
Received November 22, 2018, accepted December 19, 2018, date of publication December 28, 2018,
date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2890156

Mashup-Oriented API Recommendation via
Random Walk on Knowledge Graph
XIN WANG1, HAO WU 1, AND CHING-HSIEN HSU 2, (Senior Member, IEEE)
1School of Information Science and Engineering, Yunnan University, Kunming 650500, China
2Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 62102, Taiwan

Corresponding author: Hao Wu (haowu@ynu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61562090, Grant 61472345,
and Grant 61562092, and in part by the China Postdoctoral Science Foundation under Grant 2016M592721.

ABSTRACT With the growing prosperity of the Web API economy, mashup-oriented API recommendation
has become an important requirement. Various methods based on different principles of technology have
been used to deal with this issue. In recent years, the Web API ecosystem has accumulated a wealth of
knowledge that can be used to enhance the recommendation models, and however, current concerns in this
regard still remain. To cope with this issue, we present a graph-based algorithmic framework for the task
of mashup-oriented API recommendation. Especially, we design a concise schema of the knowledge graph
to encode the mashup-specific contexts and model the mashup requirement with graphic entities. We then
exploit random walks with restart to assess the potential relevance between the mashup requirement and
the Web APIs according to the knowledge graph. In addition, we propose the query-specific weighting
strategies to enhance the knowledge graph construction. The experimental results demonstrate that our
proposed method is much superior to some state-of-the-art methods, also achieves robust effects on reducing
computational overhead, and suppresses the negative Matthew effect in APIs’ recommendation.

INDEX TERMS Mashup development, API recommendation, random walks with restart, knowledge graph.

I. INTRODUCTION
Web APIs are application programming interfaces through
which web applications can realize storage services, mes-
sage services, computing services and other capabilities. The
number of accessible Web APIs has grown consistently over
the past years. ProgrammableWeb, the largest online API
registry, has tracked more than 20,000 Web APIs recently.
As Web APIs become the backbone of the Web, cloud,
mobile and machine learning applications, API ecosystem
has gradually formed and an API economy is emerging [1].
However, in the face of rapid development of the information
society and the emergence of a large number of additional
requirements, the functions of existing APIs have become
increasingly unable to respond to complex business needs.
Regarding this issue, mashup has emerged as a technology
for today’s challenges by integrating multiple services to
match requirements of users even with users who have little
programming skills [2].

Unfortunately, with the rapid growth of the number of
Web APIs, quickly selecting the right Web APIs from a large
number of candidates covering a wide range of functionali-
ties has become increasingly challenging for inexperienced

developers. Therefore, it is necessary to develop recommen-
dation techniques and help developers to better identify rele-
vant Web APIs satisfying the need of mashup developments
in a shorter amount of time [3], [4]. In recent years, numer-
ous efforts have been made to address this issue. Existing
works can be coarsely classified into two categories, one
focuses on the principle of collaborative filtering [5]–[8],
and the other focuses on estimating the relevance between
the mashup requirements and the candidate APIs [9]–[13].
Various technologies, e.g., matrix factorization [7], [8], topic
modeling [9], [10], link analysis [11] and various features,
e.g., texts, tags, topics and popularity are exploited to enhance
the accuracy of recommendations [13]–[17].

Nevertheless, most of the existing works which use sin-
gle source information are vulnerable to data sparsity. For
example, methods based on text similarity or topic mining
will get worse effect once the text description is poor or
insufficient [7]. In contrast, knowledge graph usually con-
tains much more fruitful facts and connections of APIs,
mashups and other items. A knowledge graph is a type of
directed heterogeneous graph in which nodes correspond to
entities and edges correspond to relations. These semantics

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7651

https://orcid.org/0000-0002-3696-9281
https://orcid.org/0000-0002-2440-2771

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

can help us to understand mashup patterns accurately. The
Web API ecosystem has accumulated a wealth of knowledge
that can be used to enhance recommendation models [18],
however, the current concerns in this regard are still limited.
Particularly, there is the absence of a unified and easy-to-use
way. As to take advantage of these knowledge, they usually
combine different technologies, resulting in the relatively
complex algorithms which are hard to understand and prac-
tice. Moreover, how to exploit key knowledge instead of all
the knowledge to benefit recommendation of APIs and how
to effectively express users’ requirements need to be further
explored.

Inspired by these, we propose a simple yet effective rec-
ommendation framework based on random walks on the
knowledge graph for mashup developments. In this approach,
we use knowledge graph to capture the most relevant infor-
mation which is related to Web APIs and mashups. Then,
we use Random Walks with Restart(RWR) to estimate the
relatedness between the mashup requirements and the can-
didate APIs. Also, we propose three query-specific weight-
ing strategies to improve the relatedness estimation. In this
way, we can effectively address the problem of data sparsity,
providing an elegant way to utilize the abundant knowledge
in the API ecosystem and achieving better recommendation
performance.

The main contributions of this paper can be summarized as
follows:
• We have proposed an effective schema of knowl-
edge graph to capture the most useful knowledge for
mashup-oriented API recommendation and proposed
three query weighting strategies to enhance the recom-
mendation effectiveness of RWR.

• Through comprehensive experimental analyses, our
proposed method can provide highly accurate recom-
mendation results in comparison with the state-of-
the-art methods. Particularly, RWR using our graph
schema promotes that case of using a full graph
schema by at least 5.9-9.5% on Recall@{5,10} and at
least 4.5-5.7% on NDCG@{5,10}. With query-specific
weighting strategies, we further improve the recom-
mendation effects of RWR by at least 11.9-17.7%
on Recall@{5,10} and at least 12.9-13.3% on
NDCG@{5,10}.

The rest of the paper is structured as follows. Section II
provides some backgrounds to API-specific knowledge graph
and the random walk method. Section III presents our
enhanced model by introducing refined knowledge graph and
query weighting strategies. We evaluate our methods via a set
of experiments in Section IV. We review some works which
are most relevant to ours in Section V. Finally, we conclude
our works and point to future works.

II. PRELIMINARY MODEL
A. KNOWLEDGE GRAPH FOR APIS RECOMMENDATION
In the past decades, the use of Web API has increased
significantly. However, the lack of semantic descriptions of

FIGURE 1. A full schema of knowledge graph for mashup-oriented API
recommendation.

Web APIs limits their discovery, sharing, integration and
consumption [18]. To cope with this problem, Dojchinovski
and Vitvar [18] have presented the Linked Web APIs dataset
with semantic descriptions of Web APIs to capture the prove-
nance, temporal, technical, functional, and non-functional
aspects. Specially, the LinkedWeb APIs ontology is designed
to capture the most relevant information which is related to
Web APIs and mashups. This provides us with a knowledge
base (graph) to guide APIs recommendation.

A full schema of knowledge graph is presented as Fig.1,
which includes key entities: Tag,Category,Mashup,WebAPI,
Agent, Protocol, DataFormat as well as relationships among
them and attributes associated with, such as isPrimary-
Topicof, created, creator, rating, title, name, type, label,
publisher, homepage, wasAttributedTo, supportedProtocol,
supportedDataFormat, sslSupport, etc. There are totally
3286 tag entities and 66 category entities. Here, we specially
distinguish entities of Tag from entities ofCategory consider-
ing that tags are usually user-generated in the free way while
categories are assigned adopting to a standard vocabulary.

B. RANDOM WALKS WITH RESTART
PageRank is an ordering node technique based onMarkovian
walks in a directed graph G = (V ,E), where V (|V | = n) is
the node set and E is the edge set. The surfer jumps from one
node to another with a consistent probability of α (damping
factor) or gets bored, and then jumps to a random node with
a probability of 1 − α. Assuming P is the ranking vector
for all nodes in G, the PageRank value of Pi is the surfer’s
probability at a given node of i. The method of fast computing
PageRank is to use the power iteration method,

P(t) = αMTP(t−1) + (1− α)e (1)

where M is a row-stochastic matrix (n × n). Beginning with
an arbitrary vector P(0), the solving of Eq.1 is to apply the
operator M̂T = αMT

+(1−α)e in succession, until |P(t+1)−
P(t)| < ε. When setting the personalized vector e to prefer
a subset of V [19], the PageRank model is usually called as
Random Walks with Restart(RWR) [20], [31].

7652 VOLUME 7, 2019

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

RWR has been used as a measure of relatedness in var-
ious recommendation scenes and been proved to achieve
superior performance with the ability to alleviate data
sparsity [20], [21]. It can be adapted to recommend Web
APIs for the mashup development as follows: a) Given a
knowledge graph, we treat the edges with different types as
a bidirectional link with a unified weight of 1; b) set e to
prefer the node representing a mashup; c) find the vector
P(t) (where t is the state after convergence) using Eq.1;
d) sort APIs by their rankings in P(t) and generate the top-N
recommendations [22]. Specially, given the source node i,
the target node j and the number of links from i to j can be
expressed as L(i, j). L(i, k) is the same, in which, k represents
the node connected to node i. The matrix M is initialized as
follows:

Mij =

L(i, j)∑
k L(i, k)

if L(i, j) > 0,

0 otherwise
(2)

RWR is simple and effective, however, it has a cou-
ple of drawbacks which lead to unsatisfying results in
mashup-oriented API recommendation. One problem con-
cerns the computational efficiency. As the computational
complexity of RWR is O(n2t), the computational cost will
be high when the number of entities in the knowledge graph
is larger. Also, not all the information in the knowledge graph
contributes to the accuracy of recommendations. Thus we
are required to refine the knowledge graph to reduce the
computational cost. Another problem is about the negative
Matthew effect which means that the APIs of high popularity
will always achieve higher ranking values [23]. This negative
effect will reduce the diversity of recommendation lists and
lower the accuracy of recommendations [22]. For instance,
Google Maps API has been used more than 2000 times in
mashup developments and frequently ranks higher in the rec-
ommendation lists, even if it does not match any requirement.

III. ENHANCED MODEL
A. REFINING KNOWLEDGE GRAPH
To improve RWR-based recommendation model, one feasi-
ble approach is to initialize a walking boundary to reduce
unnecessary random surfing. We customize the query bound-
aries based on the mashup requirements: (I) only nodes of
typed Tag or Category with rich semantic information and
a strong transitivity ability are used to represent the mashup
requirements. Other nodes are either unique or lack sufficient
feature information; (II) only the nodes and edges within the
boundary will be used to create the knowledge graph, and
the other nodes and edges are omitted. Figure 2 specifies the
walking boundary. Formally, we use the following notations
to model requirements of mashups:
Defintion 1: A mashup requirementis specified by Q =

Qcat ∪ Qtag, where Qcat is the set of entities typed Category,
and Qtag is the set of entities typed Tag.
Defintion 2: A query node q represents a mashup to be

established (i.e., test node in Figure 2).

FIGURE 2. A refined schema of knowledge graph where the boundary of
the dotted box is used to create a data graph. The node named test
represents the node of target mashup.

The APIs recommendation corresponds to repeat a spread
process from the query node q to the nodes in Q, and in
turn to other nodes, until a stable global state is achieved.
By employing this strategy, the number of visited nodes by
RWR is greatly reduced, and thus the computational cost will
be less. By the way, the negative Matthew effect will also be
suppressed to some extent. According to our experiments,
the number of visited nodes can be reduced by 98%, while
the recommendation accuracy can be increased by around
10%. To distinguish from the original RF model using the
full knowledge graph, we call this approach using the refined
knowledge graph as RR.

It is worth noting that we use tags and categories to describe
user needs for the following reasons: (1) Tags/categories
can be regarded as precise summaries of API functions,
so they carry more rich information. (2) Tags/categories have
been recognized as successful in organizing and sharing
resources in information systems, especially in the era of
social Web, such as Flickr, YouTube, Delicious and other
websites. This is also true for service/API repositories, e.g.,
ProgrammableWeb and Seekda.

B. QUERY-SPECIFIC WEIGHTING
Up to now, we use uniform weight for different links when
constructing knowledge graph, and do not consider the
impact of different weights of links on the recommendation
effects. It is almost impossible to find the global optimal
configuration of all link weights. For this reason, we intro-
duce some simple but easy-to-operate heuristic strategies to
adjust weights of specific links, to reflect the influence of user
preferences on mashup developments.

Q1: In a common sense, the APIs containmore information
related to Q, the more important they should be. Therefore,
we strengthen the weights of links betweenQ and those APIs
to reflect this principle.

Q2: In many cases, sets Qcat and Qtag contain the same
keywords. For example, a mashup requirement may include
both social_tag and social_category. In our dataset, 95.5%
keywords in the Qcat appears in the Qtag, so we should give
more weights to the APIs they point together.

VOLUME 7, 2019 7653

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

Algorithm 1 RRQ
Input: E , V , mashup requirementQ, query node q, damping
factor α, weight ratio β, threshold ε;

Output: The ranking vector in Gr ;
(1) Get the graph Gr according to Fig.2 and let all link
weights as 1;
weighting strategy Q1

(2) for i ∈ Q do
(3) for j ∈ E[i] do
(4) if j is API && E[j] ∈ Q then
(5) L(i, j) = L(i, j)+ 1;
(6) end if
(7) end for
(8) end for
weighting strategy Q2

(9) for i ∈ Qcat and j ∈ Qtag do
(10) if i shares the same keyword with j then
(11) for k ∈ E[i] ∩ E[j] && k is API do
(12) L(i, k) = L(i, k)+ 1;
(13) L(j, k) = L(j, k)+ 1;
(14) end for
(15) end if
(16) end for
weighting strategy Q3

(17) for i ∈ Qcat do
(18) L(q, i) = L(q, i)+ 1;
(19) end for
(20) if

∑
i∈Qcat L(q,i)∑
j∈Q L(q,j)

< β then;
(21) repeat (17)-(19)
(22) end if
performing RWR

(23) Update Gr with new weights;
(24) Initialize the matrixM by Eq.2;
(25) for j ∈ V do
(26) if j == q then
(27) ej = 1;
(28) else
(29) ej = 0;
(30) end if
(31) end for
(32) repeat
(33) Compute P(t)

= αMTP(t−1)
+ (1− α)e

(34) t = t + 1
(35) until
(36) |P(t)

− P(t−1)
| < ε

(37) return P ;

Q3: On the analyses of experimental datasets, we find that
the category information is more important than that of tag
due to the large number of tag entities. This results in two
types of entities carrying different amounts of information.
To clarify this point, we assign a weight β (0.3 in default) to
the entities of category and 1− β to the entities of tag.

Let |Q| be the number of entities in the Q and E =
{source nodej : [target node1, ..., target nodek], ...} be the

TABLE 1. Statistics of dataset.

link dictionary of all entities in the knowledge graph, detailed
query edge weighting strategies are outlined in Algorithm 1.
As query weighting strategies work by strengthening weights
of specific links without modifying the algorithm of RWR,
it is not hard to follow and operate in practice. Formally,
we call this improved model as RRQ.

IV. EXPERIMENTS
In this section, we conducted extensive experiments aiming
to answer the following three research questions:

1) RQ1 How do parameter settings affect the recommen-
dation performance w.r.t random walks with restart on
different schemas of knowledge graph?

2) RQ2 Are the proposed query-specific weighting strate-
gies effective in mashup-oriented API recommenda-
tion?

3) RQ3 How do the proposed methods perform in com-
parison with the state-of-the-art methods in the task of
mashup-oriented API recommendation?

A. DATASETS
For our experiments, we use the Linked Web APIs dataset1

of which semantic descriptions of Web APIs retrieved from
ProgrammableWeb.com. It contains 11,339 Web APIs
descriptions, 7,415 mashups and almost 7,717 mashup devel-
opers’ profiles, over half million of RDF triples. The average
number of APIs used per mashup is 2.1.

For our purpose, we remove 87 mashups without contain-
ing any APIs usage and divide the dataset into three training
datasets and three test datasets with timelines (years 2014,
2013 and 2012). For example, when setting the timeline in
the year 2014, the historical data of mashups before the year
2014 is used for training and the historical data of mashup in
the year 2014 is used for testing. Also, we respectively build
the full knowledge graph and the refined knowledge graph
according to the schema in Figure 1 and Figure 2. In addi-
tion, for graph-based recommendation algorithms, no textual
information of APIs and mashups is used. For text-based
recommendation algorithms, the textual descriptions of APIs
and mashups are preprocessed by removing punctuations and
stop words, and then used for similarity calculation and topic
modeling analysis. Statistics of dataset are given in Table 1.

B. EVALUATION METRICS
Since we concentrate on recommending top-N Web APIs,
we adopt three commonly used metrics, namely Recall, Nor-
malize Discounted Cumulative Gain (NDCG) and Hamming

1http://linked-web-apis.fit.cvut.cz/

7654 VOLUME 7, 2019

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

Distance (HD), to evaluate the recommendation performance.
For these three metrics, bigger values indicate better perfor-
mance.

Given a ranking list of recommendations, Recall@N is the
ratio of retrieved real APIs to all real used APIs in the mashup
development:

Recall@N =
|{real APIs} ∩ {top-N APIs}|

|{real APIs}|
. (3)

DCG@N is a measure to give more weights to high-ranking
APIs, combining different APIs with different gain values.
One of the commonly used descriptions is:

DCG@N =
N∑
i=1

2rel(i) − 1
log2(i+ 1)

. (4)

Here, rel(i) takes a binary value to indicate whether a candi-
date API had been used in the target mashup or not. If it is
true, rel(i) = 1; otherwise, rel(i) = 0. NDCG@N is achieved
by normalizing DCG@N with the ideal DCG of the ranking
lists of candidates: NDCG@N = DCG@N

IDCG@N , where IDCG@N
is pre-calculated by counting all real APIs participated into
the development of target mashup.
HD@N is a measure to evaluate the aggregate diversity of

recommendation lists for different users. Given two ranking
lists of APIs, it is defined as:

HD@N = 1−
overlap@N

N
, (5)

where overlap@N is the number of common APIs in the
top-N position of two lists. For our experiments, this metric
is helpful to quantify the performance of Matthew effect on
different recommendation algorithms. If an algorithm has a
significant Matthew effect, popular APIs are often appeared
and highly ranked in different recommendation lists gener-
ated by this algorithm, which results in the lower unique-
ness of different recommendation lists and the lower overall
HD@N. Therefore, we calculateHD@N for all pairs of tested
mashups and employ the averaged HD@N to investigate the
impact of Matthew effect.

C. EVALUATION METHODS
Currently, there are no universal baseline models for
mashup-oriented API recommendation. For this reason,
we select some widely-used methods in related works
and some newer state-of-the-art approaches as the baseline
models [5]–[10], [28].

1) POPULARITY-BASED MODEL (Pop)
It is the most commonly used baseline model in the field of
recommender systems. For each tag or category, a queue of
APIs is created through sorting APIs by their frequencies in
the mashup developments. For each tag or category of Q, one
API is selected to enter into the recommendation list accord-
ing to its queue order in each iteration, and such a process
repeats several times until top-N candidates are completed.

2) TEXT-BASED COLLABORATIVE FILTERING (CF) [5]
This method resembles item-based collaborative filtering
where items referred to mashups which are further repre-
sented by their text documents. We first calculate similarities
between the target mashup and the existing mashups in the
training dataset, to find top-similar mashups. Then, we rec-
ommend APIs used by the top-similar mashups. Formally, let
sim(i, j) be the cosine similarity between the documents of
two mashups i and j, N (i) be the top-similar mashups of i,
rel(j, api) be the relevance between the mashup j and api (For
simple, rel(j, api) = 1/m if there aremAPIs in the mashup j),
then the recommendation score of api for the target mashup i
can be calculated as follows:

score(i, api) =
∑
j∈N (i)

sim(i, j) ∗ rel(j, api) (6)

To estimate sim(i, j), we merge the tag/category and the text
description of mashups into documents, and then discard
those words that are meaningless to the recommendation task,
including punctuations and stop words.

3) TOPIC-MATCH MODEL(TM)
CF relies on text description to estimate the similarity may
suffer from insufficient information or semantics, so we
exploit Latent Dirichlet Allocation (LDA) [24] to ana-
lyze the documents of APIs and generate the topic-based
semantic representation for each API. We then calculate
sim(i, api) based on topic-based representations of the API
and the mashup i; and generate the recommendation list by
score(i, api) = sim(i, api). This resembles the retrieval-based
APIs recommendation method [12] and achieves competitive
results with CF-based methods according to our experiments.

4) SERVICE PROFILE RECONSTRUCTION MODEL (SPR) [10]
The key idea of it is to leverage descriptions and structures
of mashups to discover the important lexical features of APIs
and bridge the vocabulary gap between mashup developers
and service providers. The implementation is to jointly model
mashup descriptions and component services using author
topic model (ATM) [30] to reconstruct service profiles. With
exploiting word features derived from reconstructed service
profiles, a new mashup-oriented API recommendation algo-
rithm is developed.

5) RANDOM WALKS WITH RESTART
We respectively evaluate RWR on full knowledge graph
(RF), RWR on the refined knowledge graph (RR), RWR on
the refined knowledge graph with query weighting (RRQ).
Also, a RWR model combined with latent semantic analysis,
proposed by Liang et al. [28] to recommend tags for APIs,
is also used as a baseline model. In this method [28], both
graph structure information and semantic similarity (LSI)
are exploited to automatically assign tags to unlabeled APIs.
We adjust this method to make it suitable for APIs recom-
mendation by exchanging the roles of APIs and tags, and
evaluate it against our proposed methods based on knowledge

VOLUME 7, 2019 7655

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

FIGURE 3. Performance on Recall and NDCG of three RWR models with different damping factors. For each column,
the corresponding metric values of the legends are accumulated for the sake of compactness.

graph. Because the task is different, there is no need to refine
the knowledge graph in their task. For the sake of fairness,
we also use weighting strategies in this method. (we name it
as RRQ-L for convenience).

We treat each keyword in Q (tag or category) as a single
individual object in Pop, SPR, RF, RR and RRQ. We add
keywords of Tag and Category to the textual description of
mashups (also APIs) to calculate the text or topic similarities
in CF and TM. In RRQ-L, we calculate the similarities
between the text information of all associated APIs and the
requirement information (Q), then multiply the correspond-
ing terms of the similarity vector and the strength vector of
the association obtained through RWR for each API to get a
score vector of APIs. Finally, we reorder the score of each
API to generate a recommendation list.

D. CONFIGURATION ANALYSIS
1) IMPACT OF DAMPING FACTOR
The recommendation algorithm based on RWR is signifi-
cantly affected by the settings of the damping factor [20].
Therefore, we conduct experiments in this section to observe
how the damping factor affect the accuracy of recommenda-
tions w.r.t variants of the RWR. As the difference is small,
we choose to stack the data from top-1 to top-30 for an intu-
itive feel. The experimental results are presented in Figure 3.
As for RF, we find that the optimal setting of the damping
factor is close to 0.85, where both NDCG and Recall achieve
the best values. As for RR and RRQ, recommendation per-
formances in both NDCG and Recall change little as the
damping factor ranges from 0.15 to 0.85. Essentially, what
the damping factor represents is the chance that the process
of searching APIs will stop on the current node and restart
from the node of mashup. To some extent, damping factor
determines the length of the path to locate the required APIs.
In this sense, using the refined knowledge graph can find
the desired APIs at a lower cost, as it performs the random
walk in the neighboring entities of q, while utilizing the full
knowledge graph costs higher as it goes a long way from q.

2) EFFECTIVENESS OF QUERY-SPECIFIC WEIGHTING
To investigate the effectiveness of our proposed queryweight-
ing strategies, we conduct experiments by applying each
strategy independently with the RR model. The experimental
results are presented in Figure 4. According to the experi-
mental results, all three strategies significantly improve the
accuracy of recommendations, the strategy Q1 and Q3 are
better than the strategy Q2. For the strategy Q1, if an API
matchesmore the requirement facets ofmashup development,
it should be ranked higher. Strengthening the connection
weight between the API and the corresponding tag will guide
a random walk to locate the API with a greater probability.
The same explanation can be applied to strategy Q2. In this
way, the accessing probability of popular APIs which do not
match the requirements will be reduced, thus suppressing the
Matthew effect.

As for the strategy Q3, the significant effect is that describ-
ing user needs with the standard classification terminology
provided by the system helps to locate the required API.
On one hand, the number of category entities is much smaller
than the number of tag entities, so the former carries much
more information than the latter. On the other hand, because
the tag entities are usually generated by users, their ability to
describe requirements is greatly reduced compared with the
category entities. This also inspires us to paymore attention to
the category information when developing recommendation
algorithms.

We further let the β range from 0.3 to 0.7 to study its influ-
ence on the accuracy of recommendations. Figure 5 shows
the model performance of RR when β takes different values.
As the value of β increases, the recommendation performance
changes little. Considering that the number of entities in Qtag
is much larger than the number of entities in Qcat , we take
β = 0.3 for subsequent experiments.

E. QUANTITATIVE COMPARISON
In this section, we conduct intensive experiments to
observe the pros and cons of selected methods in both

7656 VOLUME 7, 2019

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

FIGURE 4. Performance comparison on Recall and NDCG of the RR model with different weighting strategies.

FIGURE 5. Performance comparison on Recall and NDCG of the RR model with different value of β.

recommendation effects and efficiency. The experimental
results are correspondingly given in Table 2 and Figure 6.

1) PERFORMANCE OF RECOMMENDATIONS
From Table 2, the accuracy of recommendations is quite
different on different subsets of experimental data w.r.t the
baseline models Pop, CF and TM. For example, Pop works
well on the 2012 dataset, CF does best on the 2013 dataset,
and TM performs better on the 2014 dataset. These three
methods use keywords, text similarities, and topical similar-
ities respectively to match APIs, but ignore other important
knowledge of mashup development, such as the common
invocation pattern of APIs. It confirms the former observa-
tions that most of the existing works using single source
information are vulnerable to data sparsity, and thus leading
to relatively modest recommendation performance.

SPR basically performs better than Pop, CF and TM on
both metrics of recommendation accuracy as it takes advan-
tages of both co-invocation pattern of APIs and semantic
relation between APIs and textual description of mashup.
As for the RRQ-L model, its performance is not so good as
that of RRQ. The main reason may be that the quality factors

of text descriptions lead to unfortunate results of LSI analysis,
harming the effect of the linear fusion with the random walk
based relevance measure.

As for RF, it does not do as robust as expected and
even worse than the baseline models. This shows that the
information in the knowledge graph is not always advan-
tageous for APIs recommendation, and the existence of
some link information may become noise, which affects
the estimation of relevance. In contrast, RWR utilizing
refined knowledge graph almost outperforms all the addi-
tional baseline models. This proves that our new schema of
knowledge graph effectively avoids the influence of noise
information.

When introducing query weighting strategies, our
recommendation model is further enhanced. According to
Table 2, the gains reach about 17.0-22.4% in Recall@5,
11.9-15.1% in Recall@10 compared with other meth-
ods (except SPR in 2013), 9.5-27.2% in NDCG@5 and
11.9-23.4% in NDCG@10. On one hand, the information
used to assess the relevance between requirements and
candidate APIs is strengthened through query weighting.
On the other hand, it effectively utilizes the preferences of

VOLUME 7, 2019 7657

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

TABLE 2. Gains of RRQ for top-5 and top-10 APIs recommendation.

FIGURE 6. Average computational overheads of selected methods, where
y-axis is in logarithmic scale.

developers and the historical knowledge in mashup develop-
ments (e.g., co-invocation pattern of APIs).

Finally, we examine the HD metric. In the experiment,
Pop, CF and RF performed poorly, followed by SPR, which
accords with the historical observations. For the first three
methods, the principles of the algorithms where popular APIs
are easier to get high rankings determines that the Matthew
effect has a significant negative impact on the recommenda-
tion results. For SPR, the data base of its model training is the
records of mashup. Because popular APIs have been involved
in mashup developments, they are more likely to appear at
the top positions of the recommendation lists. The Matthew
effect should also be remarkable in the principle. However,
due to the adoption of topic modeling technology(as TM
outperforms all other methods in HD@5 and HD@10), this
effect is somewhat neutralized.

When comparing RRQ with RF, we can find that RRQ
improves RF about 4.4-5.7% on HD@5 and 2.2-4.8% on
HD@10. The Matthew effect is suppressed to some extent.
Of course, this should be attributed mainly to the use of
simplified knowledge graph rather than the full knowledge
graph, on which useless entities and connections tend to
aggravate the negative transmission of theMatthew effect.

2) COMPUTATIONAL OVERHEAD
To investigate the computational overhead of selected meth-
ods. We conduct experiments on a computer equipped with
i5-8300H CPU and 8-GB memory. Also, all the methods are
implemented in Python. Depending on experimental results
from Figure 6, our proposed methods achieve comparable
time overhead to the baseline models. Especially when com-
pared with RF, the time cost is substantially reduced, yet the
recommendation effect is improved in RRQ.

F. CASE STUDY
In this section, we show actual cases on mashup-oriented
API recommendation to provide a qualitative comparison
of selected methods. Groundtruth represents the APIs used
in the actual development process. Table 3 shows the top-3
recommendations for six randomly chosen target mashups
covering different years, namely, Place My Past (2014),
Respin (2014), Healthy Lemur (2013), Mvbanana (2013),
Pixurl Social Search (2012) and Flickoutr (2012) where
our method RRQ outperforms other counterparts in global
performance by respectively achieving one hit, two hits, two
hits, two hits, three hits and two hits.

Place My Past is a family history mapping application
where the keywords include Family, History, Genealogy,

7658 VOLUME 7, 2019

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

TABLE 3. Case study on APIs recommendation where APIs get hit are marked in bold font.

Mapping, Social,Database,Openstreetmap,Display, Places,
Viewer and Reference. In the top-3 recommendations,
none of the selected methods achieves satisfactory results.
On one hand, the text description is quite insufficient;
On the other hand, requirement information in Q is
diverse, so top-recommendation consequences have vari-
ous combinations and are not easy to hit. However, RRQ
and SPR outperform other counterparts by achieving one
hit.

Respin allows music lovers to import any of their hand
crafted playlists into Rdio, where the keywords include
Music, Social, Playlists, Rdio and Streaming. Since the
requirement information is very clear and specific, and
the APIs used are more common. CF achieves two hits on
the top-3 recommendations. Depending on themusic attribute
emphasized in the requirement information, TM and SPR
can also get one hit. In the case of sparse text descriptions,
the textual information is rarely good enough, or even noise,

VOLUME 7, 2019 7659

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

so RRQ-L fails in the top-3 recommendations. RRQ achieves
two hits just by keyword, although both RF and RR fail in this
task, which confirms the advantage of weighting strategies.

Healthy Lemur is an app that lets you publicly link
your foursquare account, select the number of days per
week that you’re going to exercise, link your Facebook
and/or Twitter accounts and you’re all set, where the key-
words mainly include Exercise, Self-being, Fun, Social,Gym,
Health,Mobile, Search, Photo, Location,Mapping andWeb-
hooks. Since there is a sufficient text description for this
mashup, TM achieves one hit on the top-3 recommendations.
Pop, CF, SPR, RF and RR fail in the top-3 recommendations.
In contrast, RRQ achieves two hits by using query weighting
strategies followed by RRQ-L where achieves one hit.

Mvbanana is a radio station that plays music videos
provides a fun way of discovering new or forgotten music
where the keywords mainly includeMusic, Video, Aggregate,
Streaming,Metadata, Lyrics andMedia. In this recommenda-
tion task, the RWR-based models outperform other methods
and produce good results.

Pixurl Social Search uses pixurl to search your favorite
social platforms all from one web page. Its keywords include
Search and Social, Video, Photos,Media andMicroblogging.
In the top-3 recommendations, both RR and RRQ achieve
three hits and followed by Pop and RF, where both achieve
two hits. As the text description of this mashup is also insuf-
ficient, CF just achieve one hit, TM and SPR do not perform
well.

Flickoutr allows you to painlessly share your Flickr
images by tag or set across Facebook and Twitter. Group
sharing is supported and multiple accounts are supported.
Its keywords mainly included Photos, Social, Search, Tools,
Microblogging andVideo. Due to the insufficient text descrip-
tion, TM and SPR are failure in the top-3 recommendations
and RRQ-L just achieves one hit. RF, RR and RRQ achieve
two hits and followed by Pop and CF, where both achieve one
hit.

Regarding the negative Matthew effect, the recommenda-
tion lists generated byRF forMvbanana,Pixurl Social Search
and Flickoutr still put Google Maps API in the first place
even if we do not have the requirement of mapping function.
On the contrary, RR and RRQ can effectively suppress this
effect and generate highly accurate APIs recommendation.
Surely, the refinement of full knowledge graph cuts off the
association with APIs that have high popularity but do not
comply with the requirement.

V. RELATED WORKS
Service recommendation has been an active area of research
for years [25]. In most of the cases, services are considered as
a kind of item and a feedback matrix which contains ratings
or quality of services in invocations from users to services are
used for training and prediction. This obeys the general case
of traditional recommender systems which have been widely
used in e-commerce platform and social network services.
However, an important feature of Web APIs is to participate

in mashup (service composition) and achieve value-added
applications [26]. How to effectively suggest APIs to match
mashup requirements is quite different from the objective of
these recommendation tasks. Consequently, we will summa-
rize the related works which focus on providing solutions
for mashup developments. On the surface, existing works
are based on different principles of technology. However,
these works can be coarsely classified into two categories,
one focuses on the principle of collaborative filtering, and
the other focuses on estimating the relevance between the
mashup requirements and the candidate APIs.

As for the first category, Cao et al. [5] present a mashup
service recommendation approach based on content similar-
ity and collaborative filtering to rank and recommend top-k
mashup services by combining the user interest value and the
rating prediction value. Xu et al. [6] propose a coupledmatrix
model to describe the multi-dimensional social relationships
among users, mashups, and services. They then design a
factorization algorithm to predict unobserved relationships
in the model to assist more accurate service recommen-
dations. Rahman et al. [7] suggest a matrix factorization
method based on integrated content and network-based ser-
vice clustering. This ensures that the recommendation can be
made within a comparable short list of interrelated services,
with the latent relationship taken into account. Recently,
Yao et al. [8] propose amatrix factorization with implicit cor-
relation regularization to solve the recommendation problem
and enhance the recommendation diversity. They conjecture
that the co-invocation of APIs in mashups is driven by both
the explicit textual similarity and implicit correlations of APIs
such as the similarity or the complementary relationship of
APIs.

Regarding the second category, various techniques are used
to estimate the relevances between the requirements and the
candidate APIs, such as link analysis and topic modeling.
Also, different features such as API text description, net-
work information, tags and popularity are utilized [13]–[17].
Xia et al. [9] propose a three-steps approach, including
service clustering for each category, relevant categories
identification, and category-aware service recommenda-
tion, to enhance the recommendation for the mashup cre-
ation. This work shows the importance of fully leveraging
the meta-information in service profiles to achieve effec-
tive recommendations. Cao et al. [13] propose an inte-
grated content and network-based service clustering and
Web APIs recommendation method for mashup develop-
ments. They develop a two-level topic model by using
the relationship among mashup services to mine the latent
useful and novel topics for better service clustering accu-
racy. They also design a CF-based recommendation algo-
rithm by exploiting the implicit co-invocation relationship
between APIs inferred from the invocation history. Sim-
ilarly, Li et al. [16] firstly exploit the enriched tags and
topics information about mashups and Web APIs to cal-
culate the similarity between Web APIs and the similar-
ity between mashups. Then, they use the invocation times

7660 VOLUME 7, 2019

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

and category information of Web APIs to derive their pop-
ularity. Finally, multi-dimensional information is modeled
by factorization machines to predict and recommend APIs
for a target mashup. To leverage mashup descriptions and
structures to discover important word features of services
and bridge the vocabulary gap between mashup develop-
ers and service providers, Zhong et al. [10] jointly model
mashup descriptions and component service using author
topic model to reconstruct service profiles. Considering that
different attributes may contribute differently to a service
linkage in calculating the semantic distances among services,
Bao et al. [11] suggest that we should simultaneously train
separate models for individual attributes and develop a latent
attribute modeling method to reveal context-aware attribute
distribution. In addition, considering that different from indi-
vidual service recommendation scenarios, some works are
focused on optimizing the candidate APIs set to reduce the
redundancy and improve the diversity of candidate APIs
list [14], [27].

Some emerging recommendation methods exploit deep
learning techniques as support, for example, Xue et al. [29]
cluster APIs and use deep learning techniques to automati-
cally generate API combinations based on requirement infor-
mation. Compared with the evaluation methods in this paper,
the main problem of the deep neural model is that its black
box characteristics make the recommendation results lack
explanatory. Also, it may be hard to learn representations of
newly created APIs with novel features (e.g, new words) in
textual descriptions, and thus suffer from a cold-start prob-
lem. In this regard, we need to explore in depth towards this
technical direction.

Compared with the existing works, our methods can be
grouped into the second category, but the difference is that we
provide a simple yet effective framework to use the rich infor-
mation (precise summaries of API functions and invocation
pattern of APIs) in the knowledge graph of API ecosystem,
which effectively overcomes the problem of data sparsity,
thus achieving better recommendation accuracy.

VI. CONCLUSION
We have proposed a novel approach for mashup-oriented
API recommendation based on random walks on knowl-
edge graph. Specially, we enhance the preliminary model by
refining the knowledge graph and suggesting query-specific
weighting strategies on the graph construction. The new
method can not only provide accurate recommendation
results but also reduce computational overhead and suppress
the negativeMatthew effect in APIs recommendation.

However, there still exist some limitationsw.r.t ourmethod.
On the one hand, describing requirements of mashups with
keyword combinations is too high-level to judge the APIs
used in a mashup, as this treatment requires developers
to describe their needs accurately and completely, which
depends on professional skills and experience. On the other
hand, the proposed method can work well in the evaluation
is mainly because that ProgrammableWeb defines a limited

number of category keywords, and uses such keywords for
both APIs and its mashups. If there are a large number
of mashups used different keywords, it may be hard to be
applied to recommend APIs for those mashups. To overcome
these shortcomings, it is necessary to introduce natural lan-
guage processing technology to accurately summarize those
freestyle documents of requirement descriptions and align
them to standard categories/tags. This would decrease the
difficulty of requirement description and make our methods
easier to be applied to actual scenarios.

As for future works, we want to explore other datasets
to deeply evaluate our proposed methods. Also, we will
study more simple yet elegant query weighting strategies to
enhance the model. Additionally, as the negative Matthew
effect always exists in the RWRmodel, we still need to pursuit
advanced solution for it. Finally, adding other technologies,
such as deep understanding of textual documents, to study
the more widely used recommendation method is also our
future goal.

REFERENCES
[1] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar, ‘‘From the

service-oriented architecture to the Web API economy,’’ IEEE Internet
Comput., vol. 20, no. 4, pp. 64–68, Jul./Aug. 2016.

[2] C. Cappiello, F. Daniel, M. Matera, and C. Pautasso, ‘‘Information qual-
ity in mashups,’’ IEEE Internet Comput., vol. 14, no. 4, pp. 14–22,
Jul./Aug. 2010.

[3] A. Bouguettaya et al., ‘‘A service computing manifesto: The next 10
years,’’ Commun. ACM, vol. 60, no. 4, pp. 64–72, 2017.

[4] X. Liu, G. Huang, Q. Zhao, H. Mei, and M. B. Blake, ‘‘iMashup:
A mashup-based framework for service composition,’’ Sci. China Inf. Sci.,
vol. 57, no. 1, pp. 1–20, 2014.

[5] B. Cao, M. Tang, and X. Huang, ‘‘CSCF: A mashup service recommenda-
tion approach based on content similarity and collaborative filtering,’’ Int.
J. Grid Distrib. Comput., vol. 7, no. 2, pp. 163–172, 2014.

[6] W. Xu, J. Cao, L. Hu, J. Wang, and M. Li, ‘‘A social-aware service
recommendation approach for mashup creation,’’ in Proc. IEEE 20th Int.
Conf. Web Services (ICWS), Jun./Jul. 2013, pp. 107–114.

[7] M. M. Rahman, X. Liu, and B. Cao, ‘‘Web API recommendation for
mashup development using matrix factorization on integrated content and
network-based service clustering,’’ in Proc. IEEE Int. Conf. Services Com-
put. (SCC), Jun. 2017, pp. 225–232.

[8] L. Yao, X. Wang, Q. Z. Sheng, B. Benatallah, and C. Huang,
‘‘Mashup recommendation by regularizing matrix factorization with
API co-invocations,’’ IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2018.2803171.

[9] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, ‘‘Category-aware
API clustering and distributed recommendation for automatic mashup
creation,’’ IEEE Trans. Services Comput., vol. 8, no. 5, pp. 674–687,
Sep. 2015.

[10] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, ‘‘Web service recommendation
with reconstructed profile frommashup descriptions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468–478, Apr. 2018.

[11] Q. Bao et al., ‘‘A fine-grained API link prediction approach support-
ing mashup recommendation,’’ in Proc. IEEE Int. Conf. Web Services,
Jun. 2017, pp. 220–228.

[12] D. Bianchini, V. Antonellis, and M. Melchiori, ‘‘WISeR: A multi-
dimensional framework for searching and ranking Web apis,’’ ACM Trans.
Web, vol. 11, no. 3, p. 19, 2017.

[13] B. Cao, X. Liu,M.M. Rahman, B. Li, J. Liu, andM. Tang, ‘‘Integrated con-
tent and network-based service clustering and Web APIs recommendation
for mashup development,’’ IEEE Trans. Services Comput., to be published.

[14] Q. Gu, J. Cao, and Q. Peng, ‘‘Service package recommendation for mashup
creation via mashup textual description mining,’’ in Proc. IEEE Int. Conf.
Web Services, Jun./Jul. 2016, pp. 452–459.

[15] Z. Yu, R. K.Wong, and C.-H. Chi, ‘‘Efficient role mining for context-aware
service recommendation using a high-performance cluster,’’ IEEE Trans.
Services Comput., vol. 10, no. 6, pp. 914–926, Nov./Dec. 2017.

VOLUME 7, 2019 7661

X. Wang et al.: Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph

[16] H. Li, J. Liu, B. Cao,M. Tang, X. Liu, and B. Li, ‘‘Integrating tag, topic, co-
occurrence, and popularity to recommend web APIs for mashup creation,’’
in Proc. IEEE Int. Conf. Services Comput., Jun. 2017, pp. 84–91.

[17] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang, ‘‘Time-aware service
recommendation for mashup creation in an evolving service ecosystem,’’
in Proc. IEEE Int. Conf. Web Services (ICWS), Jun. 2014, pp. 25–32.

[18] M.Dojchinovski and T. Vitvar, ‘‘LinkedWebAPIs dataset,’’ SemanticWeb,
vol. 9, no. 4, pp. 381–391, 2018.

[19] T. H. Haveliwala, ‘‘Topic-sensitive PageRank: A context-sensitive ranking
algorithm for Web search,’’ IEEE Trans. Knowl. Data Eng., vol. 15, no. 4,
pp. 784–796, Jul. 2003.

[20] I. Konstas, V. Stathopoulos, and J. M. Jose, ‘‘On social networks and
collaborative recommendation,’’ in Proc. 32nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., 2009, pp. 195–202.

[21] H. Wu, K. Yue, X. Liu, Y. Pei, and B. Li, ‘‘Context-aware recommendation
via graph-based contextual modeling and postfiltering,’’ Int. J. Distrib.
Sensor Netw., vol. 11, no. 8, p. 613612, 2015.

[22] H. Wu, X. Cui, J. He, B. Li, and Y. Pei, ‘‘On improving aggre-
gate recommendation diversity and novelty in folksonomy-based social
systems,’’ Pers. Ubiquitous Comput., vol. 18, no. 8, pp. 1855–1869,
2015.

[23] H. Wang, Z. Wang, and W. Zhang, ‘‘Quantitative analysis of matthew
effect and sparsity problem of recommender systems,’’ in Proc. IEEE
3rd Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2018,
pp. 78–82.

[24] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[25] H.Wu, K. Yue, B. Li, B. Zhang, and C. H. Hsu, ‘‘Collaborative QoS predic-
tion with context-sensitive matrix factorization,’’ Future Gener. Comput.
Syst., vol. 82, pp. 669–678, May 2018.

[26] K. Huang, Y. Fan, andW. Tan, ‘‘An empirical study of programmableWeb:
A network analysis on a service-mashup system,’’ in Proc. IEEE 19th Int.
Conf. Web Services (ICWS), Jun. 2012, pp. 552–559.

[27] W. Gao and J. Wu, ‘‘A novel framework for service set recommendation
in mashup creation,’’ in Proc. IEEE Int. Conf. Web Services, Jun. 2017,
pp. 65–72.

[28] T. Liang, L. Chen, J. Wu, and A. Bouguettaya, ‘‘Exploiting heterogeneous
information for tag recommendation in API management,’’ in Proc. IEEE
Int. Conf. Web Services (ICWS), Jun./Jul. 2016, pp. 436–443.

[29] Q. Xue, L. Liu, W. Chen, MC. Chuah, ‘‘Automatic generation and recom-
mendation for API mashups,’’ in Proc. 16th IEEE Int. Conf. Mach. Learn.
Appl. (ICMLA), Dec. 2017, pp. 119–124.

[30] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, ‘‘The author-topic
model for authors and documents,’’ in Proc. 20th Conf. Uncertainty Artif.
Intell., 2004, pp. 487–494.

[31] L. Guo, X. Cai, F. Hao, D. Mu, C. Fang, and L. Yang, ‘‘Exploiting fine-
grained co-authorship for personalized citation recommendation,’’ IEEE
Access, vol. 5, pp. 12714–12725, 2017.

XIN WANG received the B.Sc. degree in
electronic science and technology from the
Kunming University of Science and Technology,
Kunming, China, in 2016. He is currently pursu-
ing the master’s degree in computer science with
Yunnan University. His current research interests
mainly include service computing and recom-
mender systems.

HAO WU received the bachelor’s degree in com-
puter science from Zhengzhou University, in 2001,
and the master’s and Ph.D. degrees in computer
science from the Huazhong University of Science
and Technology, in 2004 and 2007, respectively.
He is currently an Associate Professor with the
School of Information Science and Engineering,
Yunnan University, China. He has published more
than 50 papers in peer-reviewed international jour-
nals and conferences, such as the IEEE TSC,

JASIST, FGCS, the Journal of Supercomputing, KBS, and PUC. He has
co-authored a monograph published with World Scientific. He has served as
a Reviewer and a PCMember for many venues. His research interests include
service computing, information filtering, and recommender systems.

CHING-HSIEN HSU is currently a Professor with
the Department of Computer Science and Informa-
tion Engineering, National Chung Cheng Univer-
sity, Taiwan. He has been acting as an author/co-
author or an editor/co-editor of 10 books from
Elsevier, Springer, IGI Global, World Scientific,
and McGraw-Hill. His research interests include
high-performance computing, cloud computing,
parallel and distributed systems, big data analytics,
ubiquitous/pervasive computing, and intelligence.

He has published 100 papers in top journals, such as the IEEE TPDS,
the IEEE TSC, the IEEE TCC, the IEEE TETC, the IEEE SYSTEMS, the IEEE
NETWORK, and ACMTOMM, and book chapters in these areas. He is a Fellow
of IET and a Senior Member of the IEEE. He received the Distinguished
Award for Excellence in Research, nine times, from Chung Hua University.
He is the Vice Chair of the IEEE TCCLD, an Executive Committee Member
of the IEEE TCSC, and the Taiwan Association of Cloud Computing. He is
serving on the Editorial Boards of a number of prestigious journals, including
the IEEE TSC and the IEEE TCC.

7662 VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARY MODEL
	KNOWLEDGE GRAPH FOR APIS RECOMMENDATION
	RANDOM WALKS WITH RESTART

	ENHANCED MODEL
	REFINING KNOWLEDGE GRAPH
	QUERY-SPECIFIC WEIGHTING

	EXPERIMENTS
	DATASETS
	EVALUATION METRICS
	EVALUATION METHODS
	POPULARITY-BASED MODEL (Pop)
	TEXT-BASED COLLABORATIVE FILTERING (CF)b5
	TOPIC-MATCH MODEL(TM)
	SERVICE PROFILE RECONSTRUCTION MODEL (SPR)b10
	RANDOM WALKS WITH RESTART

	CONFIGURATION ANALYSIS
	IMPACT OF DAMPING FACTOR
	EFFECTIVENESS OF QUERY-SPECIFIC WEIGHTING

	QUANTITATIVE COMPARISON
	PERFORMANCE OF RECOMMENDATIONS
	COMPUTATIONAL OVERHEAD

	CASE STUDY

	RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	XIN WANG
	HAO WU
	CHING-HSIEN HSU

