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ABSTRACT Limiting scan views is an efficient way to reduce radiation doses in the cone-beam computed
tomography (CBCT) examinations, which unfortunately degrades the reconstructed images. Some methods
on the framework of the generative adversarial network (GAN) were developed to improve low-dose CT
images after CT reconstruction from the limited-view projections. However, no GAN-based methods were
devoted to restoring missing CBCT projections in the sinogram domain before CT reconstruction. To avoid
the trade-off between radiation dose and image quality, we propose a limited-view CBCT reconstruction
method in the sinogram domain, instead of the image domain. First, this method slices the 3D CBCT
projections into multiple 2D pieces. Then, an adversarial autoencoder network is trained to estimate the
missing parts of these 2D pieces. To improve the prediction, we apply a joint loss function, including
reconstruction loss and adversarial loss to the network. When the new limited-view 3D CBCT projections
are acquired, the proposed method uses the trained adversarial autoencoder network to generate the missing
parts of the 2D pieces sliced from the current 3D CBCT projections. Then, stacking the completed 2D pieces
in order yields full-view 3D CBCT projections. Finally, we reconstruct the CT images from the full-view 3D
CBCT projections by using the Feldkamp, Davis, and Kress algorithm. The experiments validate that our
method performswell in the prediction of unknown projections and CT reconstruction and are less vulnerable
to the number of unknown projections than other methods.

INDEX TERMS Limited-view CBCT reconstruction, adversarial autoencoder network, reduction of radia-
tion doses, prediction of missing CBCT projections.

I. INTRODUCTION
Cone-beam computed tomography (CBCT) is a medical
imaging technique that can obtain a three-dimensional CT
image quickly and directly. In recent decades, applica-
tions of CBCT have expanded to many fields, such as
treatment planning [1], dentistry [2], and interventional
radiology [3].

Since radiation from routine CT scans is a threat to the
lives of patients, low-dose CT (LDCT) has become one of
the most critical trends in CBCT [4]. Usually, limiting scan
views via X-ray collimation during CBCT scans can reduce
the radiation dose effectively. However, in this situation,
the acquired CBCT projections, i.e., the limited-view CBCT
projections, are incomplete. These limited-view CBCT pro-
jections inevitably cause the degradation of reconstructed

CT images, which prohibits accurate analysis in clinical
applications.

A great deal of research dedicates to low-dose CBCT
reconstruction to reduce the radiation dose without compro-
mising image quality. Among existing methods, image-based
approaches are the most extensively studied ones. Image-
based approaches suppress artifacts in LDCT images after
CT reconstruction. There are two main categories of image-
based approaches: iterative reconstruction methods [5]–[12]
and machine learning methods [13]–[18]. Iterative recon-
struction methods enhance reconstructed LDCT images by
designing and iteratively maximizing or minimizing vari-
ous prior-regularized cost functions, such as total variance-
based priors [5]–[7], nonlocal mean priors [8], [9] and Huber
priors [10].
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FIGURE 1. The pipeline of the proposed limited-view CBCT reconstruction method.

Machine learning methods emerge in the field of LDCT
reconstruction in recent years. For instance, Xu et al. [13]
constructed a global dictionary and an iteratively adaptive
dictionary to address low-dose CT reconstruction. To sup-
press artifacts, Chen et al. [14] trained three discriminative
dictionaries for high-frequency bands with different orien-
tations. In addition to dictionary learning, Huynh et al. [16]
used structured random forests and the auto-context model
to estimate standard-dose CT (SDCT) images from MRI
images and low-dose CT images. In Boublil’s work, an arti-
ficial neural network was used to boost existing signal and
image recovery methods, which was efficient for low-dose
CT reconstruction [17]. Zhang et al. [18] adapted theMarkov
random field model to incorporate textural information from
previous full-dose CT images for the Bayesian reconstruction
of current low-dose CT images.

In addition to traditional machine learning methods, some
well-known deep learning methods have also been applied
to LDCT and have achieved numerous successes in medical
imaging [19]–[27]. For example, a deep convolutional neural
network (CNN) was constructed in the wavelet domain and
trained with wavelet coefficients from CT images to detect
and remove noise in LDCT images [23]. Chen et al. [25]
built a deep CNN to learn feature mapping from LDCT
images to SDCT images. Moreover, some researchers
established an encoder-decoder architecture using CNN
models to lessen the visibility of artifacts in LDCT
images [27].

Very recently, after generative adversarial network (GAN)
made significant progress in computer vision and pattern
recognition [28], there were attempts to use GAN for noise
reduction in LDCT images [29]–[32]. For instance, some
trained a CNN as a generator to estimate LDCT images from
SDCT images [29] or corresponding magnetic resonance

FIGURE 2. Data preprocessing for the proposed method. (a) Data matrix
of full-view CBCT projections. (b) Data matrix of limited-view CBCT
projections, in which the dotted portion indicates their missing part. The
planes marked in red represent multiple 2D slices divided from the 3D
data matrix along the x-axis. (c) Illustration on the derivation of 3D CBCT
projections from multiple completed 2D slices.

images [32] of the same subject. Others tried to restore SDCT
images by building a GAN to predict the residual between
SDCT images and LDCT images [30].
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FIGURE 3. The architecture of the adversarial autoencoder network proposed in our method.

Apart from image-based approaches, projection-based
approaches are popular for low-dose CBCT reconstruc-
tion. Projection-based approaches recover missing CBCT
projections in the sinogram domain before CT recon-
struction, which is entirely different from image-based
approaches. Within all methods belonging to projection-
based approaches, directional interpolation may be the most
frequently employed one. For example, based on the struc-
tural tensor, Bertram et al. [33] presented an accurate non-
linear directional interpolation to improve angular sampling
in CBCT. Later, they developed another shape-driven direc-
tional interpolation algorithm for sparsely sampled cone-
beamCT data [34]. To yield more projections for sparse angle
acquisition in CBCT, Zhang et al. [35] extended Bertram’s
work by iteratively optimizing double-orientation estima-
tion in the sinogram space. Additionally, Zhang et al. [36]
reported a motion-weighted reconstruction method for insuf-
ficient projection in 4D CBCT reconstruction, in which
a deformable registration was used to estimate local
motion after directional interpolation increases the projection
numbers.

Remarkably, there are no reports on the application of
a GAN and its variants in the sinogram domain. Motived
by this fact, we propose a limited-view CBCT reconstruc-
tion method in the sinogram domain (instead of the image
domain) that can predict missing 3D CBCT projections in
some scan views via a 2D adversarial autoencoder net-
work. This adversarial network uses a CNN architecture [37]
to construct a generator and a discriminator. To improve
the prediction, we utilize joint loss, which can not only
ensure the predicted missing parts of the sinogram images
are consistent with the remainder but also capture critical
high-frequency details from the ground-truth. In this way,
the trained generator can derive the missing part of the sino-
gram of the newly acquired limited-view CBCT projection
data. Finally, we reconstruct CT images from the completed

projections using the Feldkamp, Davis, and Kress (FDK)
algorithm [38].

This paper is organized as follows. Section 2 describes
the proposed limited-viewCBCT reconstructionmethod. The
experiments in Section 3 evaluate the performance of our
approach. Finally, Section 4 gives the conclusions.

II. METHODS
Fig. 1 illustrates the pipeline of the proposed limited-view
CBCT reconstruction method, which consists of data prepro-
cessing, training and testing. To make the 3D data feasible for
the 2D network used in this paper, we perform data prepro-
cessing, which converts 3D sinogram images of limited-view
CBCT projections and their corresponding full-view ones to
2D slices before training begins. In the training stage, we train
an adversarial autoencoder network [37] to produce the gen-
erator as the output. When one acquires the new limited-view
CBCT projections, data preprocessing converts the new 3D
sinogram images into 2D slices for testing.With the sinogram
images of these 2D slices as inputs, the trained generator can
predict their missing parts. After that, we stack the completed
2D slices to form full-view 3D CBCT projections. Using the
FDK algorithm, our method reconstructs CT images from the
completed 3D CBCT projections. The next subsections will
describe the essential components of the proposed method in
detail.

A. DATA PREPROCESSING
Moving along a trajectory 0(θ ), the X-ray source in a regular
CBCT acquisition system emits half-lines crossing the object
and intersecting the 2D detector plane T (x, y), which eventu-
ally yield 3D CBCT projections C(θ , x, y). Fig. 2 (a) and (b)
illustrate the data matrix of full-view projections C(θ , x, y)
and limited-view projections C’(θ ’, x, y). Note that C(θ , x,
y) and C’(θ ’, x, y) correspond to the 3D sinogram image for
full projections and limited-view projections, respectively.
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FIGURE 4. Resulting sinogram images of 2D slices along the x-axis after the missing parts have been predicted by GAN and the
proposed method when the acquired CBCT projections at scan views ranging from 0◦ to 89◦ are unknown. (a) Sinogram images
of 2D slices along the x-axis for full-view CBCT projections. (b) Sinogram images of 2D slices along the x-axis with unknown
projections at scan views ranging from 0◦ to 89◦. (c) Resulting sinogram images after missing parts have been predicted by GAN
method. (d) Resulting sinogram images after missing parts have been predicted by the proposed method.

Since the adversarial autoencoder network used for pre-
diction in our paper is two-dimensional, this network cannot
handle 3D sinogram image directly. Therefore, it is necessary
to slice the 3D sinogram image into 2D pieces for both
the training and testing procedures. To accomplish this task,
we first make the missing part of C’(θ ’, x, y), i.e., the dotted
portion in Fig. 2 (b), equivalent to 0. Then, ourmethod divides
the 3D sinogram image C’(θ ’, x, y) into multiple 2D slices
along the x-axis. The planes marked in red in Fig. 2 (b)
represent these 2D slices from the 3D data matrix. In other
words, if given a series of coordinates xn (n = 0, 1, 2, . . . , N )
on the x-axis, we can obtain multiple sinogram images of 2D
slices C

′

xn (θ
′

, y) after slicing. As these multiple 2D slices
C
′

xn (θ
′

, y) are compatible with the proposed 2D adversarial
autoencoder network, we can generate the missing parts of
C
′

xn (θ
′

, y).

Before reconstructing 3D CBCT images, we must arrange
the completed sinogram images of the 2D slices C

′

xn (θ
′

, y)
along the x-axis, as shown in Fig. 2 (c), to derive the full-view
3D CBCT projections.

B. ADVERSARIAL AUTOENCODER NETWORK
Fig. 3 depicts the architecture of the adversarial autoen-
coder network used in our method. This network applies
an autoencoder-like CNN model [37] that adopts the well-
known AlexNet architecture [39] to train the generator.
To make the prediction more accurate, we simultaneously
train a discriminator by using predicted results and their
corresponding ground-truth as input. The discriminator can
provide loss gradients for the generator and give the possibil-
ity that the predicted results belong to real data. The training
procedure does not stop until the discriminator accepts all

VOLUME 7, 2019 7107



X. Dai et al.: Limited-View CBCT Reconstruction Based on an Adversarial Autoencoder Network

FIGURE 5. The vertical profiles across 30th, 50th, 70th and 80th columns of the resulting sinogram
images when the acquired CBCT projections at scan views ranging from 0◦ to 89◦ are unknown. The
resulting sinogram images come from the second column of Fig. 4(c)-(d). The red lines denote the real
data; the purple dots and the dotted blue lines denote the vertical profiles of the resulting missing
sinogram estimated by GAN and the proposed method.

the generated missing parts of the sinogram images of the
limited-view CBCT projections as real ones.

The generator is composed of an encoder and a decoder.
The encoder part has five convolutional layers and one fully-
connected layer. All the five convolutional layers in the
encoder part contain convolution, batch normalization (BN)
and rectified linear unit (ReLU) operations. Specifically,
the first convolutional layer filters the incomplete 2-D slices
with 64 kernels of size N1 ×M1 and yields feature maps F1.
Next, by filtering the output of the first convolutional layer
with 64 kernels of size N2 × M2, the second convolutional
layer contains feature maps F2. Similarly, the third, fourth
and fifth convolutional layer will acquire their feature maps
F3, F4 and F5 respectively through 2-D convolution on the
output of the previous convolutional layer. Here, we let the
kernel numbers for the third, fourth and fifth convolutional
layers be 128, 256 and 512; and, the filter sizes for these
three layers are N3×M3, N4×M4 and N5×M5 respectively.
The fully-connected layer contains 4000 neurons which have
connections to all the neurons in the fifth convolutional layer.

In the proposed networks, we do not use pooling layers
because theywill reduce the spatial resolution of featuremaps
and make the network unable to capture fine details in the
sinograms precisely.

As for the decoder part of the generator network, its first
layer obtains the feature maps, which have the same size as
the fifth convolutional layer in encoder part, by fully connect-
ing and reshaping the fully-connected layer of encoder part.
The followings include three up-convolutional layers and one
output layer. Exerting 2-D up-convolution with 256 kernels
on the output of the first layer in decoder part, achieves feature
maps L1 in the first up-convolutional layer of the decoder part.
Subsequently, by up-convolutional operation with 128 and
64 kernels on the output of the previous layer, the second and
third up-convolutional layer derive the featuremaps L2 and L3
respectively. Then, applying a 2-D up-convolution to the out-
put of the third up-convolutional layer constructs the output
layer, which corresponds to the predicted results of missing
parts. The sizes of the filters used in the up-convolutional
operations are S1×T1, S2×T2, S3×T3 and S4×T4. Notably,
all the up-convolutional layers are followed by BN and ReLU
operations, except the third one. The third up-convolutional
layer adopts sigmoid as the activation function.

For the sake of making a generated result close to the
real one, we train a discriminator alongside the generator.
The discriminator takes both the predicted results and their
ground-truth as inputs. Its output is the probability that the
predicted results are drawn from the distribution of real ones.
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FIGURE 6. Predicted results for unknown CBCT projections at scan views of 7◦, 13◦, 30◦, and 60◦ by GAN
and the proposed method. Here, the acquired CBCT projections at scan views ranging from 0◦ to 89◦ are
unknown. (a) 2D profiles of the full CBCT projections along the θ-axis at scan views of 7◦, 13◦, 30◦, and
60◦. (b) Predicted results for unknown projections at scan views of 7◦, 13◦, 30◦, and 60◦ by GAN method.
(c) Predicted results for unknown projections at scan views of 7◦, 13◦, 30◦, and 60◦ by the proposed
method.

TABLE 1. Some parameters for each convolutional and up-convolutional
operation involved in the generator and discriminator when the sizes of
the sinogram image of a 2D slice and its missing part are 360 × 256 and
90 × 256 respectively. Here, Conv1∼Conv5 denote the convolutional
operations used in the generator; Conv6∼Conv9 denote the convolutional
operations used in the discriminator; uConv1∼uConv4 denote the
up-convolutional operations used in the discriminator.

The network of discriminator has similar architecture to the
encoder part of the generator. It has four convolutional layers,
which also include convolution, BN and ReLU operations,

TABLE 2. Some parameters for each convolutional and up-convolutional
operation involved in generator and discriminator when the sizes of the
sinogram image of a 2D slice and its missing part are 360 × 256 and
120 × 256 respectively. Here, Conv1∼Conv5 denote the convolutional
operations used in the generator; Conv6∼Conv9 denote the convolutional
operations used in the discriminator; uConv1∼uConv4 denote the
up-convolutional operations used in the discriminator.

and one output layer. The numbers of filters used in the four
convolutional operations for the discriminator are 64, 128,
256 and 512 respectively.
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FIGURE 7. Comparison among transverse slices of the real scan (a) and CT images reconstructed from the
resulting projections by different algorithms: (c) GAN and (d) our method. (b) are the results with missing
projections set to 0. In the acquired limited-view CBCT projections, the projections at scan views ranging
from 0◦ to 89◦ are unknown.

The filter sizes, stride and padding parameters for each
convolutional and up-convolutional operations involved in
generator and discriminator depend on the dimensions of
the input sinogram images of the 2D slices, as well as their
missing parts. Table 1 lists the filter sizes, stride and padding
parameters when sizes of the sinogram image of a 2D slice
and its missing part are 360× 256 and 90× 256 respectively.
And, Table 2 provides the filter sizes, stride, and padding
parameters when dimensions of the sinogram image of a
2D slice and its missing part are 360 × 256 and 120 ×
256 respectively.

C. JOINT LOSS FUNCTION
In the training procedure, the proposed method employs the
joint loss function [37], which is comprised of reconstruction

loss and adversarial loss, to ensure proper performance in
prediction.

For an input sinogram image I of a 2D slice, the following
equation defines reconstruction loss R(I ) [37]:

R (I ) = ‖M ⊗ (I − G((1−M )⊗ I ))‖2 (1)

where M is a binary mask for a missing region of I , ⊗ is
the element-wise product operation, and G(I ) is the output
of the generator for input data I . The reconstruction loss in
(1) approximates the outline of the target well by minimiz-
ing the mean pixel-wise error. Nonetheless, reconstruction
loss is deficient at catching high-frequency details, which
make the predicted results look blurry. Thus, adversarial loss,
whose definition is given in the next equation, participates
in the training procedure as a remedy for the deficiencies of
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FIGURE 8. Resulting sinogram images of the 2D slices along the x-axis after missing parts have been predicted by the GAN and
the proposed method when the acquired CBCT projections at scan views ranging from 0◦ to 119◦ are unknown. (a) Sinogram
images of the 2D slices along the x-axis when projections at scan views ranging from 0◦ to 119◦ are unknown. (b) Resulting
sinogram images after missing parts have been predicted by the GAN. (c) Resulting sinogram images after missing parts have
been predicted by the proposed method.

reconstruction loss [37]:

A (I ) = max
D

EIεχ [log (D (I ))+log (1− D(G((1−M)⊗I )))]

(2)

where D is the adversarial discriminative model. The adver-
sarial loss in (2) can lessen the blur degradation that happens
when training procedure only uses the reconstruction loss
in (1). To optimize both the generative and discriminative
models, we use the Adam algorithm [40] in the training
procedure.

After integrating reconstruction loss with the adversarial
loss, our method defines the joint loss function as follows:

J (I ) = λrR (I )+ λaA (I ) (3)

where λr and λa are the correspondingweights for reconstruc-
tion loss and adversarial loss, respectively. Since the joint loss
function in (3) combines the merits of both reconstruction
loss and adversarial loss, it can improve the prediction.

III. EXPERIMENTS
This section releases some experiments to test the perfor-
mance of our method. We conduct these experiments on a
dataset which is collected by Jiangsu Province Key Labora-
tory of Oral Disease, NanjingMedical University. The dataset

consists of 300 CT images as well as their corresponding
full-view CBCT projections. The resolutions and image sizes
of these CT images are 0.98 × 0.98 × 3 mm3 and 512 ×
512 × 90, respectively. And, the size of the full-view CBCT
projection data is 360 × 256 × 256, which implies that the
dimension of the flat detector is 256× 256 and the projections
are sampled from 360 scan views over an arc of 360 degrees.
The following experiments use 200 CT images and their
corresponding projections for training. The testing step will
use the remaining 100 CT images and their corresponding
projections.

To compare the behavior with other methods, we also
provide the experimental results of GAN [41]. The GAN uses
200 iterations, as does the proposed method.

To quantitatively evaluate the predicted projections and
reconstructed CT images, this section chooses some common
measurements, such as peak signal to noise ratio (PSNR)
and structural similarity index (SSIM) [30]. PSNR assesses
the noise and artifact suppression performance of a method,
and SSIM measures the difference between the reconstructed
images and their ground-truth.

The first experiment assumes an X-ray reduction of 25%
to a full-view CBCT scan. More specifically, the CBCT pro-
jections at scan views ranging from 0◦ to 89◦ are unknown,
and values of the missing projections are assigned to 0.
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FIGURE 9. The vertical profiles across 30th, 50th, 70th and 80th columns of the resulting sinogram
images when the acquired CBCT projections at scan views ranging from 0◦ to 119◦ are unknown. The
resulting sinogram images come from the second column of Fig. 8(b)-(c). The red lines denote the real
data; the purple dots and the dotted blue lines denote the vertical profiles of the resulting missing
sinogram estimated by GAN and the proposed method.

Fig. 4 offers some examples of the resulting sinogram
images of 2D slices along the x-axis after GAN and the pro-
posed method predict the missing data. Fig. 4 (a) and (b) give
the sinogram images of 2D slices along the x-axis for full-
view and limited-view CBCT projections. Fig. 4 (c) and (d)
show that compared to Fig. 4 (a), the resulting sinogram
images with missing parts predicted by both GAN and
the proposed method can achieve good outlines. However,
the results in Fig. 4 (c) look blurry and noisy, which leads to
inconsistency between the predicted results and the remainder
of the sinogram images. This inconsistency might be the
result of the discriminator of the GAN treating the missing
parts of the data in isolation and ignoring the contextual
information from the rest of the sinogram. Since the joint loss
function adopted in our method tries to make the entire output
look realistic, the appearance defect mentioned above does
not appear in the results of Fig. 4 (d).

For better showing the performance improvement of our
method, Fig. 5 gives the vertical profiles across 30th, 50th,
70th and 80th columns of the resulting sinogram images,
which come from the second column of Fig. 4(c)-(d).

From Fig.5, one can observe that the curves of the esti-
mated results by both GAN and the proposed method fit the
real data well; our method has a little advantage only in the
middle part of the curves where they fluctuate greatly.

To make a further comparison, we also provide the pre-
dicted results for unknown CBCT projections at scan views
of 7◦, 13◦, 30◦, and 60◦ using different methods, as shown
in Fig. 6. While all results obtained by the GAN in Fig. 6
(b) suffer from vertical streak artifacts, no severe artifacts
exist in the results of our method, as shown in Fig. 6 (c).
The results in Fig. 4, Fig. 5 and Fig. 6 suggest that the
proposed method can capture more high-frequency details
and has better predictive performance than GAN.

For all predicted results of the missing CBCT projections,
the mean PSNRs of GAN and our method are 35.98 and
44.37, respectively. The higher PSNR achieved by the pro-
posed method confirms its superiority to GAN.

Fig. 7 provides a comparison among some transverse slices
of the real scans and CBCT images reconstructed from the
resulting projections by GAN and our method. For the pur-
pose of showing the degree of improvement of the recon-
structed CT images by our method, we also give some exam-
ples of the reconstructed CT images with missing CBCT
projections being 0 in Fig. 7 (b). In other words, to obtain
the results in Fig. 7 (b), we assign 0 to values of the miss-
ing CBCT projections and then derive the reconstructed CT
images by using FDKmethod. In Fig. 7 (d), the reconstructed
images by the proposed method are comparable to the origi-
nal images; however, they do not show notable improvement
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FIGURE 10. Predicted results for unknown CBCT projections at scan views of 7◦, 13◦, 30◦, and 60◦ by the
GAN and the proposed method. Here, the acquired CBCT projections at scan views ranging from 0◦ to 119◦

are unknown. (a) 2D profiles of full CBCT projections along the θ-axis at scan views of 7◦, 13◦, 30◦,
and 60◦. (b) Predicted results for unknown projections at scan views of 7◦, 13◦, 30◦, and 60◦ by the GAN.
(c) Predicted results for unknown projections at scan views of 7◦, 13◦, 30◦, and 60◦ by the proposed
method.

TABLE 3. Mean PSNR and SSIM for all reconstructed CT images by GAN
and our method when the acquired CBCT projections at scan views
ranging from 0◦ to 89◦ are unknown. Here, ‘ZERO’ denotes mean PSNR
and SSIM for the reconstructed CT images when the missing CBCT
projections are set to 0.

in visual appearance in contrast to Fig. 7 (b)-(c). It is notewor-
thy that the main difference between the results in Fig. 7 (b)
and the other two groups of results in Fig. 7 (c)-(d) is whether
there is an estimation of the missing CBCT projections or
not.

Table 3 lists the mean PSNR and SSIM for all recon-
structed CT images by the GAN and our method, as well
as the ones when missing CBCT projections are set to 0.
Table 3 implies that although the mean PSNR and SSIM of
the results obtained by our method are higher than the other
two, the proposed method wins by a narrow margin.

To test the performance of our method with more missing
projections, we assume the CBCT projections at scan views
ranging from 0◦ to 119◦ unknown in the next paragraphs.

That is, the number of the acquired projections in the second
experiment is decreased by 1/3 over a full-view CBCT scan.

Fig. 8 shows the resulting sinogram images of the 2D
slices along the x-axis after the missing parts have been pre-
dicted by various methods when the projections at scan views
ranging from 0◦ to 119◦ are unknown. Since the number of
the unknown projections increases, the resulting sinogram
images by the GAN, which are given in Fig. 8 (b), become
noisier than the results in Fig. 4 (c), as expected. However,
compared to the results in Fig. 4 (d), no noticeable degrada-
tion is observed from the resulting sinogram images by our
method, as shown in Fig. 8 (c).

Fig. 9 gives the vertical profiles across the same columns
of another group of resulting sinogram images, which come
from the second column of Fig. 8(b)-(c). Compared to Fig.5,
the advantage of our method over GAN is more obvious
in Fig.9, as the curves of the estimated results by GAN
in Fig.9 become volatile.

The same situation occurs in Fig. 10, which shows the
predicted results for the unknown CBCT projections at scan
views of 7◦, 13◦, 30◦, and 60◦ by the GAN and our method.
The mean PSNR values of the predicted CBCT projections
by the GAN and our method when 1/3 of the projections
are missing are 28.40 and 42, respectively. They decrease
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FIGURE 11. Comparison of transverse slices of the CBCT images reconstructed from the resulting
projections by different algorithms when the acquired projections at scan views ranging from 0◦ to 119◦

are unknown. (a) are the results with missing projections set to 0. (b) are the reconstructed CT images
with missing projections predicted by GAN; (c) are the reconstructed CT images with missing projections
predicted by our method.

by approximately 21% and 5%, respectively, in comparison
to the corresponding mean PSNR of the predicted CBCT
projections when 1/4 of the projections are missing. Quanti-
tatively, we find that the performance of our method in terms
of predicting missing CBCT projections is less vulnerable
to the increasing number of unknown projections than the
GAN.

Fig. 11 (a) shows some transverse slices of the recon-
structed CBCT images when we let the missing projections at
scan views ranging from 0◦ to 119◦ equal to 0. Fig. 11 (b)-(c)
give the transverse slices of the reconstructed CBCT images
when GAN and our method estimate the missing projections
at scan views ranging from 0◦ to 119◦. Predictably, with more
missing CBCT projections, the reconstructed CT images
in Fig. 11 (a) have a much greater degradation than those
in Fig. 7 (b); and, in contrast to Fig. 7 (c), the reconstructed
results in Fig. 11 (b) suffer a severe deterioration. However,
when our method estimates the missing projections, the cor-
responding reconstructed results in Fig. 11 (c) are comparable
to the results in Fig. 7 (d). It suggests that the increasing
number of missing projections affects the performance of our
method less than those of GAN.

This conclusion is also proved by Table 4, which gives
the mean PSNR and mean SSIM for all reconstructed CT

TABLE 4. Mean PSNR and mean SSIM for all reconstructed CT images by
the GAN and our method when the acquired CBCT projections at scan
views ranging from 0◦ to 119◦ are unknown. Here, ‘ZERO’ denotes mean
PSNR and SSIM for the reconstructed CT images when the missing CBCT
projections are set to 0.

images by GAN and our method when the acquired CBCT
projections at scan views ranging from 0◦ to 119◦ are
unknown. Table 4 also offers mean PSNR and mean SSIM
for all reconstructed CT images with the missing projections
being 0. Table 4 shows that, although all mean PSNRs and
mean SSIMs decrease with an increasing number of missing
projections, the results of our method remain the highest.
In contrast to Table 3, the mean PSNRs of the GAN and
the proposed method in Table 4 fall by 27.52% and 12.53%,
respectively. As for mean SSIM, the values obtained by the
GAN and the proposed method in Table 4 fall by 20.62%
and 2%, respectively. It is clear that the decreasing rates of
GAN for both mean PSNR and mean SSIM are far higher
than those of the proposed method, especially for mean
SSIM.
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Based on the above experiments, we can conclude that
our method has better and more stable performance than the
other methods, particularly when the acquired projections are
reduced by 1/3 over a full-view CBCT scan.

IV. CONCLUSIONS
To improve the quality of the CBCT images reconstructed
from limited-view projections, we develop a CBCT recon-
struction method in the sinogram domain. In data preprocess-
ing, the proposed method slices the 3D CBCT projections
into 2D pieces along the x-axis. Then, it constructs a 2D
adversarial autoencoder network that uses a CNN architecture
with the joint loss to build the generator and discriminator and
predict the missing 3D CBCT projections. The experiments
validate the effectiveness of our method in estimatingmissing
CBCT projections and reconstructing images.

In the future, we will extend our method to a 3D version to
improve the predicted results further. Themethod proposed in
this paper has to slice 3D CBCT projections into multiple 2D
pieces along the x-axis, instead of handling 3D CBCT pro-
jections directly, before using the adversarial auto-encoder
network to estimate the missing data in each sliced 2D piece
of 3D CBCT projections. Thus, we do not incorporate any
spatial or appearance information from the other 2D slices
adjacent to the current one into the estimation. It would lead
to inconsistency across slices after stacking the completed 2D
pieces into full-view 3D CBCT projections. We believe that
using a 3D adversarial autoencoder network might be helpful
to settle down this problem.
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