the p value would be turned up while
the RR calculated from the first step is greater and equal
than 17, which indicates the respiration may have more
high-frequency information. Conversely, when the RR is less

than 14, which shows a respiration of relatively lower fre-
quency, the p value will be turned down. And the p value will
not be changed if the RR is between 14 and 17. Besides, the
preliminary tests verified that the RR 14 and 17 as the thresh-
old values can achieve promising results. After the smoothing
model being adjusted, the RR would be recalculated from
the adjusted depth waveform processed by the new model.
The three different p values in the second step were selected
based on empirical experiments, and it can effectively solve
the problem that the predefined smoothing parameter was
incapable to be applied in various respiratory patterns with
different RRs. Then define the average accuracy of RR for
estimating the performance of generating the depth waveform
in the following form [21]:

Accuracy of RR =
1
N

N∑
i=1

1−

√√√√(
RRDi −RR

P
i

)2(
RRPi

)2
 (10)

in which RRDi denotes the RR of ith epoch calculated from
depth waveform generated by the average depth values, and
RRPi denotes the RR of ith epoch calculated from the thorax
effort signals obtained by the PSG device which can be
considered as the gold-standard system. The N represents the
total number of epochs used for calculating the accuracy of
RR with one certain condition.

III. EXPERIMENT AND RESULTS
In this section, the experiments of extracting the RR from the
depth waveform were conducted to verify the performance
of the algorithm introduced in Section II-C and Section II-D,
while the RR calculated from the standard PSG thorax effort
signal was applied for comparison.

A. EXPERIMENT SETUP
The experiments were conducted in the Home Lab at the
Center for Intelligent Medical Electronics, Fudan University.
In order to verify the feasibility of the system under different
conditions. Twenty kinds of scenes which combined five
basic postures of the subjects and four external conditions
were carried out in the experiments. Ten healthy people (five
males and five females, age 25.2 ± 2.44, BMI 20.53 ± 1.43)
were employed to be the subjects as shown in the Table 2.

1) FIVE BASIC POSTURES OF THE SUBJECT
In this study, we consider five basic postures for measuring
the RR. For indoor monitoring, subject might lay in bed with
supine, lateral or prone posture, and the subject might also sit
on a chair or stand, and these postures were shown in Fig.12.

The five basic postures can be derived and labeled with
No. 1 to No. 5 which are described as follows:

1) No. 1-the subject lay in bed with supine posture,
the camera was placed above the body.

2) No. 2-the subject lay in bed with lateral posture,
the camera was placed above the body.

3) No. 3-the subject lay in bed with prone posture,
the camera was placed above the body.
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TABLE 2. The basic information of ten subjects.

FIGURE 12. (a)-(e) Five basic postures: (a) lay in the bed with supine
posture (b) lay in the bed with lateral posture (c) lay in the bed with
prone posture (d) sitting on the chair (e) standing in front of the camera.

4) No. 4-the subject was sitting on chair in front of the
camera, and the height of seat and camera is 48 cm and
102 cm from the ground, respectively, which can also
catch the thorax region.

5) No. 5- the subject was standing in front of the camera.
The height of the camera is about 125 cm, in which case
the thorax and adjacent region can be captured by the
camera for most adults.

2) FOUR EXTERNAL CONDITIONS
Besides the five basic postures, four different external con-
ditions were taken into account. People might wear different
kinds of clothes and be in different distance with the camera,
thus thickness of clothes and distances to the camera are
important factors for depth detection. Hence the conditions
that subjects wearing clothes with different thicknesses and
being different distances from thorax surface of subject to the
camera were considered as shown in the Fig.13.

Four external conditions were generalized as the appli-
cation scenes and labeled with No. 1 to No. 4 which are
described as follows:

FIGURE 13. Two different clothes and two different distances employed
by this experiment. The thin cloth and the thick cloth is common T-shirt
and white gown with shirt inside, respectively.

1) No. 1-the subject wearing thin cloth with 45 cm from
the camera.

2) No. 2-the subject wearing thin cloth with 75 cm from
the camera.

3) No. 3-the subject wearing thick cloth with 45 cm from
the camera.

4) No. 4-the subject wearing thick cloth with 75 cm from
the camera.

The distances of 45 cm and 75 cm are chosen according to
the possible future scenarios. For example, in sleep monitor-
ing, it is suitable when the distance between the depth camera
and the human body is 75 cm, and for the home health care,
45 cm is probably the distance from the body to the computer
monitor or the laptop.

Some samples of the captured depth images within 45cm
and 75cm distances are shown in the Fig.14.

FIGURE 14. Six samples of the captured depth images of Subject-1. The
images obtained with 45 cm and 75 cm distance are shown in the upper
row and the lower row, respectively. (a) and (d) show that the subject is
in the stand posture, (b) and (e) show the subject is in the sit posture,
and (c) and (f) show the subject is in the supine posture.

B. THE PERFORMANCE OF EXTRACTING
RESPIRATORATION RATE FROM DEPTH WAVEFORM
WITH DIFFERENT CONDITIONS
The experiments were conducted on 20 different conditions.
For each subject, three repeated trials were carried out for
each condition, and each trial collected depth data lasting for
more than two minutes. The ten subjects were allowed to
have normal breathing and asked to keep one basic posture
during one trial. Some studies let the subjects breathe with
fixed RR, and extract the corresponding respiratory wave-
form [25], [58]. But if the subject is requested to breathe
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FIGURE 15. The depth waveform and the waveform obtained from thorax
effort signal of PSG is drawn by the red solid line and blue solid line in
the same 30-second epoch, respectively. About 11 peaks which represent
11 end-inspirations can be found in each wave, and the eighth respiratory
movement is a deep breath depicted well by the depth wave.

at a fixed RR, the respiration may not meet the breathing
habits of the subject. In addition, the respiratory waveform
extracted from those fixed patterns will be more usual, which
are more convenient for processing. But we expect the pro-
posed system can measure the respiration without too many
restrictions and obtain the less usual signals, thus our research
attempts to allow the subjects to breathe in the most natural
condition. To obtain the standard respiratory signal for com-
parison, the Compumedics Grael PSG system was applied to
simultaneously record the thorax effort signal as the refer-
ence. The depth images were recorded with timestamp, and
the signals in the PSG system have the time information
during the recording, hence, the time synchronization process
can be easily realized. Then both the depth wave and PSG
thorax effort wave would be processed as discussed before.
An example of comparison between the processed depth
waves and PSG thorax effort waves for the same 30 second
is shown in Fig.15. It can be seen that the two waves have
similar trend. In this study, we calculate the RR with the help
of peak detection approach whose performance is dependent
on the smoothness degree of the waveform, or the similarity
between the smoothed depth waveform and the thorax effort
waveform. Therefore, the similarity between the two kinds
of waveforms is very important. The correlation between the
depth waveform and the thorax effort waveform which can
reflect the similarity was calculated. The average correlation
between two kinds of waveforms is 0.8587 ± 0.1263 via all
subjects in 20 different conditions, and each condition had
30 epochs data (N= 30). The result represented that the depth
waveform extracted from the depth data has a promising
similarity to the thorax effort waveform, which indicates that
the depth waveform has potential to extract more meaningful
information.

The Bland-Altman analysis is an important tool to estimate
the agreement between the designed method and gold stan-
dard. The Bland-Altman analysis for the RR of all 600 sam-
ples obtained by the proposed system and the PSG device is
conducted as shown in Fig.16.

FIGURE 16. The Bland-Altman analysis for the RR of all 600 samples
obtained by the proposed system and the PSG device.

From the regression line between hypothetical measure-
ments done by the proposed system and the PSG device,
it can be seen that the two methods have good agreement
(r2 = 0.88, y = 1.00x + 0.17). From the Bland and
Altman plot, we can see that most of the differences between
the results obtained from the proposed system and the PSG
device are in an acceptable range. Besides, we also find that
the subject’s RR occupies the range of 10 to 23 /min, com-
pletely covering the healthy people’s RR, and even contains
some breaths with abnormal frequency.

Then the average accuracy of RR from depth waveform
could be calculated as mentioned in Section II-D, while the
thorax effort wave’s RR would be extracted as the standard
result. Table 3 showed the average accuracy of RR via all
subjects with 20 different conditions, and each condition had
30 epochs data (N = 30).

TABLE 3. The average accuracy of RR calculated from depth waveform via
all subjects with 20 different conditions.

From Table 3, it can be seen that the best performance of
extracting the RR from depth waveform is 96.54% in the
condition that subject was sitting on the chair with a thin
cloth and the distance between the camera and subject is
45 cm. The worst performance is 94.05% in the condition that
subject wore a thin cloth lying in bed with a lateral posture
and the distance between the camera and subject is 75 cm.
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The total average accuracy of RR calculated from depth
waveform is 95.20%. If the posture is considered as the
independent variable, the results obtained from five different
postures are shown in the last column. Similarly, the results
obtained from four different external conditions without
regard to different postures are shown in the last row. The
accuracy of the RR extracted from the depth waveform can
achieve 95.11%, 95.22% and 95.98% while the subject was
lying in the bedwith supine posture, lateral posture and sitting
in the chair, respectively, which suggested that the system
was very suitable for the home health care. When subjects
wore thick cloth with 45 cm distance from the camera, it can
achieve the best performance of 95.49% in four different
external conditions. Although most of the results with dif-
ferent conditions in Table 3 are promising (94.05%-96.54%),
we cannot determine whether the samples extracted from
different external conditions or different postures come from
the same population based on those limited measurements.
Thus, the results need to be tested for determining whether
the differences between those results obtained from different
conditions has statistical significance. In addition, the effect
of age for the RR measurement is also worth studying, so we
divided our subjects into two groups, five subjects in the first
group are the older people whose age are 25, 27, 27, 28,
and 29, and the other five subjects in the second group are the
younger people whose age are 22, 22, 24, 24, and 24. Hence,
the differences of the results between two age groups should
also be investigated.

In this case, the Kruskal-Wallis one-way analysis of vari-
ance test was employed to analyze the results [59]. The
Kruskal-Wallis test is a non-parametric version of the clas-
sical one-way analysis of variance, and an extension of the
Wilcoxon rank sum test to more than two sample groups [60].
It compares the medians of the groups to determine whether
the samples come from the same population, or equivalently
from different populations with the same distribution. Hence
three Kruskal-Wallis tests were used for estimating whether
the results extracted from different postures, different exter-
nal conditions and different age groups have significant
differences.

The first test is to analyze whether the differences in the
results obtained from four different external conditions are
statistically significant. The Kruskal-Wallis ANOVA and box
diagram of the results from the first test are shown in the first
row of main area of Table 4 and Fig.17, respectively.

The results indicate that there is no significant difference
between the four groups (p > 0.05), so it can be con-
cluded that those four external environments didn’t influ-
ence the performance for obtaining the RR from depth data.
In other words, the depth camera has a good ability to
adapt clothes with different thickness on subject and differ-
ent distance between the camera and subject in an effective
range.

The second test is to analyze whether the differences in the
results obtained from the five different postures are statisti-
cally significant. TheKruskal-Wallis ANOVAof those results

TABLE 4. The ANOVA table for the results obtained from three
experiments via Kruskal-Wallis test.

FIGURE 17. The box figure of the RR accuracies for four external
conditions.

FIGURE 18. The box figure of the RR accuracies for five different postures.

is shown in the second row of the main area of Table 4, and
the box diagram of the second test results is shown in Fig.18.

The results indicated that there is still no significant dif-
ference between the five groups (p > 0.05). Therefore, these
results suggested that those five postures acted by the subjects
didn’t influence the method performance. In other words,
the system has good ability to extract the RR with different
postures on subjects.

The third test is to analyze whether the differences in the
results obtained from the two age groups are statistically
significant. The Kruskal-Wallis ANOVA of those results is
shown in the third row of the main area of Table 4, and the
box diagram of the third test results is shown in Fig.19.

The results indicated that there is still no significant differ-
ence between the two age groups (p > 0.05). Therefore, the
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FIGURE 19. The box figure of the RR accuracies for the older and younger
groups.

test suggested that the age of the subjects in the range of 22-29
didn’t influence the method performance.

C. COMPARISON WITH THE STATE-OF-
THE-ART APPROACHES
In the field of respiratory measurement, many studied based
on the depth images have proved the feasibility of their sys-
tems from different perspectives and different measurement
metrics [26], [27], [29], [32]–[34]. Those methods contribute
to the state-of-art unobtrusive respiration monitoring perfor-
mance in their directions and provide important guidance for
related research. In order to demonstrate the validity of our
proposed method and get a whole picture of the development
of this field, we compared our proposed model with those
related studies as the state-of-the-art approaches. We intro-
duce each of them in the following paragraphs.

1)Wijenayake and Park [26] proposed a respiratorymotion
tracking approach by exploiting the advantages of RGB and
depth images. A specific respiratory motion model is utilized
for external respiratory motion measurement, and the respira-
tory pattern’s correlation coefficient is r2 = 0.941 comparing
to the spirometry result as the groundtruth.

2) Yu et al. [27] developed a system to measure human
chest wall motion for respiratory volume estimation based
on depth image sensing technique, the respiratory volume is
estimated by measuring morphological changes of the chest
wall. The system was evaluated by comparing with a spirom-
etry, and the agreement in respiratory volume measurement
is r2 = 0.933.

3) Benetazzo et al. [29] presented an RR measurement
algorithm that uses the depth images, the RR is derived
by measuring morphological changes of the chest wall by
identifying the human chest, computes its distance from the
camera. The results from five subjects have shown that the
error between the measurements obtained by the algorithm
and those obtained by the spirometry has a maximum value
of M = 0.533 and the correlation coefficient is r2 = 0.863.

4) Ostadabbas et al. [32] proposed a vision-based passive
airway resistance estimation technology based on the depth

images, for obtaining the tidal volume of the subjects, an auto-
matic chest bounding detection algorithm combined with the
airflow calculation approach is developed. The average error
of 0.07 ± 0.06 liter for estimating the tidal volume (TV)
and patients with airway obstruction (AO) were detected with
80% accuracy.

5) Soleimani et al. [33] presented a vision-based trunk-
motion tolerant approach which estimated lung volume-time
data remotely in forced vital capacity (FVC) by using two
opposing Kinects. After modelling of trunk shape, the chest-
surface respiratory pattern can be computed on temporal
geometrical features extracted from the chest and posterior
shapes. Then the FVC is estimated by the TV waves, while
the spirometry is used as the groundtruth. When the proposed
method used only the TV scaling factor, the agreement in
FVC measurement is r2 = 0.93, and the average normalized
L2 error of is 0.05.

6) Sharp et al. [34] developed a chest volume estimation
method based on the Kinect V2, which reconstructed the
3D models of the subject’s thorax to obtain the volume-
time and flow-time curves. The FVC was used to estimate
the performance of the method, and the spirometry was
considered as the groundtruth. The agreement r2 in FVC
measurement can achieve 0.99 that is a very high value, but
the agreement r2 in forced expiratory volume (FEV) mea-
surement did not demonstrate acceptable limits of agreement
(r2 = 0.38).

Table 5 shows the comparison between our method and
the state-of-the-art approaches across number of subjects,
material, groundtruth, respiratory indicator, andmeasurement
metric. It can be seen that most related studies measure the
respiratory volumes as the respiratory indicator, such as TV,
FVC. Those studies show good results with a larger number
of subjects which indicated that the respiratory volume mea-
surement based on the depth images is reliable and promising.
The respiratory volumes are commonly collected from single
respiratory effect with the spirometry or the pulse oximeter.
The experiment process of volume measurement is faster
than the process of RR measurement because measuring RR
needs a period of time, and the epochs with more than 2-min
length was used to measure the RR in our study. It would
occupy a long period of time of the subjects, which leads
to the lack of RR experiments. Comparing with the study
which also used the RR as the indicator [29], the proposed
study collected a larger amount of experimental data and
achieved better results. Besides, our proposed method can be
a powerful complement to the related studies which used the
depth images for acquiring the respiratory indicators. With
the increasing number of respiratory indicators that can be
extracted by the depth images, the unobtrusive respiratory
measurement based on the depth camera will become more
comprehensive. In addition, these experiments also proved
that it is sufficient to extract the respiratory features for the
measurement by using only the depth images without RGB
images.
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TABLE 5. The performance Comparison of the state-of-the-art methods.

IV. DISCUSSION AND FUTURE WORK
The proposed system is convenient for setup, completely non-
contact and has good adaptability in various kinds of indoor
environments. More importantly, the system is applicable in
home healthcare, community healthcare and other scenes due
to its low-cost and high accuracy. Instead, the thorax effort
band would influence the subjects’ normal breath since the
band is tightly tied on chest or abdomen which results in
unnatural activity of the chest or the abdomen. So the pro-
posed approach may have a better performance in practical
use without the respiratory effort band as reference and be
more comfortable. In addition, the algorithm entirely did not
use the RGB data, so there is no risk to expose the indi-
vidual privacy of users, such as appearance, characteristic,
habit or other information except for the depth and the body
silhouette, which makes it easier to be accepted than common
RGB camera monitoring by the users.

The main application scenario of this system is indoor,
and the effective range is close (0.2-1.5m), for cooperating
the range, the system should be placed where people often
appear. If only the non-human object appears in the front of
the camera (for example a bookshelf), the depth data would
not have obvious change, thus it can be distinguished from a
human. In addition, the system is designed for designated area
monitoring instead of widemonitoring, correct placement can
avoid an extreme situation that the human and non-human
object with same size occur simultaneously in the effective
range.

The depth camera can capture slight changes of space
depth caused by alternating respiratory movement. However,
depth image does not have as many image features as the
RGB images, such as texture, color and intensity, and the
depth values in the images change inconspicuously. Besides,
the depth image is not good at providing elaborate edges
due to the principle of acquiring the depth data as shown
in the Fig.10 and Fig.14. In addition, there is not a large
amount of depth images to learn the image characteristics,
neither a lot of labor resources to manually segment or label

the ROI of the depth images for providing the groundtruth.
Those inconveniences make many popular methods dif-
ficult to be implemented, such as the machine learning
approach. So the proposed algorithm utilizes morphological
operation to extract the ROI, and calculate the RR. This
process is similar to the approach that many medical staffs
observe the movements of the chest, abdomen or face to
determine the respiration condition by the naked eye, which
has solid physical meaning. It is very easy to be understood
and accepted by the medical staffs. Although the proposed
method is relatively simple compared with the machine learn-
ing methods, it has achieved promising results in the RRmea-
surement. However, the machine learning has outstanding
effects in the field of image processing which has potential
to generate more accurate ROI and respiratory waveform. So
gradually establish the databases of depth images related with
physiological signal monitoring to enable the machine learn-
ing to extract different parts of the ROI in the depth image,
obtain more respiratory indicators such as tidal volume, will
proceed in the future.

The experiment results demonstrated that all five postures
and four external environments will lead to the promising
accuracy of RR. The average accuracy of RR extracted from
all epochs obtained in our study is 95.20% which showed
a good performance for general application. In addition,
the postures and the external environments didn’t influence
the performance of estimating RR from depth data via the
Kruskal-Wallis test. It represented that the system has good
adaptive capacity in different indoor applications, such as the
sleep monitoring, home health management and community
medical service. From the Bland-Altman analysis, it can be
seen that the proposed system and the PSG device have a
good agreement whose r2 is 0.88. Besides, the subject’s RR
occupies the range of 10 to 23 per min, which shows that
the proposed system can have promising performance and
adaptability for a relatively wide respiratory range. Besides,
the subjects were not requested to breathe at a fixed RR,
however, metronome breathing respiratory maneuvers which

8312 VOLUME 7, 2019



C. Sun et al.: Unobtrusive and Non-Contact Method for Respiratory Measurement

can test the performance of the system at different frequencies
are also important. In future work, a metronome breathing
experiment should be added.

However, there still has the difference between the standard
thorax effort signal and the depth signal in this system on the
accuracy and waveform. Except for system error, another fac-
tor to create the difference is that the respiratory region would
generate involuntary mild movements caused by heartbeat
and body shake which cannot be captured by thorax effort
band or nasal airflow approach. In essence, the raw depth data
may contain much other physiological information. Except
for the RR, other features are likely to be extracted from the
depth waveform, like the respiratory pattern or habit. So the
system has potential to generate more accurate respiratory
information and have more extensive applications, if we fig-
ure out what are the factors to make the depth data change.

In the process of collecting depth data, the request for
the subject is to try not to have large body shake, but the
experiment allows the subject to use the smartphone, the first
reason is to make the subject not boring during the exper-
iment, the second reason is that the use of a smartphone
frequently causes the swings in the arm or head, which is
close to the real scene and can further verify the system
stability. In some preliminary tests, we attempted to collect
data while the subject was stepping. The results showed that
the body’s front and rear swings were captured by the depth
camera, which results in larger body motion artifacts while
the PSG respiratory effort band was less affected. So the
impact of body motion artifacts is huge for extracting the res-
piratory condition. Soleimani et al. [33] extracted the chest-
surface respiratory pattern by performing a principal compo-
nent analysis (PCA) on temporal 3-D geometrical features
extracted from the chest and posterior shape models to elim-
inate the body motion artifacts. But the artifacts elimination
which completely based on the original signals still requires
further exploration in our study.

In addition to the terms to be improved as mentioned
above, this study still has some limitations. For example, our
experiments mainly aim at the young people test (age 22-29),
and the experiment environment is the Home Lab. It is not
conducted on patients with respiratory diseases or in practical
environments such as in hospital. Because the experiment
has a tedious procedure, which needs to conduct 60 trials
for each subject. Furthermore, we did not control the age
in the process of collecting volunteers which leads to the
phenomenon that the self-enrolled subjects are in the age
range of twenties who are highly active people. This study
utilized the consistency and the accuracy of RR between the
proposed method and PSG device. In fact, there are many
other indicators in the respiratory medicine field that can
be analyzed, such as tidal volume. In addition, the off-the-
shelf commercial product SR300 was utilized to constitute
the system, but the color camera in it didn’t provide any
information which is a resource waste. The future work will
strive to overcome these limitations, such as conduct the
clinical experiment on the patients, simplify the experimental

process, expand the age range of the subjects, analyze more
respiratory medical indicators and find a pure depth informa-
tion extraction system.

V. CONCLUSION
This study proposed an unobtrusive and non-contact method
for respiratory measurement based on the respiratory region
detecting algorithm via depth images. By utilizing this
method, the system can extract accurate RR from the depth
waveform. The accuracy of RR has no significant statistical
difference between five different postures and four kinds of
external environments. The average accuracy of RR extracted
from depth waveform for all 20 different conditions can
achieve 95.20% and the proposed system had a good agree-
ment (r2 = 0.88) with the gold standard, the analysis results
demonstrated that this system has promising performance,
good adaptability and robustness, which is very suitable
for home health care. Therefore, this study can provide a
novel non-contact way to monitor the respiratory condition
which is more convenient, simple, comfortable, accurate and
unobtrusive.
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