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ABSTRACT According to the prior research, a deterministic parallel test pattern generation (TPG) engine
was realized and generated the same test pattern set the serial automatic test pattern generation does during
acceleration. However, for retaining the determinism, tremendous idle time is observed when different tasks
(either dependent or independent) were synchronized among threads. Therefore, a new deterministic parallel
TPG engine called P4-TPG is developed and incorporates preemptive, proactive, and preventive schedulings
to further save/reuse the idle time during acceleration. In P4-TPG, preemptive scheduling first modifies the
thread flow and brings forward, as many latter tasks as possible, to the idle time. Next, proactive scheduling
inserts prospective TPG tasks of unprocessed faults to the remaining idle time and increases the overall
utilization of threads. Last, preventive scheduling dynamically skips faults incompatible with the working
pattern per thread and shortens the fault list during fault compaction. The experimental results show that P4-
TPG not only generates the same test pattern set as the serial TPG does but also achieves averagely 10.36×
speedups, is 96.6% better than the prior research, using 12 threads on 18 benchmark circuits.

INDEX TERMS Parallel ATPG, test inflation, deterministic, dynamic compaction.

I. INTRODUCTION
Continued growth in the size and complexity of very-large-
scale integration (VLSI) systems is a fueling demand for
faster automatic test pattern generation (ATPG) for testing.
Conventional ATPG algorithms performing on a single pro-
cessor now run into a bottleneck, incapable of efficiently
generating tests required for modern VLSI designs. The rapid
development of multi-core processors has opened the door
of parallel computing as resolution for scaled designs. The
communication protocol determined the classification of par-
allel computing architectures as shared-memory systems and
message-passing systems. Both of these parallel computing
systems provide additional computing power for ATPG.

Parallel ATPG can be classified into non-deterministic and
deterministic ones. A non-deterministic parallel ATPG does
not need the consistency after test pattern generation sets.
Most of previous parallel ATPG algorithms [1]–[13] belong
to this category and parallelize three core operations inATPG,
which are test pattern generation (TPG), fault compaction
(FC) and fault simulation (FS), for achieving better speed-up.
However, a non-deterministic parallel ATPG frequently runs

into the problem of test inflation caused by race condition
of multiple threads. According to [14], a 5.9% increase in
pattern count can lead to a 100% increase in test cost per unit
(under the worst-case scenario), not to mention the additional
time and related pre-silicon effort. These aforementioned
works remain suffering from test inflation; none of them can
guarantee zero inflation on test pattern sets even if many of
them have adopted different respective techniques to avoid
repeated detection of the same faults.

Unlike non-deterministic ones, deterministic parallel
ATPGs always generate the same test pattern set regardless of
the processing time and the number of threads. Yeh et al. [15]
proposed a deterministic parallel TPG, which is termed cir-
cular pipeline processing based parallel TPG (CPP-TPG).
CPP-TPG achieves a near linear speed-up (with respect to the
thread count) and produces the same test pattern set regardless
of required computing resources. However, this method still
results in inflation proportional to the number of threads
on final test pattern sets. The main cause comes from that
CPP-TPG employs static pattern compaction in a circular
fashion to avoid the race condition of multiple threads, but
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FIGURE 1. Ordering tasks in the serial ATPG and SDC-TPG [16].
(a) serial ATPG. (b) SDC-TPG.

produces a different compaction order, not in concordance
with the one in the serial ATPG. Extra test patterns are thus
generated.

To further guarantee the same compaction order as the
serial ATPG does, Chang et al. [16] imposed dynamic fault
compaction and proposed the corresponding zero-inflation
parallel test pattern generator named SDC-TPG. More
specifically, for maintaining determinism with a consis-
tent compaction order, SDC-TPG utilizes a synchroniza-
tion mechanism to consider dependencies of task execution
(i.e. when to perform TPG, FC or FS of faults). As a result,
regardless of computing resource in use, SDC-TPG always
compacts faults in the same order as the serial ATPG does
under dynamic fault compaction and thus produces the same
test pattern set.

Fig. 1 shows two orders of tasks for the serial ATPG
and SDC-TPG. P, T and f denote a pattern, a thread and
a target fault, respectively. Gary boxes denote a target fault
that can be detected in one task (either TPG or FC), whereas
white ones denote those that fail to detect target faults in the
corresponding tasks. In Fig. 1(a), all tasks (either TPG or FC)
are performed serially until three patterns are successfully
generated. As one can see, the overall runtime is the sum
of the time on TPG and FC processes related to these three
patterns. Fig. 1(b) shows the related tasks in SDC-TPG of
three patterns (P1, P2 and P3) with two threads (T1 and T2).
T1 takes charge of the related tasks for P1 and P3 while
T2 is responsible for P2. As one can see, tasks in each pattern
follows the exactly same order as the one in the serial ATPG.
Moreover, tasks in one thread can start only if all dependent
tasks in the other thread finish. For example, TPG(f2) in T2
executes after FC(f2) in T1 and FC(f3) in T2 executes after
FC(f3) in T1. The similar situation happens between P2 in T2
and P3 in T1. As a result, SDC-TPG can effectively shorten
the total runtime and generate the same result (i.e. the same
test pattern set) as the serial ATPG does.
However, for imposing such synchronization for dynamic

fault compaction in SDC-TPG, much idle time needs to
be paid and thus the computing resources are wasted.

Fig. 2 shows two cases where the idle time can be further
saved or reused in SDC-TPG. Fig. 2(a) shows the case of
saving the idle time. For example, in SDC-TPG, the start
of FC(f3) in T2 waiting for the finish of FC(f3) in T1 is
completely not necessary. To ensure the correctness, FC(f3)
in T2 can start early, but needs to commit itself after the finish
of FC(f3) in T1 once it succeeds. If it fails to detect the target
fault, the next task on the same thread can start immediately
without any problem. Fig. 2(b) shows the case of reusing the
idle time. If much idle time among tasks is saved from starting
latter tasks earlier in SDC-TPC, the remaining idle time can
be further reused for TPG task of latter faults. In Fig 2(b),
the idle time on T2 between FC(f3) and FC(f5) can be used for
the next TPG task (i.e. TPG(f5)). Once T1 needs to execute
TPG(f5) for P3, only related information is restored in T1.
Therefore, the total runtime of SDC-TPG is reduced again.
According to the two cases mentioned above as the moti-

vation, we proposed a deterministic parallel test pattern gen-
eration engine called P4-TPG that includes three different
scheduling techniques (preemptive, proactive and preventive
schedulings) for acceleration. For preemptive scheduling, a
novel thread flow is developed to bring forward executions
of TPG/FC early as many as possible for saving unnecessary
idle time. For proactive scheduling, pattern pre-generation
is invoked to reuse the unavoidable idle time in parallel
ATPG (after preemptive scheduling) and perform TPG of
latter (undetected) faults. For preventive scheduling, a novel
thread-based skipping-fault technique is applied to rapidly
shrink the size of the compaction list for the target faults
on one thread. The above three scheduling techniques are
implemented onto an ATPG engine (PODEM-X)1 [17] and
work correctly as a deterministic parallel ATPG to produce
the same test pattern set as the serial ATPG does, mean-
while accelerating runtime. According to our experiments,
P4-TPG successfully improves the speed-ups of SDC-TPG
by averagely 76.0%, 87.2%, 94.7% and 96.6%with 1, 4, 8 and
12 threads, respectively, on 18 benchmark circuits.
The remainder of this paper is organized as follows:

Section II presents the background information, including the
fundamentals of ATPG and the problem of SDC-TPG as our
motivation. Section III introduces the overall flow of P4-TPG
first. Later preemptive, proactive and preventive scheduling
techniques are detailed, respectively. Experimental results
are presented in Section IV. Finally, conclusions are drawn
in Section V.

II. BACKGROUND OF DETERMINISTIC PARALLEL ATPG
In this section, we review the background information per-
taining to deterministic parallel ATPG. The primary concept
of automatic test pattern generation (ATPG), as well as
its typical flow for its serial version, is first described. Next,
we briefly explain the role of fault compaction in the context
of the serial ATPG. Meanwhile, the execution order of three
primary tasks (i.e. TPG, FC and FS) is also used to illustrate

1PODEM-X is re-implemented as an in-house tool.
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FIGURE 2. Saving/reusing idle time from early execution of later tasks in SDC-TPG by rescheduling. (a) Saving idle time.
(b) Reusing idle time.

FIGURE 3. Example of a single stuck-at fault.

how compaction proceeds on faults during test generation.
Finally, we introduce SDC-TPG [16], the latest work of deter-
ministic parallel ATPG, and detail how it parallelizes ATPG
with fault compaction to achieve determinism in Section II-D.

A. AUTOMATIC TEST PATTERN GENERATION
Imperfect manufacturing process may lead to defects in dif-
ferent ways of forms, resulting in chips that could potentially
malfunction. The objective behind test generation is to pro-
duce a set of test patterns capable of uncovering any defect in
every single chip. However, generating test patterns against
all possible defects that could potentially occur during the
manufacturing process is expensive. Automatic test pattern
generator (ATPG) employ abstract representations of defects
referred to as faults. One popular fault model is the single
stuck-at fault, in which it is assumed that only one fault
is present in the circuit under test, in order to simplify the
problem of ATPG.

In the single stuck-at fault model, a fault simply denotes
that a circuit node is tied to logic 1 or logic 0. Fig. 3 shows a
circuit with a single stuck-at fault, in which signal f is tied to
logic 1 (f /1) under the test mode. A logic 0 must be deduced
under the normal mode on node f from the primary inputs
of the circuit to make a difference between the fault-free
(or good) circuit and the circuit with a stuck-at fault.

In Fig. 3, since g2 is an OR gate, only {c=0,d=0} can
produce 0 on the output (f) under the normal mode, differen-
tiating itself with stuck-at 1 under the test mode. Moreover,
in order to observe the fault effect on the output g, a logic 1
must be enforced on signal e, such that fault f/1 (if it exists)
can be propagated. {a=1,b=1} is deduced accordingly from
{e=1}. As a result, 1100 on the inputs is a test pattern
generated for the stuck-at fault (f/1) and makes a difference
on the output between the good and faulty circuits. Automatic
test pattern generation (ATPG) aims at generating sufficient
input patterns as tests to detect every possible fault in the
circuit under test. For example, faults such as c/1, d/1, and
g/0 also take turn to be targeted by ATPG.
Note that, some of the faults in the circuit can be logically

equivalent, inferring that no test can be derived by which to
distinguish between them. Thus, fault collapsing is often used
to identify equivalent faults a prior in order to reduce the
number of faults that must be targeted [18]–[20]. Therefore,
in practical, ATPG is concerned with the generation of test
patterns only for faults in the collapsed fault list.

B. FAULT COMPACTION IN ATPG
Since generating a sufficient but small test pattern set for
the circuit under test is the objective of automatic test pattern
generation (ATPG), in addition to fault collapsing, several
techniques like pattern compaction and fault compaction
are commonly incorporated. Pattern compaction is a static
approach for reducing test counts and merges compatible pat-
terns (before filling unspecified bits) after they are generated
for respective faults. On the other hand, fault compaction
takes a dynamic and incremental way to detect more faults
by assigning the remaining unspecified bits in each pattern
generated for one target fault in the list. Comparing to pat-
tern compaction, fault compaction can typically produce test
pattern sets of smaller sizes and thus is adopted in many
prevailing ATPGs [21]–[23].
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FIGURE 4. Flow of serial ATPG with fault compaction.

In fault compaction, a fault can be classified into pri-
mary or secondary. One test for the primary fault is modified
by subsequent secondary faults if such test after being gen-
erated still withholds certain unspecified bits (i.e. X’s). The
specified bits of the current test become constraints during the
subsequent modification. A test for the next secondary fault
can only be derived when it satisfies all existing constraints.
Imposing constraints on the secondary faults limits the search
space for test solutions and speeds up the ATPG process.
If some bits for the secondary fault are newly specified,
more constraints will be added to the next test modifica-
tion. The search repeats until all remaining undetected faults
are exhausted; in addition to the primary fault, such test
detects the secondary faults as many as possible. As a result,
ATPG with fault compaction effectively produce a sufficient
but small test pattern set for the circuit under test.

C. TASK ORDER IN SERIAL ATPG
To clarify how fault compaction works in ATPG, we firstly
introduce the typical flow of the serial ATPG and the exe-
cution order of its primary tasks. Fig. 4 shows such flow of
serial ATPGwith three phases containing three primary tasks:
(A) test pattern generation (TPG), (B) fault compaction (FC)
and (C) fault simulation (FS). In Phase A, a primary fault fp is
picked from the collapsed fault list, and is used as the target
for pattern generation. Once fp is detected by a generated
pattern pp, TPG stops and FC starts. Otherwise, it picks the
next primary fault for TPG. In Phase B, fault compaction uses
pp as the basis to form constraints and checks if any secondary
fault fs could be detected by assigning more unspecified bits
in pp. After exhausting all undetected faults in FC, remaining
unspecified bits (if any) in such pattern will be filled either 0,
1 or randomly (called X-filling) in Phase C. After X-filling,
fault simulation (FS) helps to drop more undetected faults
and completes one run of ATPG. A new run of ATPG will
be invoked if the fault list is not empty.

Fig. 5 shows an example of the execution of multiple runs
of ATPG with three primary tasks in serial TPG. f, R and P
denote a target fault, an ATPG run and a pattern, respectively.

Moreover, TPG(f), FC(f) or FS(f) are the respective tasks
targeting fault f where a white (gray) box is referred as such
task ending up with failure (success). In the first run R1,
TPG generates a pattern, P1, for target fault f1 and FC
detects f3, f6 and f10 in Phase B. In the second run R2,
TPG picks f2 as the primary fault from the remaining fault
list and generates P2. Under constraints imposed by P2,
FC detects more faults including f4 and f8 in P2.
In the third run R3, TPG targets f5 to generate P3 and
FC detects f7 in P3. Similarly, in the fourth run R4, f9, f11
and f13 are further detected by P4. Once a fixed number of
patterns (i.e. 4 in this example) are collected, fault simulation
(FS) is invoked as shown in the fifth run R5 and performed
for dropping more faults (i.e. f14 and f16). After R5, fault f12
and f15 remains in the fault list. In the last run R6, we fail to
generate more patterns for f12 and f15 since these two faults
are untestable. Finally, serial ATPG terminates and completes
the whole process. Note that, in each run, only the remaining
faults from the previous run need to be processed in the next
run. For example, f2, f4, f5, f7 to f9 and f11 to f16 left by R1
will be targeted in either TPG or FC in R2.

D. SYNCHRONIZED DYNAMIC COMPACTION TEST
PATTERN GENERATION (SDC-TPG)
To ensure consistency of test pattern generation, a determin-
istic parallel TPG with dynamic fault compaction is proposed
in [16]. The key idea of SDC-TPG is to ensure the same
order of tasks as the serial ATPG does during parallelization.
Fig. 6 shows an example of SDC-TPG on 4 threads with a
time perspective where R1 to R4 in Fig. 5 are concurrently
assigned to different threads. Note that f, T and P represent
a target fault, a thread and a pattern, respectively. When
generating P1, T1 does not idle, regardless of whether the
task is confirmed to be a successful case (gray box) or a
failing case (white box). Therefore, T1 will pick a fault for the
next task until all undetected faults in the list are exhausted.
As a result, T1 generated P1 to detect the primary fault f1
and three secondary faults (f3, f6 and f10), For P2, T2 idled
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FIGURE 5. Example of a serial ATPG with fault compaction.

FIGURE 6. Example of executing SDC-TPG by four threads.

at the beginning until FC(f2) was confirmed as a failing task
on T1. After f2 cannot be detected by P1, T2 picked fault f2
as the target and performed TPG on f2. Unlike T1, T2 needed
to wait until f4 was committed as a FC failure on T1 and then
FC(f4) succeeded on T2. Similarly, T2 performed FC(f5) right
after FC(f5) failed on T1. To give another example, T2 idled
again after FC(f7) was shown as a failing case. After FC(f8)
was confirmed as failure on T1, T2 could start to perform
FC(f8). As a result, T2 generated P2 to detect faults (f2, f4,
and f8). Following the strategy of SDC-TPG, T3 generated
P3 to detect f5 and f7; T4 generated P4 to detect f9, f11 and f13.
Among four threads, only the thread invoked first (i.e. T1)

did not idle at the beginning of its execution. For the other

threads (i.e. T2, T3 and T4), TPG in the respective execution
can start until a fault is determined undetected by FC in the
previous thread. For example, T3 started to invoke TPG(f5)
after FC(f5) failed on T2. T4 started after FC(f9) failed on T3.
As one can see in Fig. 6, the idle time to invoke TPG on
the latter threads became longer. Moreover, longer idle time
also appeared in fault compaction (FC) for the latter threads.
For example, FC(f4) on T2, FC(f9) on T3 and FC(f11) on T4
needed to idle until the failure of corresponding tasks on
T1, T2 and T3, appeared, respectively. Therefore, although
SDC-TPG ensures the consistency of results after test pat-
tern generation, much waste of computing resources during
the idle time becomes a big obstacle in achieving better

6820 VOLUME 7, 2019



L. Y.-Z. Lin et al.: P4-TPG: Accelerating Deterministic Parallel TPG

acceleration, motivating us to develop a new determinis-
tic parallel ATPG engine named P4-TPG with three novel
scheduling techniques.

III. P4-TPG: PREEMPTIVE, PROACTIVE AND PREVENTIVE
SCHEDULING IN Parallel TPG
This section is dedicated to the proposed deterministic par-
allel ATPG engine P4-TPG and provides the details about
the three novel scheduling techniques embedded in P4-TPG.
First, the thread flows of SDC-TPG and P4-TPG are com-
pared and contrast where three scheduling techniques are
annotated in Fig. 7. Second, preemptive scheduling is elab-
orated and includes fault commitment checking (FCC) and
concurrent task interruption (CTI) to save idle time. Third,
proactive scheduling uses pattern pre-generation (PPG) to
reuse the remaining idle time left by preemptive schedul-
ing. Last, preventive scheduling invokes fault polarity check
(FPC) and backward unpropagatale fault removal (BUFR)
to dynamically skip a large number of faults for acceleration.

A. THREAD FLOW OF P4-TPG
As SDC-TPG is described in section II-D, its thread flow
for one pass of ATPG is shown in Fig. 7(a). One thread
picks an undetected fault, ft , from the fault list at the begin-
ning. If the fault list is not empty, the thread picks the first
undetected fault as the target ft . Then, test pattern generation
TPG(ft ) or fault compaction FC(ft ) will be followed. The
result of TPG(ft ) (or FC(ft )) is either a success or a failure.
If TPG(ft ) (or FC(ft )) succeeds, it is regarded as a successful
task. Otherwise, such TPG(ft ) (or FC(ft )) is regarded as a
failing task. Whether TPG/FC succeeds or not, the thread
returns to the waiting mode for the next fault. One pass of
ATPG in SDC-TPG stops when all undetected faults in the list
are processed; then, a test pattern is successfully generated.
As you can see, each thread needs to pick a fault during either
TPG or FC, fault dependence makes much idle time appear as
Fig. 6 shows. Although SDC-TPG ensures determinism and
achieves acceleration, tremendous idle time is retained before
a thread performs TPG or FC on a target fault; consequently,
the computing resource becomes thriftless during ATPG.

The proposed P4-TPG adopts a similar thread flow for
one pass of ATPG as SDC-TPG does but performs more
jobs. For dealing with the idle time in SDC-TPG, three
novel techniques (i.e. preemptive, proactive and preventive
schedulings) are developed and integrated intoP4-TPG. First,
in P4-TPG, preemptive scheduling is applied on each thread
and steals idle time to perform the corresponding TPG/FC
task of the target fault as early as possible. Once the fault
fails to be detected by the previous pattern on other thread,
the successful TPG/FC result on this thread can be committed
immediately. So that the idle time on each thread is not
wasted. Second, if no task can be preemptively executed on
one thread, proactive scheduling re-utilizes the remaining
idle time and invokes pattern pre-generation (PPG) on the
next target fault. The PPG result is saved beforehand and
will be restored as the TPG task is invoked by the thread

FIGURE 7. Thread flows for one pass of ATPG in SDC-TPG and P4-TPG.
(a) SDC-TPG. (b) P4-TPG.

later. Third, considering the constraints enforced by the base
pattern generated during the TPG/FC process, some of the
remaining undetected faults in the list will become incompat-
ible. To avoid performing FC in vain, preventive scheduling
checks the legitimacy of the picked fault and eliminates those
that disagree with the current pattern. As a result, a new
thread flow shown as Fig. 7(b) is developed accordingly for
effectively producing the same test pattern set but shortening
overall execution time of P4-TPG.

B. PREEMPTIVE SCHEDULING IN P4-TPG
To save trenmendous idle time caused by task dependence
between threads, preemptive scheduling is proposed and
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FIGURE 8. Example of preemptive scheduling. (a) Fault commitment checking (FCC). (b) Concurrent task interruption (CTI).

brings forward execution of TPG/FC tasks as early as pos-
sible in ATPG but waits for committing results only if nec-
essary. Fig. 8 shows the result after applying preemptive
scheduling to the example in Fig. 6. Note that since some
tasks are brought forward, some augmented tasks are also
generated. For example, thread T3 performs the following
extra augmented tasks, TPG(f3), TPG(f4), FC(f6), FC(f8) and
FC(f10), during the pass of ATPG but also moves forward
TPG(f5) and FC(f9). Similar phenomenon occurs on other
threads (T2 and T4), too.

Due to these augmented tasks, two particular components,
(1) fault commitment checking (FCC) and (2) concurrent
task interruption (CTI) are also participated in preemptive
scheduling to help retain determinism but meanwhile sus-
pend useless computation. For retaining determinism, fault
commitment checking (FCC) ensures the same detection
order of all faults in P4-TPG for generating the same test

pattern set. For avoiding useless computation, concurrent
task interruption (CTI) is responsible for early terminating
the corresponding tasks whose target faults are detected by
the tasks in the previous patterns on other threads and thus
no more needed. To further clarify details of FCC and CTI,
Fig. 8 illustrates the results after applying (1) fault commit-
ment checking (FCC) and (2) concurrent task interruption
(CTI) to the example shown in Fig. 6 by 4 threads where T ,
P and f represent a thread, a pattern and a fault, respectively.

1) FAULT COMMITMENT CHECKING (FCC)
To guarantee determinism in parallel ATPG, the detection
order of a fault is the key. In P4-TPG, before any fault that
can be declared as detected by one pattern running on thread,
fault commitment checking (FCC) needs to be invoked and
checks task dependency of all other threads running for
preceding patterns (those with the smaller pattern indexes).
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According to the proposed thread flow in Fig. 7(b), once
a fault can be detected by FC on the basis of the current
pattern, the running thread will then invoke FCC to check the
commitment condition. That is, FCC on thread T checks the
status of the same target fault f on any other thread T ′ who has
a smaller pattern index than T has. If all threads T ′ running for
preceding patterns fail to detect fault f , the current TPG/FC
task on thread T can commit the result and is regarded as a
successful & committed case of fault detection.

Fig. 8(a) shows the complete result after applying FCC
to the SDC-TPG example in Fig. 6. Most of TPG/FC tasks
of one fault on one thread do not overlap with the tasks of
the same fault on other threads and thus FCC does nothing.
However, only 10 particular FCC events highlighted by the
arrows involves task dependency among threads as shown
in Fig. 8(a) and can be classified into four cases: (1) TPG
waits and then commits, (2) TPG waits but does not commit,
(3) FC waits and then commits, (4) FC waits but does not
commit. As an example for case (1), fault f2 is detected
by pattern P2 after TPG(f2) on thread T2. Later, T2 invokes
FCC to commit f2. However, T2 has to wait and can only
commit the current P2 until FC(f2) on T1 fails. For case (2),
TPG(f4), TPG(f5) and TPG(f6) on thread T4 are all examples.
Although all these TPG tasks succeed, the corresponding
results cannot be committed because the target faults are
also detected by preceding patterns. For example, TPG(f5)
cannot commit the current pattern P4 on thread T4 because
TPG(f5) in the preceding pattern P3 on T3 detects f5. FC(f7)
on thread T3 is an example for case (3). After FC(f7) fails
on T2, FC(f7) on T3 can be committed. Similar but with the
opposite result for case (4), after T3 waits, FC(f8) still cannot
be committed because FC(f8) on T2 commits at the end.
In summary, FCC ensures the same detection order of faults
as that from the serial ATPG and thus retain determinism in
preemptive scheduling.

2) CONCURRENT TASK INTERRUPTION (CTI)
As mentioned previously, preemptive scheduling brings for-
ward execution of possible TPG/FC tasks on one thread
and relies upon FCC for committing the detection of faults.
Moreover, once a TPG/FC task completes the commitment
of fault detection on one thread, all running TPG/FC tasks
on the other threads may also be terminated earlier since
they are generating succeeding patterns (i.e. patterns with
bigger index numbers) to the committed one. Accordingly,
concurrent task interruption (CTI) is proposed and suspends
straightway those useless computation of the same faults on
the other threads. That is, if a thread (T ) performs a TPG/FC
task on a fault (f ) successfully and commits the detection of
f simultaneously, then T invokes CTI to interrupt tasks of the
same fault on all the other threads that deal with succeeding
patterns.

Fig. 8(b) shows the example again after applying CTI
and three different types of cases can be found: (1) TPG
interrupts TPG, (2) FC interrupts TPG, (3) FC interrupts FC.
As an example for case (1), f5 is detected by TPG on T3.

Later, T3 invokes CTI to interrupt T4, which runs the TPG
task on the same fault. Second, for case (2), T2 interrupts
TPG(f4) on T3 once FC(f4) commits the detection of f4 on T2.
Similarly, T3 interrupts TPG(f7) on T4 after FC(f7) commits
the detection of f7 on T3. Last, FC(f6) and FC(f10) on T1 are
examples for case (3). Once FC(f6) commits the detection
of f6 by P1, T1 interrupts the task for the same fault on T2.
Similarly, FC(f10) commits the detection of f10 by P1,
CTI suspends the corresponding FC(f10)’s on two other
threads (i.e. T3 and T4). In summary, CTI suspends a number
of redundant tasks and shortens computational time in pre-
emptive scheduling.

Note that preemptive scheduling incorporates FCC for
ensuring the detection order of faults as the serial ATPG
and also utilizes CTI to interrupt useless tasks for shortening
computational time. According to our experimental results,
P4-TPG with preemptive scheduling can improve the speed-
ups of SDC-TPG2 by averagely 10.2%, 13.4% and 13.9%
using 4, 8 and 12 threads, respectively, on 18 benchmark
circuits.

C. PROACTIVE SCHEDULING IN P4-TPG
After applying preemptive scheduling, different numbers
of tasks will be brought earlier on the threads. However,
much idle time still exists in P4-TPG as shown in Fig. 8(b).
To further shorten the overall runtime of ATPG, the remaining
idle time can be further reused by pattern pre-generation
(PPG). As a result, PPG brings forward the latter TPG tasks
to these idle time but does not change the commitment order
of fault detection, retaining the determinism as the serial
ATPG does.

Before detailing PPG, let us revisit the example in Fig 5.
From R1 to R5, f12 is processed by fault compaction (FC)
4 times and by fault simulation (FS) 1 time. Until TPG(f12)
finishes on R6, fault f12 can be confirmed as untestable.
Similarly, the same phenomenon can be observed on fault f15.
Therefore, if f12 and f15 are determined as untestable earlier,
much futile computation can be saved. As a result, the execu-
tion time can be further reduced whereas the final test pattern
set remains the same.

In the following, the mechanism of pattern pre-generation
(PPG) is detailed. As one thread enters the idle mode, it will
invoke PPG for an undetected fault in the list as the target.
After PPG, two different results may yield: (1) if the target
fault is detected by PPG, such fault will be reserved in the
list and the generated pattern will be stored in advance for the
possible access by a future TPG task executed on a certain
thread; (2) if the target fault is not detected by PPG, such fault
is known untestable and thus can be safely removed from the
fault list. Either of these two results help ATPG reduce the
total runtime.

Fig. 9 shows an example for applying proactive scheduling
in P4-TPG where possible PPG tasks will be invoked when-
ever threads are idle. For example, long idle time appears on

2SDC-TPG is an in-house re-implementation according to [16].
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FIGURE 9. Example of proactive scheduling in P4-TPG.

thread T2 before FC(f3) starts. Therefore, proactive schedul-
ing inserts PPG(f6) and PPG(f8) during such idle time and
check if these faults can be detected or not and stored
the corresponding patterns if they are successful. Similarly,
thread T3 invokes PPG(f6) and PPG(f9) at the first idle time
and inserts PPG(f13) and PPG(f15) at the second idle time.
In particular, given that f12 and f15 are untestable faults, after
PPG(f12) and PPG(f15) fail, f12 and f15 are also removed from
the fault list. Accordingly, all FC(f12) and FC(f15) tasks dis-
appear on all threads, shortening the total runtime of ATPG.

As a matter of fact, proactive scheduling has a side effect.
That is, although a target fault can be pre-computed by PPG
after proactive scheduling, a restoration task, R, needs to be
invoked to replace the original TPG task for such fault. How-
ever, empirically, one R task takes about 100X smaller time
than one TPG/FC task does and thus is relatively negligible.
Therefore, the advantages of proactive scheduling inP4-TPG
can be summarized into: (1) reusing idle time for TPG and
(2) safely removing untestable faults earlier. According to
our experimental results, applying proactive scheduling can
improve the speed-ups of P4-TPG by averagely 1.6%, 3.8%
and 5.7% using 4, 8 and 12 threads, respectively, on 18 bench-
mark circuits.

D. PREVENTIVE SCHEDULING IN P4-TPG
After applying preemptive and proactive scheduling,
P4-TPG achieves determinism and improves SDC-TPG.
However, in pursuit of better performance, preventive
scheduling is developed and utilizes the idea of skipping
redundant faults under a dynamic environment during the
pattern generation to accelerate P4-TPG. In fact, preven-
tive scheduling consists of two stages, (1) fault polar-
ity check (FPC) and (2) backward-unpropagatable fault
removal (BPFR), and avoids futile computation during fault
compaction.

In the following, we will explain how two stages work
for examining the status of fault and dynamically eliminating

FIGURE 10. Two techniques of preventive scheduling. (a) Fault polarity
check (FPC). (b) Backward-unpropagatable fault removal (BUFR).

redundancy during the development of a pattern in preventive
scheduling.

1) FAULT-POLARITY CHECK (FPC)
In stage 1, FPC checks if or not the polarity of the picked
secondary fault φs.f . is compatible to the net assignment (φn)
during fault compaction. If φs.f . is equal to φn, then FPC
skips such fault and picks the next secondary fault. On the
other hand, the secondary fault is compatible with the current
pattern and can be used as a target for fault compaction
(FC). Until all undetected faults in the list are examined, fault
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FIGURE 11. Example of preventive scheduling in P4-TPG.

compaction (FC) in the pass of ATPG finishes and a test
pattern is generated.
FPC includes two different cases of polarity comparison:
• (1) φs.f . = φn: the secondary fault f requires the oppo-
site assignment (e.g. a stuck-at-1 fault requests a logic 0)
on the net and conflicts with the current one; thus,
f is dynamically redundant and can be skipped.

• (2) φs.f . 6= φn or φn = X : the secondary fault f
requires the assignment on the net same as the current
one or the current net has not yet assigned with a value;
thus, f could be compacted by FC with the current
pattern.

Fig. 10(a) shows an example for FPC where f , g, I , O
and n denote a fault, a gate, an input, an output and a net,
respectively. Assume that the current pattern is 00X0X after
applying TPG on the primary fault f7 (stuck-at-0). The logic
value of n1, n3 andO1 are assigned 1whereas n2 is assigned 0;
n4 and O2 remain X. For case (1), the secondary faults,
f3 (stuck-at-0) and f9 (stuck-at-1), with the same polarity as n2
(logic-0) andO1 (logic-1), respectively, will request the oppo-
site logic values on n2 andO1, which are impossibly satisfied,
are thus eliminated. The remaining undetected faults belong
to case (2) and can be picked for future fault compaction. Note
that since the pattern and the net assignment change after each
round of fault compaction, FPC may be performed again on
those nets with new value assignments.

2) BACKWARD-UNPROPAGATABLE FAULT REMOVAL (BUFR)
In stage 2, BUFR is developed and more aggressively skips
unnecessary tasks in P4-TPG for achieving better acceler-
ation. Unlike conventional forward propagation, which the
fault effect is propagated through one or more paths towards
a primary output of the circuit, BUFR is a backward search
and deletes faults that reside along the unpropagatable paths
from the undetected list.

BUFR starts from a node and applies the backward search
to remove faults until two stopping criterion (hitting either
(1) a branching end node or (2) a PI node) are met. Fig 10(b)
presents an example for BUFR where f , g, I , O, SP and EP
denote a fault, a gate, an input, an output, a start node and an
end node, respectively. First, BUFR finds that the secondary
fault, f1, on the output of gate g6 cannot be detected by FC
because the other pin of gate g7 is assigned with a controlling
value 0. Therefore, no other faults propagating through gate
g6 can be detected onO2. Accordingly, BUFR applies depth-
first search (DFS), starting from the output of gate g6 and
backward removes all faults in the fan-in cone. BUFR will
stop searching and removing faults until reaching the end
point EP1, which belongs to condition (1). This is because
fault f4 may have an alternative to be propagated to PO O1
through a different path (i.e. g3 → sub-circuit1 → O1).
EP4 also belongs to case (1) and fault f11 will not be removed
from the list since f11 can avoid gate g7 and propagates toward
O3 through the path (sub-circuit2→ O3).

For case (2), BUFR will stop searching at EP2 and EP3
since I3 and I4 are PIs of the circuit under test and no
more fault can be found. As a result, seven faults (includ-
ing f1, f2, f3, f5, f6, f7 and f8) are removed from the unde-
tected list since these faults can impossibly be propagated
through gate g7 and thus become untestable under this
circumstance.

Since BUFR removes numerous undetected faults by
DFS until reaching a stopping criterion, the corresponding FC
tasks related to these removed faults will disappear during the
pass of ATPG. That is to say, BUFR effectively shortens the
runtime of P4-TPG (in particular, during the first few passes
of ATPG) and achieves better acceleration. Fig. 11 shows
an example of applying preventive scheduling in P4-TPG.
Many faults are removed according to the current pattern of
each thread. For example, based on P1, f9 and f11 cannot
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FIGURE 12. The number of secondary fault on four benchmarks.

be activated or propagated to the PO. Therefore, these faults
are removed from fault list for T1. Similarly, T2, T3 and T4
can skip faults that are incompatible with the corresponding
pattern, respectively.

Fig. 12 compares the number of faults remaining in the
undetected list of each pattern after using FPC and BUFR
in P4-TPG. Our experimental result clearly indicates that
FPC and BUFR indeed reduce a large number of secondary
faults on those patterns with relatively smaller indexes.
Before performing the first round of fault simulation (FS)
(as 32 patterns are accumulated), the reduction percentage
of secondary faults are 57.8%, 65.7%, 66.2% and 65.5% on
circuit b19, pci_bridge32, bench4 and vga_enh, respectively.
As a result, the total runtime of ATPG are significantly
reduced. More results will be presented in the experimental
section.

IV. EXPERIMENTAL RESULTS
P4-TPG is implemented in C/C++with Pthreads and runs on
a Linux machine with 20 processors and 64GB RAM. Exper-
iments are conducted on seven benchmarks from ISCAS’89,
five benchmarks from IWLS’05 and five benchmarks from
industrial circuits provided by the Industrial Technology
Research Institute of Taiwan (ITRI) [24]. Table 1 lists basic
information about 18 benchmark circuits. #pttn, FC and RT
refer to the numbers of patterns, fault coverage and runtime,
respectively. Columns 1 to 3 denote circuit names, the num-
bers of gates (#gate) and the numbers of stuck-at faults

(#SA-fault). Columns 4 to 6 denote #pttn, FC and RT,
which are obtained by a commercial tool,3 respectively.
Columns 7 and 8 denote #pttn and FC derived by P4-TPG.
In particular, the last two columns compare total runtime (RT)
of SDC-TPG and P4-TPG.
P4-TPG is built upon the ATPG package, PODRM-X,

which is a re-implementation of the Path-Oriented Decision-
Making algorithm [17]. In particular, P4-TPG further incor-
porates three techniques, preemptive scheduling, proactive
scheduling and preventive scheduling into the PODEM-X
engine for improving runtime performance. For preemp-
tive scheduling, P4-TPG executes tasks TPG/FC earlier
as many as possible for saving idle time. For proac-
tive scheduling, pattern pre-generation (PPG) is invoked
to reuse the remaining idle time left by preemptive
scheduling. Preventive scheduling consists of fault polarity
check (FPC) and backward unpropagatable fault removal
(BUFR) to dynamically shrink the size of the list for
remaining undetected faults. Experimental results show that
P4-TPG effectively retain determinism (generating the same
test pattern set) and successfully improve the speed-ups
of SDC-TPG. Moreover, how the number of threads affects
the speed-ups of P4-TPG is also investigated in our
experiments.

3In our experiments, the merge effort is set high and automatic compres-
sion is specified with run_atpg
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TABLE 1. Information of benchmark circuits.

FIGURE 13. Comparison of speedup between SDC-TPG [16] and P4-TPG only with preemptive scheduling.

A. COMPARISON OF SPEEDUP UNDER DIFFERENT
NUMBERS OF THREADS ON PREEMPTIVE
SCHEDULING
Preemptive scheduling makes P4-TPG execute PG/FC
tasks as early as possible. Fig. 13 shows the comparison of

speed-ups using different numbers of threads on four bench-
marks in SDC-TPG and in P4-TPG (only with preemp-
tive scheduling). After applying preemptive scheduling,
the runtime overhead under one thread is found negligible
(i.e.<1%). Meanwhile, preemptive scheduling increases the
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TABLE 2. Performance of speedup between SDC-TPG and P4-TPG.

FIGURE 14. Runtime reduction of proactive scheduling in P4-TPG on
four benchmarks.

average speed-up by 12.6%, 21.7% and 23.9% under 4, 8
and 12 threads, respectively, when compared with SDC-TPG
using the same number of threads. This clearly indicates
that preemptive scheduling in P4-TPG effectively saves idle
time and shortens total runtime in ATPG. Note that the num-
bers of pattern (#pttn) and the fault coverages (FC) between
SDC-TPG and P4-TPG are the same as shown in Table 1
because both are deterministic TPG engines.

B. COMPARISON OF RUNTIME UNDER DIFFERENT
NUMBERS OF THREADS ON PROACTIVE
SCHEDULING
For proactive scheduling, PPG brings forward the latter TPG
tasks to the remaining idle time after applying preemptive
scheduling. Fig. 14 compares the runtime between P4-TPG

with PTPG and without PPG on four benchmarks and shows
our reduction. As shown in Fig. 14, PPG decreases the aver-
age runtime by 0%, 3.2%, 6.4% and 9.8% using 1, 4, 8 and
12 threads, respectively. Note that the reduction is 0% under
1 thread because no idle time appears in ATPG. However,
the runtime reduction increases along with the number of
threads. As a result, PPG efficiently reuses the remaining idle
time and avoids untestable faults in advance for acceleration.
In particular, close to zero time can be reduced on benchmark
circuit bench4 because there is almost no untestable faults and
thus PPG is barely invoked. On the contrary, another bench-
mark circuit vga_enh exhibits a different result, in which the
runtime improves with the increasing number of threads.

C. COMPARISON OF SPEEDUP FOR P4-TPG ON
PREVENTIVE SCHEDULING
For preventive scheduling, the two novel skipping techniques
(FPC+BUFR) are proposed to shrink the fault list dynami-
cally during the generation of each pattern. Table 2 presents
the comparison of speed-ups using the different numbers of
threads. Column 1 denotes the name of the circuits. Column 2
to 5 list the speed-ups under the different numbers of threads,
on the basis of the runtime obtained by one-thread SDC-TPG.
After applying preventive scheduling, P4-TPG achieves
an average speed-up of 1.76X, 5.63X, 8.80X and 10.36X
when using 1, 4, 8 and 12 threads, respectively. Moreover,
P4-TPG improves the acceleration by 76.0%, 87.2%, 94.7%
and 96.6% under 1, 4, 8 and 12 threads, respectively, com-
pared to SDC-TPG using the same numbers of threads.
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In particular, the speed-ups on several cases like DMA,
vga_enh, bench2, bench3, bench4, bench7 and bench8 even
become supper-linear (i.e. the speed-up exceeds the number
of threads). Since preventive scheduling can promptly skip
potentially redundant faults with respect to the current pat-
tern, a larer number of effortless tasks can be avoided. As a
result, preventive scheduling further facilitates acceleration
of P4-TPG.

V. CONCLUSION
Although existing deterministic parallel TPGs like SDC-TPG
guarantee the consistency of the test pattern set as the serial
ATPG does, tremendous idle time is wasted on synchronizing
independent tasks (either independent or dependent) between
threads. For saving and reusing the idle time, we propose
P4-TPG, a deterministic parallel test pattern generator, and
incorporate preemptive, proactive and preventive schedul-
ings for accelerating ATPG. For preemptive scheduling, fault
commitment checking (FCC) and concurrent task interrup-
tion (CTI) are developed for reducing the idle time between
dependent tasks and terminating the redundant tasks among
threads as much as possible. For proactive scheduling, pat-
tern pre-generation (PPG) moves forward the TPG task of
the latter (undetected) faults to the remaining idle time and
thus either a fault can be identified untestable early or the
generated pattern can be restored sooner whenever the TPG
task is invoked. For preventive scheduling, fault-polarity
check (FPC) and backward-unpropagatable fault removal
(BUFR) dynamically skip faults that are incompatible with
the current pattern on each thread and thus the compaction
lists of faults are also greatly reduced.

Experimental results demonstrate the effectiveness of three
schedulings on 18 benchmark circuits. First, comparing to
SDC-TPG, preemptive scheduling of P4-TPG accelerates
the average runtime by 10.7%, 15.0% and 17.9% under 4,
8 and 12 threads, respectively. Second, under the best case
(vga_enh), proactive scheduling further shortens 15.7% total
runtime of SDC-TPG when using 12 threads. Last, preven-
tive scheduling outperforms SDC-TPG by reducing 76.0%,
87.2%, 94.7% and 96.6% more runtime under 1, 4, 8 and
12 threads, respectively. In the end,P4-TPG not only achieves
the determinism on the test pattern set as the serial TPG,
resulting in zero inflation, but also is superior to SDC-TPG
in speed-ups under different numbers of threads.
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