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ABSTRACT Level set methods have been widely used for image segmentation due to their good boundary
detection accuracy. In the context of synthetic aperture radar (SAR) image segmentation, the presence of
speckles and the distribution estimation of SAR image remain important issues that may hinder the accuracy
of any segmentationmethod based on level set methods. In this paper, we propose amore accurate and a stable
segmentation method based on the random weighting method and modified threshold-based level set energy
functional. The proposed method uses a level set evolution that is based on the minimization of an objective
energy functional, whose propagation function is based on the G0 statistical model, whose parameters are
estimated by random weighting estimators, and the estimator is not affected by the hypothesized model
and sampling number. In addition, a new regularization item and length term, which maintain the regularity
of the level set function and contour respectively, were employed. The experimental results demonstrate
that the proposed methodology has a good and stable capability of segmentation, both in homogeneous,
heterogeneous, and extremely heterogeneous regions in SAR image.

INDEX TERMS Level set, random weighting estimators (RWE), segmentation, synthetic aperture radar.

I. INTRODUCTION
Synthetic Aperture Radar (SAR), which allows day-and-
night and all-weather acquisitions, is an advanced active
microwave device for earth observation. Therefore, it plays an
utterly significant role in the national economy and military
applications [1]. Segmentation plays an important role in
the automatic analysis and interpretation of SAR images.
However, the inherent multiplicative noise, known as speckle,
which originates from the interference of the coherent wave-
fronts, is specific to active imaging systems and considerably
degrades the registered imagery [2]. As a consequence, stan-
dard segmentation methods that have been validated for opti-
cal data do not report satisfying results when applied directly
to SAR images. Another difficulty is the heterogeneity of
urban areas in SAR images that leads to heterogeneous statis-
tical modeling, reflecting different ground materials such as
asphalt, concrete, and metal.

In recent years, muchwork has been done on the segmenta-
tion of SAR images, such as the edge detection [3], clustering
methods [4], superpixel-based methods [5], and model-based
methods [6]. However, each method has both advantages
and disadvantages. Among various segmentation methods,
the level set method, which has emerged in the last three
decades, has unmatched performance in computer vision [7].
They offer novel ways to segment SAR images. Liu et al.
proposed a SAR image segmentation method based on a reac-
tion diffusion (RD) level set evolution equation in an active
contour model [8]. Zhang et al. gave an energy functional
based on an edge-region active contour model for SAR image
segmentation [9]. Compared to other methods, the level set
method has advantages such as easy integration of image
features, robustness to noise, and natural representation of
boundaries and regions. Nevertheless, even such methods
have some limitations, namely, low segmentation accuracy
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and unstable segmentation results. In addition, the statistical
property of SAR images is often utilized to ensure the robust-
ness of derived models to the speckle noise in those methods
[8]. Research studies have proved that the precise statistical
model could significantly improve the segmentation accuracy
of statistical model-based level sets [10]. Various distribution
models, such as the K [11], gamma [12], Weibull [13] and
G distributions [14], have been used to model the statistical
property of SAR images. For the K and Gamma distribution,
modeling extremely heterogeneous regions is unsatisfactory.
The Weibull distribution is not suitable for multi-look SAR
data and its parameters estimation has a tremendous chal-
lenge. Compared to other distributions, the G0 distribution
has outstanding performance in modeling SAR images with
homogeneous, heterogeneous and extremely heterogeneous
regions [15].

The G0 distribution is characterized by the number of looks
L, scale parameter α, and roughness parameter γ . Accurate
parameters are essential to describe different regions in
a SAR image. Obviously, the accuracy in the parame-
ter estimation becomes very important. Several parame-
ter estimation methods have been proposed, such as the
method of moments (MOM) [16], [17], maximum likelihood
estimation (MLE) [11], method of log-moment estimation
(MOLC) [18]. All these estimation methods are based on the
large sample theory. In fact, processing and interpreting SAR
images is a small-sample problem. For instance, image filter-
ing requires few observations within a window. Its parameter
estimation with small samples is subject to many problems,
in particular bias, large variance, and sensitivity to deviations
from the hypothesized model. In contrast, the G0 distribution
is a heavy-tailed distribution. Therefore, dealing with SAR
data is inherently difficult because samples from the tail of
the distribution will have a strong influence on parameter
estimation. Wang [19] proposed techniques to address this
issue, although at the cost of additional computational load.

The random weighting method, introduced by Zheng [20],
is an intriguing nonparametric method for computing the
standard error, the bias or confidence intervals, and for testing
the null hypothesis with limited data [21]. One of the advan-
tages of this method is that it is better than the Bootstrap
method in small-sample cases. Wang et al. applied RWE
to the G0 distribution, and verified that RWE can estimate
better parameter values with small samples in a 3×3 sliding
window [19].

In this paper, to resolve the above problems, we focus on
the segmentation of SAR images based on G0

I distribution
modeling, RandomWeighting Estimator, and improved level-
set methods. We utilize the G0

I distribution for intensity SAR
image modeling, and Random Weighting Estimators (RWE)
for parameters estimation. Then, Entropy Processing (EP)
is used for roughness and scale parameter to improve SAR
image segmentation performance based on the improved
threshold-based level set (ITLS).

The remainder of the article is organized as follows.
In the next section, we introduce methods for SAR

image segmentation. Firstly, we review the G0 model for
speckled SAR data and its parameter estimation meth-
ods with an emphasis on the random weighting method.
In addition, EP of parameters, and ITLS are also introduced
in this section. Methodology analysis, experiment results
and the stability analysis of ITLS are given in section 3.
Section 4 draws the conclusions and summarizes the article.

II. STATISTICAL DISTRIBUTION AND
PARAMETER ESTIMATION
A. STATISTICAL MODEL FOR SAR DATA
Numerous statistical models are proposed for describing
property of SAR images, for instance, Rayleigh and exponen-
tial distribution for single-look SAR images, Gamma distri-
bution for multi-look SAR images, K distribution following
multiplicative model. However, these statistical models are
not suitable for highly heterogeneous areas. The G0 model
used in [16]–[18] and [22] can address this issue.
X and Y are two independent and unobserved random

fields. RandomfieldX follows an inverse-gamma distribution
that models the terrain backscatter and Y follows a gamma
distribution that models the speckle noise. Then, the G0 distri-
bution follows the multiplicative law Z = X ×Y [23]. In this
paper, the probability density functions (PDF) for amplitude
SAR images and intensity SAR images can be written as
follows:

fG0
A
(z, α, γ, L) =

2LL0(L − α)
γ α0(−α)0(L)

z2L−1

(γ + z2L)L−α
,

−α, γ, z > 0, L ≥ 1 (1)

fG0
I
(z, α, γ, L) =

LL0(L − α)
γ α0(−α)0(L)

zL−1

(γ + zL)L−α
,

−α, γ, z > 0, L ≥ 1 (2)

which are denoted by G0
A (α, γ,L) and G0

I (α, γ,L), respec-
tively. The r-order moments are given by

EG0
A
(Z r ) =

(γ
L

)r/2 0(−α − r/2)0(L + r/2)
0(−α)0(L)

(3)

EG0
I
(Z r ) =

(γ
L

)r 0(−α − r)0(L + r)
0(−α)0(L)

(4)

For all these formulae, α characterizes the roughness of the
SAR data and γ characterizes the scale of the SAR data, and L
is the number of looks. In this paper, L is assumed to be known
and constant for all pixels of SAR images. Fig. 1 shows the
pdf of the G0

I distribution with different parameters.

B. RANDOM WEIGHTING ESTIMATOR
The method of moments was introduced by British statisti-
cian K. Pearson at the end of the 19th century and its theory
is based on the law of large numbers. The idea behind this
estimation method is to make the r-order moments of samples
equal to the r-order moments of population. The method of
moments has successfully been employed to estimate the
parameters of the G0

A distribution [16], [17], [24], [25]. Let
Z1, . . . ,Zn be independent and identically distributed random
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FIGURE 1. Effect of parameters (number of looks L, roughness α, and
scale γ ) on the G0

I distribution.

variables with Z ∼ G0
I (α, γ,L), α < −1/2, γ > 0 and L

known. Then, the r-th sample moment is given as follows:

Z̄ rn =
1
n

n∑
i=1

Z ri (5)

The random weighting estimation of the Z̄n and Z̄ rn can be
defined as

Hn =
n∑
i=1

ViXi (6)

and

H r
n =

n∑
i=1

ViX ri (7)

where (V1,V2, . . . ,Vn) is a randomvector subject toDirichlet
distribution D(1, 1, . . . , 1), that is,

∑n
i=1 Vi = 1 and the joint

density function of (V1,V2, . . . ,Vn) is

f (V1,V2, . . . ,Vn) = 0(n) (8)

where (V1,V2, . . . ,Vn) ∈ Dn and Dn−1 = {(V1,V2, . . . ,
Vn−1) : Vi ≥ 0, (i = 1, 2, . . . , n− 1),

∑n−1
i=1 Vi ≤ 1}.

Replacing the population moments by their sample coun-
terparts, and the parameters by the corresponding estimators,
in Eq. (4) and Eq. (5), yields to the following system of
equations

Z̄n =
(
γ̂

L

)
0
(
−α̂ − 1

)
0 (L + 1)

0
(
−α̂

)
0 (L)

, −α̂ > 1 (9)

Z̄
1
2
n =

(
γ̂

L

) 1
2 0

(
−α̂ − (1/2)

)
0 (L + (1/2))

0
(
−α̂

)
0 (L)

, −α̂ > 1/2

(10)

This leads to the following equation that can be solved numer-
ically in order to obtain the moment estimator for α

Z̄n0
(
−α̂

)
0 (L)L

0
(
−α̂ − 1

)
0 (L + 1)

=
(Z̄

1
2
n )202

(
−α̂

)
02 (L)L

02
(
−α̂ − 1/2

)
02 (L + (1/2))

(11)

Z̄n and Z̄
1/2
n are replaced by their random weighting estima-

tion Hn, H
1/2
n in (11), respectively. We have

Hn0
(
−α̂

)
0 (L)L

0
(
−α̂ − 1

)
0 (L + 1)

=
(H

1
2
n )202

(
−α̂

)
02 (L)L

02
(
−α̂ − 1/2

)
02 (L + (1/2))

(12)

Therefore, the random weighting estimator α̂ for α can be
obtained via solving Eq. (12). By plugging the value of α̂ into
Eq. (13), we obtain random weighting estimator _γ

_
γ = Zn(−α̂ − 1) (13)

Practical experiments have been conducted to estimate the
α and γ parameters with G0

I distribution modeling the real
SAR image by random weighting estimator. Fig. 2(a) is an
intensity SAR image with three looks, and its yellow rect-
angular area was used as the sample to estimate parameters.
In the sample area, 25 random intensity values (small sample)
are selected to estimate the α and γ parameters. Fig. 2(b)
displays the histogram and the line of the estimated proba-
bility density function byMOM,MLE, MOLC, and RWE for
the rectangular region in Fig. 2(a). TheKolmogorov–Smirnov
(K-S, one of the criteria for evaluating the accuracy of para-
metric modeling) test was then performed between X from
the image and Y for the null hypothesis Ho‘‘both samples
come from the same distribution,’’ and the complementary
alternative hypothesis. The sample p value of the K-S test of
RWE is 0.7158, which is higher than that of other methods.
This improves RWE to have good estimation performance
with small samples.

FIGURE 2. Fitting of a SAR image region. (a) is a real SAR image, the
yellow region of (b) is the histogram of the yellow rectangular region of
(a), and the lines of (b) are the estimated probability density function by
MOM, MLE, MOLC, and RWE.

III. SAR IMAGES SEGMENTATION
A. PREPROCESSING
In order to better distinguish different regions of a SAR
image, we use Entropy Processing (EP), which deals with
the estimators of roughness and scale parameters. According
to [17], the formula of Renyi entropy is defined as

Hq(P) =
1

1− q
ln
∫
f q(x)dx (14)
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where f (x) is probability density function of a distribution.
For the G0

I distribution, the entropy equation is expressed as

Hq(G0
I ) =

1
1− q

ln
∫
∞

0
[
LL0(L − α)
γ α0(−α)0(L)

zL−1

(γ + zL)L−α
]
q

dz

(15)

where the parameter q is essential to adjust the sensitivity
of the entropy to the shape of the probability density func-
tion [17]. And we set q = 4 according to [17].

FIGURE 3. (a) is a two-region simulated SAR image (one look) and (d) is
its histogram; (b) is the estimated roughness map of (a) and (e) is its
histogram; (c) is the EP map of (a) and (f) is its histogram.

In Fig. 3, (a) is a synthetic SAR image with two regions
that the upper area follows G0

I (−1.5, 1, 1) and another is
G0
I (−4.5, 3, 1); (d) is the histogram of (a). Fig. 3(b) dis-

plays the roughness map of the original synthetic SAR image
(a) and (e) is its histogram. Fig. 3(c) is the EP map of
(a) and (f) is its histogram. Fig. 3(c) and (f) show the strong
capabilities of EP to discriminate different regions of SAR
images. Consequently, the segmentation methods based on
threshold are adequate for practical applications.

B. THE IMPROVED THRESHOLD-BASED LEVEL SET
In this section, we adopted and improved the method of the
threshold-based level set. The level set theory, formulated
by Sethian, is based on the Hamilton-Jacobi equation [26].
It states that a closed curve

⇀

φ(t) = {x|ψ(x, t) = 0}, x ∈ Rn

evolves with a velocity field (±F−→η ), where F is the speed
function and (±−→η ) is the unit vector that is perpendicular
to
−→
φ . In the discrete domain, the evolution equation is

ψk+1
= ψk

+1t(Fprop + εK )|∇ψk
| (16)

where ψk is the level set function, 1t is the time step,
the operator |∇ψk

| stands for the gradient magnitude, and
ε ∈ R [9], [26]. The velocity term comprises of a propagation
term Fprop(speed function), which minimizes a cost function,
and a regularization term based on the curvature K of ψk .
In order to achieve better regularization, a new evolution

equation for smoother segmentation results was proposed in
this section. The proposed evolution equation of level set is

given by

ψk+1
= ψk

+1t(Fprop + νδσ (ψk )|∇ψk
|

+µ(∇2ψk
− |∇ψk

|)) (17)

In formula (17), to make better use of EP map, Fprop, a new
propagation function is redefined. In [27], Fprop is computed
using the intensity matrix of SAR images, i.e., the backscatter
of the pixels

Fprop =

{
I (x, y)− Ilower , I (x, y) < Iaverage
Ihigher − I (x, y), I (x, y) ≥ Iaverage

(18)

where I (x, y) is the intensity matrix of the SAR image, and
Iaverage, the threshold of I (x, y), is computed by Iaverage =
(Ilower + Ihigher )/2. In this paper, the new Fprop is:

Fprop =

{
EP(x, y)− TEP, EP(x, y) < TEP
TEP − EP(x, y), EP(x, y) ≥ TEP

(19)

where() EP(x, y) is the value of EP matrix at (x, y), TEP is
calculated by the Otsu method utilizing the EP map. The
propagation function Fprop plays a key role in driving the
active contour toward object boundaries.

In addition, the length term νδσ (ψk )|∇ψk
| and the level

set regularization term µ(∇2ψk
− |∇ψk

|) were added in
formula (17). In the length term and regularization term,
|∇ψk

| is the curvature of the planar curve ψk , µ and ν is the
adjustment parameters and δσ (ψk ) is an approximation of the
Dirac function, expressed as

δσ (ψk ) =
1
π
.

σ

σ 2 + (ψk )2
(20)

The length term has a length smoothing or shortening effect
on the zero-level contour, which is indispensable to maintain
the regularity of the contour. The regularization term serves
to maintain the regularity of the level set function. The length
term and the regularization term are known to have a good
smoothing effect in [28].

IV. EXPERIMENTS
In this section, we first introduce the method to evaluate the
segmentation performance quantitatively. After that, we dis-
cuss the choice of segmentation method and sliding window
size by experiments on both simulated and real SAR images.
In addition, we performed experiments on both synthetic
and real SAR images using the methods in [9] and [17] and
the proposed method. Our code was implemented in Matlab
R2014a running on a laptop with an Intel i7 at 3.3GHz.

A. METHOD OF PERFORMANCE EVALUATION
To verify the performance of the proposed segmentation
methodology based on the random weighting method, both
synthetic and real intensity SAR images were used for the
experiment. The Mean Square Error (MSE), Error of Seg-
mentation (EOS) and Region Fitting Error (RFE) were used
as the evaluation criteria. The MSE were calculated as:

MSE =
sum((̂α − α)2)

Npiexls
(21)
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FIGURE 4. (a) is a synthetic SAR image, which follows the G0
I distribution,

(b) is the ground truth.

where α̂ is the estimated roughness values of each image
pixel, α is the standard value of roughness, and Npiexls is
the pixel number of the simulated SAR image. Smaller MSE
means higher estimation accuracy. EOS is expressed as:

EOS =
#(M )
#(IF)

(22)

where #(M ) is the number of mis-segmented pixels and #(IF)
is the area of targets. The RFE can be expressed as

RFE =
max(A(�g),A(�s))− A(�g ∩�s)

max(A(�g),A(�s))
(23)

where A(�g) and A(�s) is the area of the ground truth and the
segmented image. Small EOS and RFE mean good segmen-
tation results.

B. METHOD ANALYSIS
To demonstrate the performance of our algorithm, we did
method analysis on both simulated and real SAR images.
In the first place, MOM, MLE and RWE are utilized to
estimate

the roughness and scale parameters of each pixel of the
SAR images. The sizes of the sliding windows for estimation
were 9×9, 7×7, 5×5, and 3×3. After that, we combined the
different estimation methods with the threshold-based level
set (TLS) proposed [17] and the improved threshold-based
level set (ITLS) method proposed in this paper to obtain
segmentation results.

In Fig. 4, the simulated image (a) is generated from orig-
inal image (b) by adding multiplicative speckle noise with
different G0

I distributions to the background and target. The
foreground of Fig. 4(a) follows G0

I (−3, 2, 1) and its back-
ground follows G0

I (−1.5, 1, 1). Fig. 5 shows the segmen-
tation results with different level set methods and different
parameter estimation methods in different sliding windows.
In Fig. 5, the segmentation results of the same column have
the same sliding window size and the segmentation results of
the same row have the same segmentation methods. The first
three rows are the results of MOM,MLE, and RWEwith TLS
in 9×9, 7×7, 5×5, and 3×3. Although the larger window
can suppress the speckle noise to some extent, the contour

FIGURE 5. Segmentation results of Fig. 4(a) with different methods and
different sliding windows. The sliding window size and the segmentation
methods are at the bottom and right of the picture respectively.

cannot stop at the accurate objects boundaries. Because the
large window can blur boundaries when the window are cross
different regions. In contrast, the smaller window can exactly
locate the objects edges, which can be seen from the target
edge (see where the purple arrows points to). From the last
column, we can see that compared to the other two parameter
estimation methods, RWE can obtain accurate boundary with
less isolated small regions (see the green rectangle). Note that
the TLS cannot yield satisfying results without isolated small
regions. The bottom three rows display the results of combin-
ing ITLS instead of TLS. We can see that the modified level
set ITLS is robust to speckle noises (the segmentation results
have no isolated small regions) even in a small window. In the
context of the sliding window size is 3×3, although the com-
binatorial methods ofMOM, ITLS andMLE, ITLS have good
boundary location in the region where the purple arrows point
to. However, these methods cannot acquire well segmentation
results in green rectangles. In contrast, the combinatorial
method of RWE, ITLS have an amazing result. In general,
our proposed combinatorial method of RWE, ITLS achieves
better segmentation performance and obtains much smoother
contour than other two combinatorial methods.

To evaluate the accuracy performance, MSE was used
for measuring the parameter estimation accuracy of Fig. 5.
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TABLE 1. The MSE of estimated roughness parameter with different
methods and different sliding window sizes.

FIGURE 6. Overview of the MSE of estimated roughness parameter with
different methods and different sliding window size.

FIGURE 7. (a) is a real SAR image and (b) is its ground truth.

The smaller the value of MSE, the higher the accuracy of
estimation. The results of MSE is described in Table 1.
Fig. 6 shows the quantitative comparison.

Fig. 7(a) is a real SAR image: a 250×200 (pixels) image
of Wuyang from a three-look HJ-1C S-band radar image
with a spatial resolution of 5 m and Fig. 7(b) is its ground
truth. Fig. 8 shows the segmentation results with different
methods and sliding windows. The red, green, and purple
regions are named as regionA, B, andC respectively. The first
three rows have the same segmentation method (TLS) and
different estimation methods (MOM, MLE, and RWE). For
the same rows, the segmentation results with large windows
have less isolated small areas (region C), but lost many details
of object edges (region A and B). Nevertheless, the seg-
mentation results with small ones are just the opposite. This
is because, for LTS, the larger the window is, the more
noise it can suppress, but at the same time, the boundaries
will be eroded. For the same column, the results with RWE
have better segmentation with less isolated areas. The second
three rows utilized ITLS. Obviously, for small windows,
the method with ITLS and RWE not only obtain exact object
edges, but also can remove isolate small regions.

FIGURE 8. Segmentation results of Fig. 7(a) with different methods and
different sliding windows. The sliding window size and the segmentation
methods are at the bottom and right of the picture, respectively. The red,
green and purple regions are named as region A, B, and C.

FIGURE 9. Overview of the EOS and RFE of Fig. 5 and Fig. 8: (a) the line
chart of EOS of Fig. 5, (b) the line chart of RFE of Fig. 5, (c) the line chart
of EOS of Fig. 8, (d) the line chart of RFE of Fig. 8.

To clearly demonstrate the segmentation performance
about the above analysis and the results of synthetic and real
SAR images, the EOS and RFE are used to measure the
accuracy of segmentation results. Table 2 summarizes the
EOS and RFE of Fig. 5 and Fig. 8. Fig. 9 can serve as a
quantitative comparation. From Fig. 9, it is trivial to see that
the EOS, RFE of the combinatorial method of RWE, ITLS
are smaller than that of two other combinatorial methods.

From Table 2, we see that the proposed method achieves
the best results with EOS = 0.0842, RFE = 0.0657 for
simulated SAR image Fig. 4(a) and EOS = 0.1516,
RFE= 0.0868 for real SAR image Fig. 7(a).We can conclude
that our method can achieve outstanding segmentation results
for both simulated and real SAR images.

C. COMPARATIVE EXPERIMENTS
1) SYNTHETIC SAR IMAGES
Fig. 10 exhibits the segmentation effect of our method on
synthetic SAR images. Fig. 10(a1) is a low-contrast image
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TABLE 2. The EOS and RFE of segmentation results both in Fig. 5 and Fig. 8 with different estimators and different sliding window size utilizing
TLS and ITLS.

FIGURE 10. (a) the original image, (b) the ground truth, (c) and (d) the
segmentation results by [17] and [9], (e) the result with RWE and the
proposed level set method (ITLS).

TABLE 3. Results of EOS and RFE from different methods tested on
Fig. 10.

and Fig. 10(a2) is an image with weak edge. In these
images, different objects possess distinct parameters, where
L = 1, α ∈ (−1.5,−3,−4.5,−6) and γ ∈ (1, 5, 10).
Fig. 10(c)-(e) are the segmentation results by [17] and [9]
and the proposed method in this paper. We can see that the
method proposed in this paper is more robust to speckle noise
than the segmentation method in [17] from these experimen-
tal results. Beyond that, our method realized more smooth
segmentation than the method in [9]. Table 3 displays the
data comparison of the segmentation results. In Table 3,
EOS and RFE are utilized to evaluate the performance on
synthetic images.17 EOS and RFE are calculated by formulas
(22) and (23) respectively. Obviously, the EOS and RFE

of our method are 0.0171 and 0.0107 for Fig. 10(a1) and
0.0842 and 0.0657 for Fig. 10(a2) and they are the smallest of
the three methods. Altogether, we can acquire the conclusion
that our method has nice segmentation results on simulated
images with low contrast and weak edge.

FIGURE 11. (left to right) (a1) - (a3) the original image, (b1) - (b3) the
ground truth, (c1) - (c3) and (d1) - (d3) the segmentation results
by [17] and [9], (e1)- (e3) the result with RWE and ITLS (our method).

2) REAL SAR IMAGES
In this section, the proposed method was applied to
real mutilook intensity SAR images. Comparisons among
the proposed method, the methods in [9] and [17] are
shown in Fig. 11. There are three real SAR images
in Fig. 11(a1)-(c1): an image of Miyun station (256×256)
from a three-look HJ-1C S-band radar image, with a spa-
tial resolution of 5 m, an image of Wuyang (250×200)
from a three-look HJ-1C S-band radar image with a spatial
resolution of 5 m, an image of Liangzi Lake (250×200)
from a three-look HJ-1C S-band radar image with a spatial
resolution of 5 m. The second column is the segmentation
ground truth provided by an SAR image interpretation expert.
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TABLE 4. Values of RFE from different methods tested on Fig. 11.

FIGURE 12. Overview of area distance changing. (a), (b) and (c) are the
charts of Fig. 11(a1), (a2) and (a3) respectively.

The third column and fourth column display the comparison
method in [17] and [9]. The final column shows the experi-
mental results by the proposed method. In Fig. 11, we can see
that (c1) (c2) and (c3) exist lots of isolated small areas, which
verified that MOM is not suitable to estimate the parameters
of G0

I distribution used for SAR images. Table 4 displays the
values of RFE from different methods tested on Fig. 11. From
Fig. 11 and Table 4, we can conclude that our method can
achieve more accurate segmentation results with lower RFE.

D. STABILITY ANALYSIS
Stability is an extremely important evaluation performance
for the level set to segment SAR images. Stable segmentation
results mean that the method is robust to speckle noise.
However, many papers ignore the assessment of the perfor-
mance of the level set. In this section, we will discuss the
stability of our method.

Firstly, for the comparison of stability, we proposed the
area distance (DA) to evaluated the stability performance of
level sets. The DA is computed by

Da(i) =

{
Ai+1 − Ai, i < Imax

Da(Imax − 2), i = Imax
(24)

where Da(i) is the i-th Da value, Imax is the maximum num-
ber of iterations, Ai is the area of the segmented region of
the i-th division. We compared the stability of the level set
proposed in [9] and ITLS. In Fig. 12, (a), (b) and (c) are
the charts of area distance of level set evolution in [9] and
ITLS corresponding to Fig. 11(a1), (a2) and (a3). Imax is
set as 100. Fig. 12 presents the change in the area of the
partitioned region between each iteration of the evolution.
Evidently, at the end of the evolution of the contour, the area
of the segmented region of our method tends to be stable,
and the method of [9] appears a lot of fluctuations. This also
shows that our method can achieve a more stable segmenta-
tion result. Furthermore, our method can achieve more stable
splitting results compared to the method in [9].

V. CONCLUSIONS
In this paper, we introduced a precise and stable segmentation
methodology based on the Random Weighting Estimator,
entropy processing of SAR data modeled by G0

I distribu-
tion and the improved threshold-based level set segmentation
method. On synthetic SAR images, for small sliding window
size, we verified that RWE has a higher estimated accuracy
compared to MOM and MLE. The improved threshold-based
level set segmentation method achieved more stable SAR
image segmentation. The segmentation results on both sim-
ulated and real SAR images confirm that our segmentation
methodology outperforms others.
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