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ABSTRACT The next-generation space missions, such as the space moving target tracking mission and
the agile attitude maneuvering mission and so on, propose a high requirement on spacecraft attitude control
system. For such missions, hybrid attitude control actuators consisting of control moment gyro and reaction
wheel, which can not only offer large control torque but also achieve high control precision, is the best
alternative choice. For this hybrid actuator system, the angular momentummanagement is vital. To handle the
momentummanagement problem, an optimal angular momentum strategy based on cooperative game theory
is proposed. The cooperative game model is constructed according to the quadratic programming problem
to achieve the minimization of control moment gyro gimbal angular speed and reaction wheel angular
acceleration. The proposed cooperative game theory steering logic has overcome the control moment gyro
singular problem and reaction wheel saturation problem of the hybrid system. In addition, the energy cost
of the hybrid actuator system is reduced. Five groups of simulation scenarios are carried out to demonstrate
the effectiveness of the proposed steering logic.

INDEX TERMS Agile attitude control, hybrid actuator, cooperative game theory, quadratic programming
problem, angular momentum management.

I. INTRODUCTION
With the complexity of space missions adding, the attitude
agile maneuvering and attitude dynamic tracking has put
forward a stringent requirement on the spacecraft attitude
control system [1]. For example, the Pleiades high-resolution
imaging satellite requires approximately 3 deg/sec slew rate
for rapid rotational maneuver [2]. The XSS-10micro-satellite
requires the attitude control system to provide rapid rota-
tional maneuverability and tracking capability with high pre-
cision [3]. Agile maneuvering and attitude tracking require
the attitude control actuator can output large attitude control
torque with higher accuracy.

The most common attitude control actuators include
thruster, RW (Reaction Wheel), CMG (Control Moment
Gyros), magnetic torquer, and so on, each of which has its
own limitations and can hardlymeet the demands of the above
space missions. For example, thruster consumes valuable

propellant and has low control accuracy [4]. The output of
RW is relatively small to meet the agility requirement of
the above missions [5]. The torque amplification capability
makes CMG a good choice for space missions with agile
maneuvering requirement; however, the inherent singular
problem prevents its further application [6]. Magnetic tor-
quer with small output is usually used for micro-satellite [7],
as well as RW desaturation.

Hybrid actuator is the best alternative actuator for agile
maneuvering and attitude tracking missions, and has been
taken into consideration in many researches [8]–[12]. The
combination of RW and thruster was studied by Ye et al. [8]
for large angle rapid reorientation. The combination of RW
and magnetic torquer was presented by Li et al. [9] for a
CubeSat. The implementations of hybrid actuator consisting
of CMG and RW were demonstrated in target tracking [10],
on-orbit servicing [11] and agile maneuvering [12].
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Since CMG cluster would trap into a singularity state
and RW tends to be saturated, the control torque cannot
be guaranteed for the above situation. Therefore, how to
overcome the CMG singularity and RW saturation problem
through the cooperation between the CMG and RW is the
major problem for the implementation of the hybrid actu-
ator. Wu et al. [13] proposed a null motion steering logic
to operate the CMG+RW system. Doupe and Swenson [14]
evaluated the CMG+RW system by analytical simulations
and hardware experiments, and ensured the CMG gimbal
angles travel the shortest path through a closed-loop control
scheme. Cao and Wu [15] developed a torque allocation
method to allow a smooth switch between CMG and RW.
Although the above researches have solved the implementa-
tion problem of hybrid actuator, the energy consumption or
angular momentum has not been considered.

This paper aims to achieve angular momentum opti-
mal management by using cooperative game theory for the
CMG+RW hybrid system. To guarantee the large control
torque with high precision, the cooperative game theory steer-
ing logic proposed can avoid the CMG singularity and RW
saturation and reduce energy cost bymomentummanagement
strategy. The remainder of this work is outlined as follows.
Section 2 briefly introduces the hybrid actuator configuration
and attitude dynamics. Followed by a quadratic programming
problem in section 3. Section 4 proposes the cooperative
game theory steering logic for the hybrid actuator system.
Numerical simulations are carried out in section 5 to demon-
strate the efficiency of the proposed steering logic. Finally,
section 6 concludes the entire work of this research.

II. HYBRID ACTUATOR AND ATTITUDE DYNAMICS
CMG+RW system is involved in the advantages of CMG and
RW and these make it suitable for agile spacecraft. A hybrid
actuator system consisting of CMG and RW is constructed
and attitude dynamics is presented in this section.

A. ATTITUDE KINEMATICS AND DYNAMICS
First, four coordinate frames are defined as follows:

Inertial Frame OXIYIZI: Its origin is located at the center
of mass of the Earth. The OXI axis points to the equinox, and
the OZI axis is along the Earth’s rotation axis.

Orbit Reference Frame OXOYOZO: Its origin is located at
the center of mass of the spacecraft. The OYO axis is along
the anti-symmetric direction of the orbit momentum, and the
OZO axis points to the Earth’s center.

Spacecraft Body Frame OXBYBZB: Its origin is located at
the center of mass of the spacecraft, and the three axes of the
frame coincide with the three major axes of the spacecraft.

Desired Imaging Frame OXcYcZc: Its origin is located at
the center of mass of the spacecraft. The OZc axis points to
the target and the OYc axis is along the OYb axis.

Please note that all the above coordinate frames are right-
handed frames.

The spacecraft attitude kinematic model is represented
by quaternion Q = [q0, qT]T, attitude angular velocity

ω = [ωx, ωy, ωz]T as,

Q̇ =
1
2

[
−qT

q0E3 + q×

]
ω (1)

where, q0 is the scalar part and q = [q1, q2, q3]T is the vector
part of quaternion,E3 ∈ R3×3 denotes an identity matrix, and
ω is the angular velocity of the Spacecraft Body Frame with
respect to the Inertial Frame and expressed in the Spacecraft
Body Frame. Similarly, the error quaternionQe = [qe0, qTe ]

T

is calculated by,

Q̇e =
1
2

[
−qTe

qe0E3 + q×e

]
ωe (2)

where ωe is the error attitude angular velocity expressed in
Spacecraft Body Frame.

The angular momentum of the whole spacecraft is H =
Jω+h, in which J is the moment of inertia of the spacecraft,
and h is the momentum of the actuator. The dynamic model
of the spacecraft can be written as,

M =
dH
dt
= Jω̇ + ḣ+ ω × (Jω + h) (3)

whereM is the sum of disturbance and control torque.

B. HYBIRD ACTUATOR SYSTEM CONFIGURATION
CMG+RW can generate large control torque with high pre-
cision, but the worst situation in using CMG and RW is CMG
saturation singularity and RW saturation problem. However,
this case can be solved by desaturation with other actuators
such as magnetic rods, and therefore this case is not the
focus of this paper and is not considered. In this paper, CMG
hyperbolic and elliptic singularities and RW saturationwill be
overcome simultaneously through the cooperation between
the two sets of actuators.

FIGURE 1. Hybrid actuator configuration.

The hybrid actuator configuration contains a pyramid
CMG cluster [16], [17] with skew angle β and three orthog-
onal RWs, as shown in Fig. 1 [13]. Let α = [α1, α2, α3, α4]T
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be the gimbal angles of the CMG cluster and �RW =

[�RW1, �RW2, �RW3]T be the angular speeds of each RW.
Therefore, h can be calculated as (4), as shown at the bottom
of this page, where c(β) ≡ cos(β), s(β) ≡ sin(β), s(αi) ≡
sin(αi), and c(αi) ≡ cos(αi). hCMG and hRW are the momen-
tums of CMG and RW, respectively, ACMG, i is a matrix
consisting of the ith CMG flywheel momentum directions,
and JRW is the moment of inertia matrix of the RW,

ACMG, 1 =
[
−c(β)s(α1) c(α1) s(β)s(α1)

]T
ACMG, 2 =

[
−c(α2) −c(β)s(α2) s(β)s(α2)

]T
ACMG, 3 =

[
c(β)s(α3) −c(α3) s(β)s(α3)

]T
ACMG, 4 =

[
c(α4) c(β)c(α4) s(β)s(α4)

]T
The time derivative of (4) is,

ḣ = h0ȦCMG + JRW�̇RW = Aδ̇ (5)

where δ̇ = [α̇, �̇RW]T is a set of the CMG gimbal angular
speed andRWangular acceleration andA is the systemmatrix
of CMG+RW system,

A =


h0


−c(β)c(α1) −s(α1) s(β)c(α1)

s(α2) −c(β)c(α2) s(β)c(α2)
c(β)c(α3) s(α3) s(β)c(α3)
−s(α4) c(β)c(α4) s(β)c(α4)


JRW1 0 0
0 JRW2 0
0 0 JRW3



T

C. CMG SINGULARITY
When the CMG cluster traps into a singularity state, the out-
put torque and the control torque are orthogonal. Meanwhile,
the Jacobian matrix Ja satisfies,

rank(Ja) < 3 and det
(
JaJTa

)
= 0

where,

Ja =


−c(β)c(α1) −s(α1) s(β)c(α1)

s(α2) −c(β)c(α2) s(β)c(α2)
c(β)c(α3) s(α3) s(β)c(α3)
−s(α4) c(β)c(α4) s(β)c(α4)


T

The singular momentum can be calculated by [17],

hsi = εi

(
gi × us

)
× gi∣∣gi × us∣∣ (6)

where hsi is the singular momentum of CMG, εi = ±1,
gi is the gimbal axis and us is an arbitrary vector in three-
dimensional space.

FIGURE 2. Singular surface of pyramid CMG cluster.

The singular momentum surface of a pyramid CMG cluster
is shown in Fig. 2 [13], including 0H singular surface, 2H sin-
gular surface and 4H singular surface. It is clear that the exter-
nal surface is the momentum envelope where the momentum
approaches the maximum. The singular momentum surface is
symmetrical due to the symmetrical structure of the pyramid
CMG cluster.

The singularity index SCMG is used to determine whether
the CMG cluster traps into a singularity state,

SCMG =
det

(
JaJTa

)[
det

(
JaJTa

)]
max

∈ [0, 1] (7)

where,
[
det

(
JaJTa

)]
max is the maximum value of det

(
JaJTa

)
and its value depends on the configuration of CMG
cluster. For the configuration used in the paper,[
det

(
JaJTa

)]
max = 2.37.

The singularity index SCMG is used to identify whether the
CMG traps into a singularity state and how far the CMG is
from the singularity state. SCMG = 0 means CMG cluster
traps into a singularity state. It is important to help to evaluate
the effectiveness of the proposed steering logic.

III. QUADRATIC PROGRAMMING PROBLEM
The required attitude control torque for the agilemaneuvering
mission is represented as uc = [uc,x, uc,y, uc,z]T. In order
to manage and optimize momentum and to minimize the
energy cost of the hybrid actuator, the following quadratic
programming problem is considered,

Minimize
4∑

k=1

α̇2k +

3∑
k=1

�̇2
k (8a)

Constraints Aδ̇ = uc (8b)

h = hCMG + hRW = h0
4∑
i=1

ACMG, i + JRW�RW

=

 h0 (−c(β)s(α1)− c(α2)+ c(β)s(α3)+ c(α4))+ JRW1�RW1
h0 (c(α1)− c(β)s(α2)− c(α3)+ c(β)s(α4))+ JRW2�RW2
h0s(β) (s(α1)+ s(α2)+ s(α3)+ s(α4))+ JRW3�RW3

 (4)

VOLUME 7, 2019 6855



Y. Wu et al.: Cooperative Game Theory-Based Optimal Angular Momentum Management

where α̇ = [α̇1, α̇2, α̇3, α̇4]T and �̇ = [�̇1, �̇2, �̇3]T are
the CMG gimbal angular speed and RW angular acceleration,
respectively.

It can be converted to the minimization problem
of L(α̇, �̇),

L(α̇, �̇) =
4∑

k=1

α̇2k +

3∑
k

�̇2
k (9a)

Subjected to,

f (α̇, �̇) =

 f1(α̇, �̇)f2(α̇, �̇)
f3(α̇, �̇)

 = 0 (9b)

where,

f1(α̇, �̇) = A11α̇1 + A12α̇2 + A13α̇3 + A14α̇4
+A15�̇1 + A16�̇2 + A17�̇3 − uc,x (10a)

f2(α̇, �̇) = A21α̇1 + A22α̇2 + A23α̇3 + A24α̇4
+A25�̇1 + A26�̇2 + A27�̇3 − uc,y (10b)

f3(α̇, �̇) = A31α̇1 + A32α̇2 + A33α̇3 + A34α̇4
+A35�̇1 + A36�̇2 + A37�̇3 − uc,z (10c)

Aij = A(i, j) is the element of the Jacobian matrix of
CMG+RW system in line i and column j. Let,

H (α̇, �̇,λ) = L(α̇, �̇)+ λTf (α̇, �̇)

= L(α̇, �̇)+ λ1f1(α̇, �̇)

+ λ2f2(α̇, �̇)+ λ3f3(α̇, �̇) (11)

where λ = [λ1, λ2, λ3]T. We obtain,
∂H (α̇, �̇,λ)

∂α̇k
= 0, k = 1, 2, 3, 4 (12a)

∂H (α̇, �̇,λ)

∂�̇k
= 0, k = 1, 2, 3 (12b)

Substituting (12a) and (12b), the time derivative of (11) is
written as,
∂H (α̇, �̇,λ)

∂α̇1
= 2α̇1 + λ1A11 + λ2A21 + λ3A31 = 0

...

∂H (α̇, �̇,λ)
∂α̇4

= 2α̇4 + λ1A14 + λ2A24 + λ3A34 = 0 (13a)

∂H (α̇, �̇,λ)

∂�̇1
= 2�̇1 + λ1A15 + λ2A25 + λ3A35 = 0

...

∂H (α̇, �̇,λ)

∂�̇3
= 2�̇3 + λ1A17 + λ2A27 + λ3A37 = 0 (13b)

Therefore, we have,

α̇k = −
1
2

3∑
i=1

λiAik , k = 1, 2, 3, 4 (14a)

�̇k = −
1
2

3∑
i=1

λiAim, k = 1, 2, 3, m = k + 4 (14b)

The CMG singularity problem will be changed to
the CMG+RW system singularity problem according
to (14a)- (14b).

Substituting (14a) and (14b) into (9), we have,

L(α̇, �̇) =
4∑

k=1

α̇2k +

3∑
k

�̇2
k

=
1
4

(
3∑

i=1

λiAi1

)2

+
1
4

(
3∑

i=1

λiAi2

)2

+
1
4

(
3∑

i=1

λiAi3

)2

+
1
4

(
3∑

i=1

λiAi4

)2

+
1
4

(
3∑

i=1

λiAi5

)2

+
1
4

(
3∑

i=1

λiAi5

)2

+
1
4

(
3∑

i=1

λiAi6

)2

= −
1
2
a1λ21 −

1
2
a2λ22 −

1
2
a3λ33 − a12λ1λ2

− a13λ1λ3 − a23λ2λ3 (15a)

f (α̇, �̇) = f (A, λ)

=

 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1λ2
λ3

−
 uc,xuc,y
uc,z

 (15b)

where f (A, λ) ≤ 0. The elements ai(i = 1, 2, 3) and aij(i =
1, 2, 3; j = 1, 2, 3; i 6= j) are defined as,

ai = −
1
2

7∑
k=1

A2ik , i = 1, 2, 3 (16a)

aij = −
1
2

7∑
k=1

AikAjk , i = 1, 2, 3; j = 1, 2, 3; i < j

(16b)

IV. COOPERATIVE GAME THEORY STEERING LOGIC
The cooperative game theory steering logic for CMG cluster
only has been designed to overcome CMG singular prob-
lem [18], however, it is not efficient for all kinds of CMG
singular problems. This paper proposes a hybrid actuator
steering logic based on cooperative game theory to avoid
the CMG singularity and RW saturation simultaneously.
Weighted elements are presented as well to improve the
iteration speed and accuracy. The energy cost of the hybrid
actuator is reduced by optimizing the angular momentum of
the hybrid system.

A. COOPERATIVE GAME MODEL
The cooperative game model is set as G = {N , V }, where
V is real-value function and N = {1, 2, 3} are players,
including player 1, player 2, and player 3. In cooperative
game, at least one player’ gain increases and the other’s gains
are not compromised in cooperative game.
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Suppose the strategy set of the player i is Di. A game
situation λ = [λ1, λ2, λ3] can be defined after all players
choose a strategy satisfying

∣∣fj(A, λ)∣∣ ≤ εD, j = 1, 2, 3.
The strategy Di (i = 1, 2, 3) is designed by,

Di =
{
λi|

∣∣fj(A, λ)∣∣ ≤ εD, j = 1, 2, 3
}

i = 1, 2, 3

where εD is a small positive scalar. The strategy set Di
includes all feasible solutions λi of

∣∣fj(A, λ)∣∣ ≤ εD, meaning
that the output torque uo = [uo, x, uo, y, uo, z]T satisfies that∣∣uo, x−uc, x∣∣ ≤ εD, ∣∣uo, y−uc, y∣∣ ≤ εD and

∣∣uo, z−uc, z∣∣ ≤ εD.
There existing an optimal strategy λ#i ∈ Di satisfies the
constraint

∣∣fj(A, λ)∣∣→ 0 and uo − uc = 0.

FIGURE 3. Flowchart of cooperative game.

As shown in Fig. 3, an initial game situation λ =

[λ1, λ2, λ3] is selected at the beginning of the game.
A set of strategy variation value of game situation δλ =
[δλ1, δλ2, δλ3] will be generated in every negotiation, and
the new game situation will be λ = λ + δλ. Note that δλ
should be set as δλ = νλ[f (A, λ)], and it satisfies that δλ→ 0
as
∣∣fj(A, λ)∣∣→ 0. νλ[f (A, λ)] is a function of f (A, λ) which

should be design properly. The real-value function V ({i}) of
λi is chosen as,

V ({i}) =


1
3
(1− δλi), δλ1 < δλ−1 or δλ2 < δλ−2

or δλ3 < δλ−3
0, δλ1 ≥ δλ

−

1 and δλ2 ≥ δλ
−

2

and δλ3 ≥ δλ
−

3
(17)

where δλ−i is the strategy variation value of game situation in
the previous negotiation.

To ensure at least one player’s gain increases in every
negotiation, at least one new strategy λi is closer to the λ#i .
If δλi ≥ δλ−i (i = 1, 2, 3), all players involved will
not approve the scheme and V ({i}) = 0, otherwise the
scheme will be passed. V ({i}) helps to judge whether the
players approve the scheme and to identify whether the game
situation is convergent in the iteration procedure.

Assuming that δλ → 0 and the game situation is conver-
gent, the game ends with an optimal game situation, in which
each player will get the maximum real-value function.

B. STEERING LOGIC
The cooperative game theory steering logic design contains
the following steps:
Step 1: Based on f (A, λ) = 0, the initial game situation as

well as initial real-value function are chosen as follows,

λ3 =

(
a2a12a13 − a212a23

)
uc,x

λ3,∗

+

(
a1a12a23 − a212a13

)
uc,y

λ3,∗
+

(
a312 − a1a2a12

)
uc,z

λ3,∗
(18a)

λ2 =
a12uc,x − a1uc,y − (a12a13 − a1a23) λ3

a212 − a1a2
(18b)

λ1 =
uc,x − a12λ2 − a13λ3

a1
(18c)

V (λi) = 0.1, i = 1, 2, 3 (19)

where λ3,∗ is the system singularity index.

λ3,∗ = a2a12a213 − 2a212a13a23 + a1a12a
2
23

+ a312a3 − a1a2a3a12

Note that λ3 is near singularity as λ3,∗ ≤ ελ, where ελ
is a small positive scalar. Furthermore, λ1,∗ = a1 6= 0 and
λ2,∗ = a212 − a1a2 6= 0 are proven as follows:

λ1,∗ = −
1
2

7∑
k=1

A21k < 0 (20a)

a212 − a1a2

= −
1
4

{
J2RW2

[
2∑
i=1

s2(α2i)+
2∑
i=1

c2(β)c2(α2i−1)

]

+ J2RW1

[
2∑
i=1

s2(α2i−1)+
2∑
i

c2(β)c2(α2i)

]

+

3∑
i=1

[
c2(β)c(αi)c(αi+1)+ s(αi)s(αi+1)

]2
+ c(β)

2∑
i=1

(−1)i+1 [c(αi)s(αi+2)− c(αi+2)s(αi)]2

+

[
c2(β)c(α1)c(α4)+ s(α1)s(α4)

]2
+ J2RW1J

2
RW2

}
< 0 (20b)

Therefore, λ1 and λ2 are not in singularity states.
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If the system traps into singularity state, λ3,∗ ≤ ελ,
the system singularity can be avoided by setting,

λ3 =

(
a2a12a13 − a212a23

)
uc,x

λ3,∗ + ε∗
+

(
a1a12a23 − a212a13

)
uc,y

λ3,∗ + ε∗

+

(
a312 − a1a2a12

)
uc,z

λ3,∗ + ε∗

where ε∗ is a small positive scalar, but it adds some torque
errors. However, these torque errors can be avoided.
Step 2: The variation value of game situation δλ =

[δλ1, δλ2, δλ3] is calculated, and the game situation and
real-value function are updated according to,

δλ3 =

(
a2a12a13 − a212a23

)
031

(
uc,x − U1

)
λ3,∗

+

(
a1a12a23 − a212a13

)
032

(
uc,y − U2

)
λ3,∗

+

(
a312 − a1a2a12

)
033

(
uc,z − U3

)
λ3,∗

(21a)

δλ2 =
a12021

(
uc,x − U1

)
a212 − a1a2

−
a1022

(
uc,y − U2

)
a212 − a1a2

−
(a12a13 − a1a23) δλ3

a212 − a1a2
(21b)

δλ1 =
011

(
uc,x − U1

)
− a12δλ2 − a13δλ3
a1

(21c)

where 0ij (i = 1, 2, 3; j = 1, 2, 3; j ≤ i) are the
weighted elements which can improve iteration speed and
accuracy, and the control accuracy as well. Besides, the game
situation can always be convergent by adjusting the weighted
elements.

If the system traps into singularity state, λ3,∗ ≤ ελ,
the system singularity can be avoided by setting,

δλ3 =

(
a2a12a13 − a212a23

)
031

(
uc,x − U1

)
λ3,∗ + ε∗

+

(
a1a12a23 − a212a13

)
032

(
uc,y − U2

)
λ3,∗ + ε∗

+

(
a312 − a1a2a12

)
033

(
uc,z − U3

)
λ3,∗ + ε∗

And we have,U1
U2
U3

 =
 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1λ2
λ3

 (22)

where U = [U1, U2, U3]T is the iterative torque.
The new game situation and real-value function are calcu-

lated by,

λ = λ+ δλ (23a)

V ({i}) =


1
3
(1−δλi), δλ1<δλ

−

1 or δλ2<δλ
−

2

or δλ3 < δλ−3
0, δλ1≥δλ

−

1 and δλ2≥δλ
−

2

and δλ3 ≥ δλ
−

3

(23b)

Step 3: If the real-value function V ({i}) 6= 0, repeat
steps 2 and 3 until the game situation is convergent. Then
the optimal game situation is achieved finally. Otherwise,
the iteration ends.

Substituting (23a) into (14a)-(14b), the steering logic can
be written as,

u = Aδ̇ = −
1
2
A


λ1A11 + λ2A21 + λ1A31
λ1A12 + λ2A22 + λ1A32

...

λ1A17 + λ2A27 + λ1A37

 (24)

Similar to singularity index SCMG, the saturation index
SRW is used to determine whether the RW saturation problem
occurs,

SRW = ‖�RW‖2 /
∥∥(�RW)max

∥∥
2 ∈ [0, 1] (25b)

If SRW = 1, the RW comes into saturation.
The energy cost function of the hybrid actuator Ecost is

defined as,

Ecost =
4∑
i=1

1
2
JCMGiα̇

2
i +

3∑
i=1

1
2
JRWi�

2
i (26)

where JCMGi and JRWi are moments of inertia of the ith CMG
and RW respectively. Note that all the CMGs are identical;
their flywheels have the same constant angular speed, so these
portions of energy are the same for different steering logics.
The energy cost function does not include these portions of
the energy in order to compare the energy cost of the hybrid
actuator using different steering logics visually.

C. CONVERGENCE AND ACCURACY OF STEERING LOGIC
This section will analyze the accuracy of cooperative game
theory steering logic in detail.

The game situation is always convergent and we prove it in
two cases: For Case 1, the CMG+RW system does not trap
into singularity state; For Case 2, the CMG+RW system traps
into singularity state

Case 1: If the CMG+RW system does not trap into singu-
larity state, in the first iteration, we have,U1, 1

U2, 1
U3, 1

 =
 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, 1λ2, 1
λ3, 1

 =
 uc, xuc, y
uc,z


(27)

where U1 = [U1, 1, U2, 1, U3, 1]T is the iterative torque
in the first iteration, λ1 =

[
λ1, 1, λ2, 1, λ3, 1

]T is the initial
game situation.

Substituting (27) into (21a)-(21c), the strategy variation
value of the game situation in the first iteration δλ1 is
δλ1 = 0, so the game situation is convergent.
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If CMG+RW system traps into singularity state, in the first
iteration, we have,

δu1 = uc −
[
U1, 1 U2, 1 U3, 1

]T
=

 uc, xuc, y
uc, z

−
 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, 1λ2, 1
λ3, 1


=
[
0 0 δu3, 1

]T (28)

where δu1 =
(
δu1, 1, δu2, 1, δu3, 1

)T is the iterative error in
the first iteration and we obtain,

δu3, 1 = uc, z − U3, 1

=
ε∗(

a212 − a1a2
) (
λ3,∗ + ε∗

) [(a13a2 − a12a23) uc, x
+ (a1a23 − a12a13) uc, y +

(
a212 − a1a2

)
uc, z

]
(29)

Substituting (28)-(29) into (21a)- (21c), we can obtain that
δλ1, 1 = δλ2, 1 = 0, δλ3, 1 6= 0, so the game situation is not
convergent in the first iteration.

We assume that the game situation is not convergent in the
(k − 1)th iteration, and in the k th iteration, we have,U1, k
U2, k
U3, k

 =
 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, kλ2, k
λ3, k


=

 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, k−1λ2, k−1
λ3, k−1


+

 a1 a12 a13
a12 a2 a23
a13 a23 a3

 δλ1, k−1δλ2, k−1
δλ3, k−1


=

U1, k−1
U2, k−1
U3, k−1

+
 a1 a12 a13
a12 a2 a23
a13 a23 a3

δλ1, k−1δλ2, k−1
δλ3, k−1


(30)

where U1, k = [U1, k , U2, k , U3, k ]T is the iterative torque
in the k th iteration.
Substituting (21a)-(21c) into (30), U1, k and U2, k can be

calculated by,

U1, k = U1, k−1+
(
a1δλ1, k−1+a12δλ2, k−1 + a13δλ3, k−1

)
= U1, k−1 +

(
011uc, x − 011U1, k−1

)
= (1− 011)U1, k−1 + 011uc, x (31a)

U2, k = U2, k−1+
(
a12δλ1, k−1 + a2δλ2, k−1 + a23δλ3, k−1

)
= (1− 022)U2, k−1 + 022uc, y

+
a12
a1
(011 − 021)

(
uc, x − U1, k−1

)
(31b)

Obviously, we can set 011 = 022 = 1 and (31a)-(31b) can
be rewritten as,

U1, k = uc, x (32a)

U2, k = uc, y (32b)

Similarly, substituting (21a)-(21c) and (32a)-(32b)
into (30), U3, k can be expressed as,

U3, k = U3, k−1 +
(
a13δλ1, k−1 + a23δλ2, k−1+a3δλ3, k−1

)
= 033uc,z

λ3,∗

λ3,∗ + ε∗
+ U3, k−1

[
1− 033

λ3,∗

λ3,∗ + ε∗

]
(33)

We can set 033 =
λ3,∗ +ε

∗

λ3,∗
and (33) can be rewritten as,

U3, k = uc,z (34)

Substituting (32a)-(32b) and (34) into (21a)-(21c), the
strategy variation value of game situation in the k th iteration
δλk is δλk = 0. The game situation is always convergent by
setting 011 = 022 = 1 and 033 =

λ3,∗ +ε
∗

λ3,∗
for Case 2.

Theorem 1:The cooperative game theory steering logic can
generate an error free output torque uo = Aδ̇ if it is not out
of the limitation of the actuator capability or traps into the
persistent system singularity, that is,

uo = uc

Proof:When the game situation is convergent, according
to (27), (32a)-(32b) and (34), we have,U1, k

U2, k
U3, k

 =
 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, kλ2, k
λ3, k

 =
 uc, xuc, y
uc, z


(35)

Substituting (35) into (15b),

f (α̇, �̇) =

 a1 a12 a13
a12 a2 a23
a13 a23 a3

 λ1, kλ2, k
λ3, k

−
 uc,xuc,y
uc,z


= Aδ̇ − uc
= 0 (36)

The constrains Aδ̇ = uc can be satisfied and the steering
logic can generate an error free output torque by setting011 =
022 = 1 and 033 =

λ3,∗ +ε
∗

λ3,∗
, if it is not out of the limitation

of the actuator capability or traps into the persistent system
singularity.

V. NUMERICAL SIMULATIONS AND ANALYSIS
In space moving target tracking mission, the spacecraft
is maneuvered to track the target for observations with
high dynamic accuracy. The attitude angular velocity would
approach a peak value of approximately 3∼5 deg/s [2].
The moment of inertia of the spacecraft J and the moment

of inertia of the RW are set as,

J =

 10 0.02 0.01
0.02 15 −0.01
0.01 −0.01 20

 kg ·m2

JRW = diag(0.005, 0.005, 0.005)kg ·m2
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TABLE 1. Summarize of each simulation scenario.

FIGURE 4. Target parameter (a) Desired attitude (b) Desire attitude angular velocity.

FIGURE 5. Tracking error of Scenario 1 (a) Attitude tracking error (b) Angular velocity error.

The disturbance torqueMD is set as,

MD =

 3 cos(10ωt)+ 4 sin(3ωt)− 10
1.5in(3ωt)+ cos(10ωt)+ 15
3 sin(10ωt)+ 8 sin(4ωt)+ 10

 · 10−5Nm
The attitude and attitude angular velocity measurement

sensor accuracies are 0.005deg and 0.001 deg /s, respectively.
The CMG flywheel momentum is 0.5Nms, and the max-

imum torque is 0.5Nm. The other parameters of the hybrid

actuator are,

δ̇max = (1, 1, 1, 1)rad/s2

�max = (3000, 3000, 3000) rpm,

�̇max = (10, 10, 10)rad/s2

In this section, five scenarios are considered. The actuator,
steering logic and simulation parameters are summarized
in Table 1. The null motion steering logic is presented in
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FIGURE 6. Simulation results of Scenario 1 (a) CMG singularity index (b) RW saturation index (c) Output torque (d) Control torque
error (e) Hybrid actuator energy.

Ref. [13] and the momentum management of the hybrid
actuator was not considered.

In Scenarios 1-3, we assume that the spacecraft has fin-
ished the preparation for target observation and starts to track
the moving target at 0s. The backstepping controller [10] for
high precision attitude dynamic tracking is adapted,

uc = Jω̇c +

(
ωc − 2P−1q̇e

)× [
J
(
ωc − 2P−1q̇e

)
+ h

]
− 2JP−1

[
(k1 + k2) q̇e + (k1k2 + κ)

]
qe

+ 2JP−1qe exp
(
−0.5κxT1x1 − 0.5xT2x2

)
+ 2JP−1k2κ

∫
qedt + 2J

[(
q̇e0 + σ

)
E3 + q̇×e

]−1 q̇e
(37)

where x1 and x2 are the backstepping states related to error
quaternion and error attitude angular velocity, P is a matrix
related to error quaternion. We choose,

k1 = 50, k2 = 1, κ = 0.00001, σ = 0.05

In Scenario 4-5, the attitude tracking task is not considered
and we assume that the CMG cluster is in singularity state
at 0s. These two scenarios are used to demonstrate the CMG
can escape from the hyperbolic and elliptic singularity.

The desired attitude and the attitude angular velocity are
shown in the Fig. 4(a)-4(b), respectively.

Scenario 1 is used to test the CMG singularity escape capa-
bility at internal hyperbolic singularity, and the corresponding
simulation results are shown in Figs. 5(a)- 5(b) and 6(a)-6(e).
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FIGURE 7. Simulation results of Scenario 2 (a) CMG singularity index (b) RW saturation index (c) Control torque
error (d) Hybrid actuator energy.

FIGURE 8. Simulation results of Scenario 3 (a) CMG singularity index (b) RW saturation index (c) Control torque
error (d) Hybrid actuator energy.

The initial condition α = (−105, 10, 95, 170) deg is
in the neighborhood of a CMG hyperbolic singularity. The
proposed cooperative game theory steering logic can operate
the CMG+RW system and avoid the CMG hyperbolic sin-
gularity. It can also generate large and high precise control

torque and the maximum torque error is 2 × 10−16 Nm,
which are accurate enough and can be ignored. Themaximum
attitude tracking error and attitude angular velocity error are
0.006 deg and 0.006 deg/s, respectively. The RW angular
speeds keep almost the same as shown in Fig. 6(b) due
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FIGURE 9. Required torque.

to the momentum management strategy, meaning that the
CMG singular problem can be solved with the minimum RW
angular acceleration. The maximum energy cost of the hybrid
actuator system is about 0.002 J.

The simulation results for Scenario 2, which is used
to demonstrate the capability of CMG singularity escape
at elliptic singularity and RW desaturation, are shown in
Figs. 7(a)-7(d). Please note that the attitude, attitude angu-
lar velocity and output torque are similar to the results of
Scenario 1, and therefore are not presented here as well as
Scenario 3 for conciseness.

The initial condition α = (−105, 10, 95, 10) deg is in
the neighborhood of a CMG elliptic singularity. Obviously,
the CMG can escape the elliptic singularity successfully. The
maximum torque error is 4× 10−17 Nm, which are accurate
enough and can be ignored. The maximum energy cost of the
hybrid actuator system is about 0.002 J.

The simulation results for Scenario 3 are shown in
Figs. 8(a)-8(d). In this scenario, null motion steering logic
is adopted for comparison.

The above simulation results obviously show that the CMG
cluster doesn’t trap into the singularity state and RW satura-
tion problem doesn’t occur. Similar to Scenario 1-2, the con-
trol torque errors before 10s are the largest. The resulted
energy cost is much larger, about 0.03 J and 15 times more
than that in Scenario 1.

In Scenarios 4-5, the attitude tracking task is not considered
and the required torque is shown in Fig. 9.

The simulation results for Scenario 4 are shown in
Figs. 10(a)-10(b). The initial condition α = (−90, 0,
90, 180) deg corresponds to a CMG hyperbolic singularity.
The CMG can escape from the hyperbolic singularity and
generate error free output torques.

The simulation results for Scenario 5 are shown in
Figs. 11(a)-11(b). The initial condition α = (−90, 0,
90, 0) deg corresponds to a CMG elliptic singularity.

FIGURE 10. Simulation results of Scenario 4 (a) CMG singularity index (b) Control torque error.

FIGURE 11. Simulation results of Scenario 4 (a) CMG singularity index (b) Control torque error.
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TABLE 2. Comparison of the simulation results of scenarios 1-5.

The CMG can escape from the elliptic singularity and
generate error free output torques.

The comparisons of Scenarios 1-5 are summarized
in Table 2. The above comparison shows that: 1) Scenar-
ios 1-2 generate error free output torque. 2) Scenario 1-3
satisfied the attitude tracking requirement and the dynamic
accuracies of these scenarios were at the same level. 3) The
energy cost of Scenarios 1 and 2 are much less than the cost
in Scenario 3, due to the momentum management strategy.

VI. CONCLUSIONS
An optimal angular momentum management strategy based
on cooperative game theory has been proposed and analyzed.
The proposed management strategy has minimized the CMG
gimbal angular speed as well as the RW angular acceleration.
The inherent singularity of the CMG array and the saturation
of the RWs have also been tackled with the utilization of
proposed cooperative game theory steering law. Moreover,
the energy cost and torque error generated by the whole
actuator system are reduced. Simulation results demonstrate
the efficiency and advantages of the proposed steering law.
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