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ABSTRACT This paper studies regulated state synchronization for homogeneous discrete-time multi-agent
systems (MAS) in the presence of unknown nonuniform communication delays. We consider partial state
coupling, i.e., agents are coupled through part of their states. A low gain-based protocol is designed which
only requires rough knowledge of the communication network, such that the state synchronization for MAS
is achieved where the required synchronized trajectory is only given to some of the agents.

INDEX TERMS Regulated state synchronization, discrete-timemulti-agent systems, communication delays.

I. INTRODUCTION
The synchronization problem for multi-agent systems (MAS)
has received substantial attention in the past decade, its objec-
tive is to secure an asymptotic agreement on common states
(i.e., state synchronization) or output trajectories (output syn-
chronization) through decentralized control protocols. Reg-
ulated synchronization problem, where we track a constant
trajectory, has also attracted some attention due to its potential
applications in cooperative control of micro-grids, platooning
of autonomous vehicles, formation of satellites and others
[1], [19]. For MAS with discrete-time agents, earlier work
can be found in [3], [4], [9], [15], [18], and [24] for essentially
first and second-order agents, and in [5], [7], [10], [28], [29],
[31], [34], and [36] for higher-order agents. Most of these
papers deal with homogeneous MAS (i.e., agents are identi-
cal), while [29] deals with heterogeneous MAS. However the
latter deals with introspective agents (i.e., agents have access
to part of their own state).

Many researchers have also focused on synchronization
problems for MAS with time delays. In general, there are
two types of delay in the study of MAS: input delay and
communication delay. Input delay originates from compu-
tational limitations of an individual agent. There are many
works dealing with input delay, for example, from single- and

double-integrator agent dynamics (see [15], [22], [23], [30])
to more general agent dynamics (see [13], [14], [20], [25],
[27], [33]).

Meanwhile, communication delay comes from limita-
tions on the communication network between agents. Many
studies use a protocol design based on introducing self-
communication delay which has the same structure or value
with the communication delay introduced by its neighbor
agent, i.e.

ζi(t) =
N∑
j=1

yi(t − τij)− yj(t − τij).

See, for instance, [6], [16], [21], and [35]. In this case, any tra-
jectory can be synchronized for a MAS with communication
delay.

On the other hand, if there is no such self-communication
delay, the communication between agents becomes equal to

ζi(t) =
N∑
j=1

yi(t)− yj(t − τij)

In that case, it is obvious that for most time varying target
trajectory it is not possible that ζi(t)→ 0 as t →∞. In other
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words, the diffusive nature of the network (where asymptoti-
cally communication between agents converges to zero) can
no longer be preserved. Currently, to preserve this diffusive
nature of the network, the literature has focused on constant
synchronized trajectories for this type of protocols, see some
works in this area [2], [11], [22], [23], [32]. For discrete time
MAS with communication delay, only few results consider
(delayed) state synchronization by using a protocol design
without self-communication delay but they impose special
structure on the agents, see [8] (single integrator) or [12]
(passivity).

In this paper, we study regulated state synchronization for
MAS in discrete time for general linear systems. We assume
that some of the agents have access to an, a priori given, con-
stant trajectory. In our case, the communication network can
have arbitrary large, unknown, nonuniform communication
delays. We consider the case of an unknown, undirected com-
munication network or a known, possibly directed, communi-
cation network. A low gain based dynamic protocol without
self-communication delay is developed such that state syn-
chronization is achieved among all agents where the synchro-
nized output trajectory is equal to a given constant trajectory.
The results show that synchronization can be achieved for a
discrete-time network with arbitrarily large communication
delay. Moreover, we find necessary and sufficient conditions
whether a given constant synchronized trajectory can be
achieved or not.
Notations and Definitions: Given a matrix A ∈ Rm×n,

A T and A∗ denote the transpose and conjugate transpose
of A, respectively while ‖A‖ denotes the induced 2-norm
of A. A square matrix A is said to be Schur stable if all
its eigenvalues are in the open unit disc. A ⊗ B depicts the
Kronecker product of A and B. We will use I or 0 for the
identity and zero matrix where the dimension is clear from
the context.

A weighted directed graph G is defined by a triple
(V, E,A) where V = {1, . . . ,N } is a node set, E is a set
of pairs of nodes indicating connections among nodes, and
A = [aij] ∈ RN×N is the weighting matrix. We have aij > 0
if (j, i) ∈ E and aij = 0 otherwise. Moreover, we assume
aii = 0. Each pair in E is called an edge. A path from node i1
to ik is a sequence of nodes {i1, . . . , ik} such that (ij, ij+1) ∈ E
for j = 1, . . . , k − 1. A directed tree is a subgraph (subset
of nodes and edges) in which every node has exactly one
parent node except for one node, called the root, which has no
parent node. A directed spanning tree is a subgraph which is
a directed tree containing all the nodes of the original graph.
If a directed spanning tree exists, the root has a directed path
to every other node in the tree. A graph consisting of N nodes
is called undirected if aij = aji for all i, j = 1, . . .N . For a
weighted graph G, the matrix L = [`ij] with

`ij =


N∑
k=1

aik , i = j,

−aij, i 6= j,

is called the Laplacian matrix associated with the graph G.
The Laplacian matrix L has all its eigenvalues in the closed
right half plane and at least one eigenvalue at zero associated
with right eigenvector 1 (a vector with all elements equal
to 1).

II. PROBLEM DESCRIPTION
We will study a MAS consisting of N identical linear agents:

xi(k + 1) = Axi(k)+ Bui(k),

yi(k) = Cxi(k), (1)

where xi(k) ∈ Rn, ui(k) ∈ Rm and yi(k) ∈ Rp are the state,
input and output of agent i = 1, . . . ,N , respectively.We need
the following assumption for the agents:
Assumption 1: We assume that
• (A, B, C) is stabilizable and detectable.
• All eigenvalues of A are in the closed unit disc.
The communication network provides each agent with a

linear combination of its own output relative to that of other
neighboring agents. In particular, each agent i ∈ {1, . . . ,N }
has access to the quantity,

ζi(k) =
N∑
j=1

aij(yi(k)− yj(k − κij)), (2)

where κij ∈ N+ is an unknown constant communication delay
from agent j to agent i for i 6= j. This communication delay
means that it takes κij seconds for agent j to transfer its state
information to agent i. We set κii = 0.

We will achieve state synchronization among agents, i.e.

lim
k→∞

(xi(k)− xj(k)) = 0

by tracking a constant reference trajectory yr for the output
of each agent. That is to say, the output of each agent should
converge to this given trajectory, i.e.,

lim
k→∞

(yi(k)− yr ) = 0. (3)

Some of the agents have access to relative information about
yr . If agent i has information available about yr then its
measurement is modified as

ζ̄i(k) = ζi(k)+ (yi(k)− yr ).

On the other hand, if agent i has no direct information avail-
able about yr , then the agent has the same information as
before:

ζ̄i(k) = ζi(k).

We assume that a nonempty subset S of the agents have
access to their own output relative to yr . In particular, each
agent i has access to the quantity

ψi(k) = ιi(yi(k)− yr ), ιi =

{
1, i ∈ S,
0, i /∈ S.

(4)
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The above can be combined and we obtain:

ζ̄i(k) = ζi(k)+ ιi(yi(k)− yr ) (5)

for i = 1, . . . ,N . To guarantee that each agent can achieve the
required regulation, we need that there exists a path to each
node starting with a node from the set S. In other words, we
need the following assumption on the network graph:
Assumption 2: Every node of the network graph G is a

member of a directed tree which has its root contained in the
set S.
Given the set S ⊆ {1, . . . ,N }, we denote by GN

S the set of
all graphs with N nodes which satisfy Assumption 2.

For any graph G ∈ GS , with the associated Laplacian
matrix L, we define the expanded Laplacian matrix as

L̄ = L + diag{ιi} = [ ¯̀ij]N×N .

and we define

D̄ = I −
1

2+ Din
L̄. (6)

where

Din = max
i=1,...,N

 N∑
j=1

aij


It is easily verified that the matrix D̄ is a matrix with
all elements nonnegative and the sum of each row is less
than or equal to 1.

Clearly, in order for all agents to follow the prescribed
trajectory, we must have that for any agent i there exists an
agent j which has access to the reference trajectory and is
such that the associated network graph has a directed path
from j to i. This property is equivalent to the condition in
Assumption 2.
Lemma 1: The matrix D̄ has all eigenvalues in the open

unit disc if and only if Assumption 2 is satisfied.
Proof: We know that L̄ is invertible if and only if

Assumption 2 is satisfied.
Assume L̄ is invertible. As noted in the proof of

[18, Lemma 3.7] all eigenvalues of D̄ are inside the unit
circle or at 1. But if D̄ has an eigenvalue at 1 then we imme-
diately obtain that L̄ is singular which gives a contradiction.
Hence all eigenvalues of D̄ are inside the unit disc.
On the other hand, if D̄ has all eigenvalues in the open unit

disc then it has no eigenvalue at 1. This immediately yields
that L̄ is invertible and hence Assumption 2 is satisfied.
Remark 1: If only one agent i has access to the reference

trajectory then the matrix D̄ is invertible if and only of the
associated network graph contains a directed spanning tree
with agent i as its root.

In this paper, we study state synchronization based on
output regulation. The general result requires that the graph is
undirected. If the graph is known then we can obtain a similar
result even if the graph is directed.
Definition 1: Given a set S and a given real number β ∈

(0, 1), letGN
S,β be the subset ofG

N
S for which the correspond-

ing matrix D̄ has the property that |λi| < β for i = 1, . . . ,N.

The subset of GN
S,β of undirected graphs is denoted by

Gu,N
S,β .
For the MAS (1), we formulate two state synchronization

problems as follows.
Problem 1 (General Case): Consider a MAS described by

(1) and (5) with a given set of constant trajectories Cy ⊆ Rp.
The problem of state synchronization with output regula-

tion given a set S and a set of graphs Gu,N
S,β with β ∈ (0, 1)

in the presence of unknown, nonuniform and arbitrarily large
communication delays is to find a distributed linear dynamic
protocol of the form,{

xi,c(k + 1) = Acxi,c(k)+ Bcζ̄i(k),
ui(k) = Ccxi,c(k),

(7)

for i = 1, . . . ,N, such that

lim
k→∞

xi(k)− xj(k) = 0, (8)

for all i, j ∈ {1, . . . ,N } while the output of each agent
converges to yr , i.e.,

lim
k→∞

yi(k)− yr = 0, (9)

for all i ∈ {1, . . . ,N }, for any yr ∈ Cy, for any graph G ∈
GN
S,β , for all initial conditions and for any communication

delay κij ∈ N+.
Problem 2 (Known Communication Topology): Consider

a MAS described by (1) and (5) with a given set of constant
trajectories Cy ⊆ Rp.
The problem of state synchronization and output regula-

tion for a network associated to a given graph G and with
unknown, nonuniform and arbitrarily large communication
delays is to find a distributed linear dynamic protocol of
the form (7) for each agent such that (8) is satisfied for all
i, j ∈ {1, . . . ,N } and (9) holds for all i ∈ {1, . . . ,N }, for any
yr ∈ Cy, for all initial conditions and for any communication
delay κij ∈ N+,

III. MAS VIA PARTIAL STATE COUPLING IN PRESENCE
OF UNKNOWN COMMUNICATION DELAYS
We consider here the output synchronization problem for net-
works with partial-state coupling and unknown, nonuniform
and arbitrarily large communication delays. We study this
problem for the general case as defined in Problem 1 with
undirected graphs.

In general, we have to restrict the choice of the given
trajectory yr . Let

Cy =

{
y ∈ Rp

∣∣∣∣(0y
)
∈ Im

(
A− I B
C 0

)}
=
{
y ∈ Rp ∣∣∃ x ∈ Rn, u ∈ Rm

: Ax + Bu = x, Cx = y
}
.

(10)

It turns out that our problem is solvable if and only if yr ∈ Cy.
Note that Cy = Rp if (A,B,C) is right-invertible and has no
invariant zeros in one.
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Consider a MAS described by (1) and (5). Let R be an
injective matrix such that Cy = ImR. Choose 5 and 0 such
that: (

0
R

)
=

(
A− I B
C 0

)(
5

0

)
(11)

and

rank
(
A− I B0
C 0

)
= n+ rank0. (12)

Choose a matrix 01 such that Im01 = Im0, and then choose
a matrix 02 such that matrix

0̄ =
(
01 02

)
(13)

is square and invertible. Define Ã, B̃ and C̃ according to

Ã =
(
A B01
0 I

)
, B̃ =

(
B02 0
0 I

)
, C̃ =

(
C 0

)
.

(14)

Moreover, choose K such that Ã+KC̃ is Schur stable. Let Pδ
be the unique solution of the discrete-time algebraic Riccati
equation

Ã TPδÃ−Pδ−Ã TPδB̃(I + B̃ TPδB̃)−1B̃ TPδÃ+δI=0,

(15)

where δ is a parameter to be chosen later on. We consider the
following protocol:

xi,c(k + 1) =

(
Ã+ KC̃ 0
B1 Fδ 0

)
xi,c(k)

−
1

2+ Din

(
K
0

)
ζ̄i(k),

ui(k) =
(
H1 Fδ 01

)
xi,c(k),

(16)

with

Fδ = −
1

1− β
(I + B̃ TPδB̃)−1B̃ TPδÃ,

B1 =
(
0 I

)
,

H1 =
(
02 0

)
, (17)

Theorem 1: Consider aMAS described by (1) and (2)with
an associated undirected graph. Let a nonempty set S and a
β ∈ (0, 1) be given. Let Cy be defined by (10).
In that case, Problem 1 is solvable if the agents are such

that (A,B,C) is stabilizable and detectable and all eigenval-
ues of A are in the closed unit disc.
More specifically, there exists δ > 0 such that the linear

protocol (16) achieves state synchronization and output reg-
ulation for any S, for any undirected graph G ∈ Gu,N

S,β , for all
initial conditions, for any communication delay κij ∈ N+ and
for any yr ∈ Cy.
Remark 2: We note that the results of Theorem 1 still hold

if the graph is directed but balanced as long as the associated
matrix D̄ satisfies

0 < D̄+ D̄ T < 2β

Before we can prove this theorem, we need several prelim-
inary lemmas:
Lemma 2: Let β be an upper bound for the eigenvalues of

a symmetric matrix D̄. Then, for all communication delays
κik ∈ N+ for i, k = 1, . . . ,N and for all ω ∈ R, all
eigenvalues of D̄jω(κ) are less than or equal to β where
D̄jω(κ) is such that

[D̄jω(κ)]ik =

{
d̄ike−jωκik if i 6= k
d̄kk if i = k

(18)

Denote by κ the matrix with [κ]ik = κik where κii = 0.
Lemma 3: Let (A,B) be stabilizable and (A,C) be

detectable. Define Ã, B̃ and C̃ according to (14). Let K be
such that Ã+KC̃ is asymptotically stable while Fδ is defined
by (17). In that case, for any β ∈ (0, 1) there exists a δ∗ > 0
such that for any δ ∈ (0, δ∗], the matrix(

Ã (1− λ)B̃Fδ
Ã+ KC̃ −KC̃

)
is asymptotically stable for all λ ∈ C with |λ| < β.

The proof of Lemmas 2 and 3 can be found in Appen-
dices A and B. The following lemma is a classical result. It is
a minor modification of a result found in [26].
Lemma 4: Consider a linear time-delay system

x(k + 1) = Ax(k)+
m∑
i=1

Aix(k − κi), (19)

where x(k) ∈ Rn and κi ∈ N+. Suppose A+
∑m

i=1 Ai is Schur
stable. Then, (19) is asymptotically stable if

det[ejωI − A−
m∑
i=1

e−jωκ
r
i Ai] 6= 0,

for all ω ∈ [−π, π] and for all κri ∈ N+ with 0 < κri 6 κi
(i = 1, . . . ,N).

Proof of Theorem 1: According to results from classical
output regulation, an individual agent can track a constant
reference signal yr if and only if there exists an x0 and a u0
such that (

A− I B
C 0

)(
x0
u0

)
=

(
0
yr

)
. (20)

Moreover, such x0 and u0 exist if and only if yr is in the setCy.
In order to use protocol (16) we first need to show there

exists 5 and 0 such that (11) and (12) are satisfied.
Firstly, there exists an injective matrix R such that Cy =

ImR. In that case, it is easily seen that we have a 5 and a 0
satisfying (11).

To show that we can impose the rank condition (12), one
can easy see that (A,C) detectable implies that the first n
columns of (12) are linearly independent. If the rank condi-
tion (12) does not hold, then there must exist x and v such
that (

A− I B0
C 0

)(
x
v

)
= 0
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with v ⊥ ker0 and v Tv = 1. We obtain(
A− I B
C 0

)(
5− xv T

0(I − vv T)

)
= 0.

which implies that 5̄ = 5 − xv T and 0̄ = 0(I − vv T)
also satisfy the above result but with rank 0̄ < rank0.
Recursively, we can find a solution of (11)which also satisfies
the extra rank condition (12).

Next, choose an injective 01 such that Im0 = Im01 and
choose 02 such that (13) is a square and invertible matrix.
We design a dynamic precompensator for each agent of the
following form:

pi(k + 1) = pi(k)+
(
0 I

)
vi(k), pi(k) ∈ Rν

ui(k) = 01 pi(k)+
(
02 0

)
vi(k), (21)

where pi(k), vi(k), and ui(k) are state, input, and output of
precompensator respectively, and ν = rank0. The intercon-
nection of (1) and (21) is of the form,{

x̃i(k + 1) = Ãx̃i(k)+ B̃vi(k),
yi(k) = C̃ x̃i(k),

(22)

where

x̃i(k) =
(
xi(k)
pi(k)

)
,

while Ã, B̃ and C̃ are defined according to (14).
Next, we must verify the stabilizability and detectability of

agents in combinationwith their precompensator as described
by the triple (Ã, B̃, C̃). The stabilizability immediately from
the invertibility of (13) and the stabilizability of (A,B).

For the detectability of (22), we verify the following
condition

rank

zI − A −B01
0 (z− 1)I
C 0

 = n+ ν

for all z outside or on the unit circle, where ν is such that
01 ∈ Rn×ν . For z 6= 1, the above result can be obtained
immediately from the detectability of (A,C). For z = 1,
we have:

rank

I − A −B01
0 0
C 0

 = rank
(
I − A −B0
C 0

)
= n+ rank0 = n+ ν

since Im0 = Im01 and rank01 = ν (since 01 is injective).
Thus, we can obtain the detectability of (22).

In the following, we design the following protocolχi(k + 1) = (Ã+ KC̃)χi(k)−
1

2+ Din
K ζ̄i(k),

vi(k) = Fδχi(k),
(23)

for the multi-agent system whose agents are of the form (22),
where χi(k) is the estimate for x̃i(k) in (22) while K is chosen

such that Ã+KC̃ is Schur stable, andPδ is the unique solution
of the algebraic Riccati equation (15)

Next, we prove that the output of each agent converges to
the constant trajectory yr by using dynamical protocol (23).
Firstly we show that there exists a 5̃ such that Ã5̃ = 5̃ and
C̃5̃ = R. It is easily verified that a suitable 5̃ is given by:

5̃ =

(
5
V

)
,

where V is such that 01V = 0. For i = 1, . . . ,N , we define
x̄i(k) = x̃i(k) − 5̃xr where xr is such that yr = Rxr , and the
output synchronization error ei(k) = yi(k)− yr . Then, we get
the error dynamics,{

x̄i(k + 1) = Ãx̄i(k)+ B̃vi(k),
ei(k) = C̃ x̄i(k).

(24)

Moreover,

1
2+ Din

ζ̄i(k) = C̃ x̄i(k)−
N∑
j=1

d̄ijC̃ x̄j(k − κij).

Let

x̄(k) =


x̄1(k)
x̄2(k)
...

x̄N (k)

 and χ (k) =


χ1(k)
χ2(k)
...

χN (k)

.
We find that the closed-loop system can be written in the
frequency domain as(
zx̄(z)
zχ (z)

)
=

(
IN ⊗ Ã IN ⊗ B̃Fδ

−(I − D̄z(κ))⊗ KC̃ IN ⊗ (Ã+ KC̃)

)
×

(
x̄(z)
χ (z)

)
, (25)

where D̄z(κ) is the matrix defined by:

[D̄z(κ)]ij =

{
d̄ijz−κij if i 6= j
d̄ii if i = j

Next, we prove the asymptotical stability of (25) for all
communication delays κij ∈ N+. We first prove the stability
of (25) without communication delays and then prove the
stability for the case that includes all communication delays
κij.

When there is no communication delay in the network,
the stability of system (25) is equivalent to asymptotic sta-
bility of the matrix(

Ã B̃Fδ
−(1− λi)KC̃ Ã+ KC̃

)
for all i ∈ {1, . . . ,N }, where λ1, . . . , λN are the eigenvalue
of the matrix D̄ which satisfy |λi| 6 β. Note that(
1− λi 0

0 I

)(
Ã B̃Fδ

−(1− λi)KC̃ Ã+ KC̃

)
=

(
Ã (1− λi)B̃Fδ
−KC̃ Ã+ KC̃

)(
1− λi 0

0 I

)
.
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and hence asymptotically stability of the closed loop system
(25) without any communication delay is equivalent to the
Schur stability of the matrix(

Ã (1− λi)B̃Fδ
−KC̃ Ã+ KC̃

)
From Lemma 3, we then find that there exists a δ∗ such that
system (25) is asymptotically stable without communication
delay for any δ ∈ (0, δ∗].
In the case of communication delay, according to Lemma

4, the closed-loop system (25) is asymptotically stable for all
communication delays κij ∈ N+, if

det
[
ejωI − Xjω(κr )

]
6= 0 (26)

for all ω ∈ [−π, π] and any κrij ∈ R+ where

Xjω(κr ) =
(

IN ⊗ Ã IN ⊗ B̃Fδ
−(I − D̄jω(κr ))⊗ KC̃ IN ⊗ (Ã+ KC̃)

)
while κr denotes a vector consisting of all κrij (i 6= j) with
i, j ∈ {1, . . . ,N } and D̄jω is defined in (18). The condition
(26) holds if the matrix Xjω(κr ) has no eigenvalues on the
unit circle for all ω ∈ [−π, π] and for all κrij ∈ N+.

Lemma 2 implies that all the eigenvalues of D̄jω(κr ) have
amplitude less than β. Similarly as before, Lemma 3 implies
that there exists a δ∗ such that for any δ ∈ (0, δ∗],(

Ã B̃Fδ
−(1− λ)KC̃ Ã+ KC̃

)
is asymptotically stable for all λ with |λ| < β. It is then
straightforward to show that the matrix Xjω(κr ) has no eigen-
values on the unit circle. Therefore, the closed-loop system
(25) is asymptotically stable for any communication delay
κij ∈ N+.

Finally, by combining the pre-compensator (21) and pro-
tocol (23), we get the linear dynamic protocol (16), which
achieves state synchronization and makes the output track the
given trajectory yr .

IV. MAS WITH A KNOWN DIRECTED
COMMUNICATION TOPOLOGY
In this section, we study state synchronization problem for a
multi-agent system with a known graph G. The main advan-
tage of knowing the graph is that we can also handle directed
graphs.

In this case, we still employ the protocol (16) to establish
the state synchronization for one individual graph (instead of
for a set), i.e. we assume the directed graph G is given.
We need a modified version of Lemma 2:
Lemma 5: Let β be an upper bound for the eigenvalues

of a matrix D̄. In that case there exists β̃ < 1 such that,
for all communication delays κik ∈ N+ for i, k = 1, . . . ,N
and for all ω ∈ [−π, π], all eigenvalues of D̄jω(κ) are less
than or equal to β̃ where D̄jω(κ) is defined by (18) and denote
by κ the matrix with [κ]ik = κik where κii = 0.

FIGURE 1. The undirected communication topology.

FIGURE 2. The known directed communication topology.

The proof of Lemma 5 can be found in Appendix C. The
corresponding theorem is as follows.
Theorem 2: Consider aMAS described by (1) and (2)with

an associated directed graph G ∈ GN
S given a set S.

Then Problem 2 is solvable if the agents are such that
(A,B,C) is stabilizable and detectable and all eigenvalues
of A are in the closed unit disc.
More specifically, given the directed graph G, there exists

δ > 0 such that the linear protocol (16) achieves state syn-
chronization and output regulation for any communication
delays κij ∈ N+, for all initial conditions and for any yr ∈ Cy.
Remark 3: If we have a finite set of possible graphs then

we can still find a protocol that works for every graph in this
finite set (use as an upper bound for δ, the maximum of the
lower bounds for each individual graph in the set).

Proof of Theorem 2: We use Lemma 5 to obtain a
bound β̃ for the eigenvalues of D̄jω(κ). Except for using this
new bound, the rest of the proof is identical to the proof of
Theorem 1.

V. EXAMPLES
In this section, we provide an example to verify our dynamic
protocol design.
Example 1: Consider a MAS with 4 identical agents and a

constant trajectory yr = 5. The agent model is of the form of
(1) with communication given by (5), where

A =


−1 0 0

0
1
2

√
3
2

0 −

√
3
2

1
2

, B =

1 0
0 1
0 0

,
C =

(
1 0 1

)
.
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FIGURE 3. Synchronization of a discrete-time MAS with unknown undirected graph and uniform unknown communication delays.

We choose

R = 1, 5 =


−
1
2

−

√
3
2
3
2

, 0 = 01 =
(

1
−
√
3

)
, 02 =

(
0
1

)
,

which satisfy (11) and (12). Delays are set as
0 κ12 κ13 κ14
κ21 0 κ23 κ24
κ31 κ32 0 κ34
κ41 κ42 κ43 0

 =

0 1 2 3
3 0 1 2
1 2 0 2
2 3 1 0

.
Case I (Unknown Undirected Graph): We define a set

of networks Gu,N
S,β with β = 0.9568. Here, we consider a

network as shown in Figure 1 with the matrix

D̄ =


0.25 0.25 0.25 0
0.25 0.75 0 0
0.25 0 0.5 0.25
0 0 0.25 0.75


with ι1 = 1, ιi = 0 for i = 2, 3, 4, and
We can calculate δ∗ = 1.5 ∗ 10−5. By choosing δ = 2 ∗

10−6, we obtain the following dynamic protocol,
xi,c(k + 1) = ÂIxi,c(k)+

1
4


−0.1315
−0.1205
0.7908
0.2128

0

 ζ̄i(k),
ui(k) = F̂ Iδ xi,c(k),

(27)

with, ÂI, F̂ Iδ , as shown at the bottom of the next page.

The trajectory of the states of agents xi and the output
trajectory of the MAS with communication delays are given
in Figure 3.We see that all 4 agents achieve state synchroniza-
tion, where (a)-(c) show the response of states xi1, xi2, xi3
(i = 1, . . . , 4), and (d) shows the output trajectories y. That
is, state xi(k) will synchronize to the constant vector

1
2

 −5−5√3
15

. (28)

Meanwhile, the output trajectory is shown in Figure 3-(d).
Case II (Known Directed Graph): We consider a known

network as shown in Figure 2 with the matrix

D̄ =



1
3

1
3

0 0

0
2
3

1
3

0

0 0
2
3

1
3

1
3

0 0
1
3


with ι1 = 1, ιi = 0 for i = 2, 3, 4. By choosing δ = 2 ∗ 10−6,
we obtain the dynamic protocol in the form of (27) with two
different gains, ÂII, F̂ IIδ , as shown at the bottom of the next
page, to substitute ÂI and F̂ Iδ . Then, the trajectory of the
states of agents xi and the output trajectory of the MAS with
communication delays are given in Figure 4. We see that all
4 agents achieve state synchronization, where (a)-(c) show
the response of states xi1, xi2, xi3 (i = 1, . . . , 4), and (d)
shows the output trajectories y. That is, state xi will syn-
chronize to the constant vector (28). Meanwhile, the output
trajectory is shown in Figure 4-(d). In this case, it is obvious
that state synchronization with known directed graph need
much more time to be achieved.
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FIGURE 4. Synchronization of a discrete-time MAS with known directed graph and uniform unknown communication delays.

VI. CONCLUSION
The regulated state synchronization problem for homoge-
neous discrete-time MAS has been studied in this paper,
where the agents is with unknown nonuniform communica-
tion delays. Based on the low gain, a dynamic protocol has
been designed to achieve the state synchronization and its
output track a given constant trajectory. Meanwhile, the pro-
tocol design only needs the rough knowledge of the network
topology which belongs to a set of undirected or balanced
networks. It is also confirmed that synchronization can be
achieved for a MAS with arbitrary communication delays.

APPENDIX A
PROOF OF LEMMA 2
All eigenvalues of D̄jω(κ) are in the set{

v∗D̄jω(κ)v | v ∈ CN , ‖v‖ = 1
}
.

Therefore, it is sufficient that all elements in this set have
amplitude less than or equal to β.

Since D̄ is symmetric and β is an upper bound for the
amplitude of eigenvalues of D̄, we find that v∗D̄v is less
than or equal to β, provided ‖v‖ = 1.

Next, for an arbitrary vector v ∈ CN , we have

v∗D̄jω(κ)v =
N∑
i=1

N∑
m=1

v∗i vmd̄ime
−κimjω.

Since d̄im are all nonnegative, we get

|v∗D̄jω(κ)v| 6
N∑
i=1

N∑
m=1

|v∗i vm|d̄im

=

 |v1|...
|vN |

 T

D̄

 |v1|...
|vN |

 6 β,

which completes the proof.

ÂI =


−0.8685 0 0.1315 1.0000 0
0.1205 0.5000 0.9865 −1.7321 0
−0.7908 −0.8660 −0.2908 0 0
−0.2128 0 −0.2128 1.0000 0
−0.0326 −0.0399 0.0002 −0.0858 0


F̂ Iδ =

(
0 0 0 0 1.0000

−1.3724 ∗ 10−7 −0.0115 −0.0200 0.0202 −1.7321

)

ÂII =


−0.8685 0 0.1315 1.0000 0
0.1205 0.5000 0.9865 −1.7321 0
−0.7908 −0.8660 −0.2908 0 0
−0.2128 0 −0.2128 1.0000 0
−0.0319 −0.0391 0.0002 −0.0840 0


F̂ IIδ =

(
0 0 0 0 1.0000

−1.3447 ∗ 10−7 −0.0113 −0.0196 0.0198 −1.7321

)
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APPENDIX B
PROOF OF LEMMA 3
In the proof of Theorem 1 it was established that (Ã, B̃)
is stabilizable and (C̃, Ã) is detectable. This guarantees the
existence of K such that Ã+KC̃ is asymptotically stable and
also yields that Fδ is well-defined.
We basically need to prove that the system{

x(k + 1) = Ãx(k)+ (1− λ)B̃Fδχ (k),
χ (k + 1) = (Ã+ KC̃)χ (k)− KC̃x(k),

(29)

is asymptotically stable for any λ that satisfies |λ| < β.
Define e = x − χ . Then, we have
x(k + 1) = [Ã+ (1− λ)B̃Fδ]x(k)− (1− λ)B̃Fδe(k)
e(k + 1) = [Ã+ KC̃ − (1− λ)B̃Fδ]e(k)

+ (1− λ)B̃Fδx(k).

Let Q be the positive definite solution of the Lyapunov equa-
tion,

(Ã+ KC̃) TQ(Ã+ KC̃)− Q+ 4I = 0.

Since Fδ → 0 as δ → 0, there exists a δ1 such that for a
δ ∈ (0, δ1],

(Ã+KC̃−(1−λ)B̃Fδ)∗Q(Ã+KC̃−(1−λ)B̃Fδ)−Q+3I60.

Consider V1(k) = e(k)∗Qe(k). Let µ(k) = Fδx(k). Here we
omit the time label (k) for ease of presentation. We have

V1(k + 1)− V1(k)

6 −3‖e‖2 + |1− λ|2µ∗B̃ TQB̃µ

+ 2
∣∣∣(1− λ)∗µ∗B̃ TQ[Ã+ KC̃ − (1− λ)B̃Fδ]e

∣∣∣
6 −3‖e‖2 +M1‖µ‖‖e‖ +M2‖µ‖

2, (30)

where

M1 = 4‖B̃ TQ‖‖Ã+ KC̃‖ + 8‖B̃ TQ‖ max
δ∈[0,1]

{‖B̃Fδ‖)},

M2 = 4‖B̃ TQB̃‖.

It should be noted thatM1 andM2 are independent of δ and λ
provided that |λ| < β.
Consider V2(k) = x∗(k)Pδx(k). We have

V2(k + 1)− V2(k)

6 −δ‖x‖2 −
1
2
(1− β)2‖µ‖2

−2Re
(
(1− λ)∗e∗F T

δ B̃ TPδ[Ã+ (1− λ)B̃Fδ]x
)

+|1− λ|2e∗F T
δ B̃ TPδB̃Fδe.

where we used that

(1− β)2x∗F T
δ (I + B̃ TPδB̃)Fδx

−2Re(1− λ)(1− β)x∗F T
δ (I + B̃ TPδB̃)Fδx

+ |1− λ|2 x∗F T
δ B̃ TPδB̃Fδx

6 (1− β)2 x∗F T
δ (I + B̃ TPδB̃)Fδx

−2(1− β)2 x∗F T
δ (I + B̃ TPδB̃)Fδx

+ (1+ β)2 x∗F T
δ B̃ TPδB̃Fδx

6 −(1− β)2 x∗F T
δ Fδx + (1+ β)2x∗F T

δ B̃ TPδB̃Fδx

6 −
1
2
(1− β)2 x∗F T

δ Fδx

provided δ is small enough such that

B̃ TPδB̃ 6
(1− β)2

2(1+ β)2
(31)

Note that

e∗F T
δ B̃ TPδ[Ã+ (1− λ)B̃Fδ]x

= e∗F T
δ B̃ TPδÃx + (1− λ)e∗F T

δ B̃ TPδB̃µ

= −e∗F T
δ (B̃ TPδB̃+ I )µ+ (1− λ)e∗F T

δ B̃ TPδB̃µ

= −e∗[F T
δ + λF

T
δ B̃ TPδB̃]µ,

and hence

V2(k + 1)− V2(k)

6−δ‖x‖2 −
1
2
(1− β)2‖µ‖2 + θ1(δ)‖e‖‖µ‖ + θ2(δ)‖e‖2,

(32)

where

θ1(δ) = 4(‖Fδ‖ + ‖F T
δ B̃ TPδB̃‖),

θ2(δ) = 4‖F T
δ B̃ TPδB̃Fδ‖.

Consider a Lyapunov candidate V (k) = V1(k)+αV2(k) with

α =
2(M2 +M2

1 )

(1− β)2
.

In view of (30) and (32), we get

V (k + 1)− V (k)

6 −δα‖x‖2 −M2
1 ‖µ‖

2

−[3− αθ2(δ)]‖e‖2 + [M1 + αθ1(δ)]‖µ‖‖e‖.

There exists a δ∗ 6 δ1 such that for δ ∈ (0, δ∗] we have (31)
and

3− αθ2(δ) > 2, M1 + αθ1(δ) 6 2M1.

This yields

V (k + 1)− V (k) 6 −δα‖x‖2 − ‖e‖2 − (‖e‖ −M1‖µ‖)2.

Therefore, for δ ∈ (0, δ∗], the system (29) is globally asymp-
totically stable for any λ that satisfies |λ| < β.

APPENDIX C
PROOF OF LEMMA 5
We know the matrix D̄ has all its eigenvalues inside the unit
circle.

By [17, Th. 4.36], if the associated graph is irreducible and
all eigenvalues of D̄ are strictly less than 1, there exists a
positive diagonal matrix P and β̃ < 1 such that

D̄ TPD̄ < β̃P
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This implies(
P1/2D̄jω(κ)P−1/2

) T (
P1/2D̄jω(κ)P−1/2

)
< β̃I

We find:

v∗P1/2D̄P−1/2v 6 ‖P1/2D̄P−1/2‖v∗v 6 β̃1/2v∗v

for all v ∈ CN . We have:

v∗P1/2D̄jω(κ)P−1/2v =
N∑
i=1

N∑
m=1

v∗i vmp
1/2
i p−1/2m d̄ime−κimjω.

where p1, . . . , pN are the diagonal elements of P. Since d̄im
are all nonnegative, we get

|v∗P1/2D̄jω(κ)P−1/2v|

6
N∑
i=1

N∑
m=1

|v∗i vm|p
1/2
i p−1/2m d̄im

=

 |v1|...
|vN |


T

P1/2D̄P−1/2

 |v1|...
|vN |

 6 β̃1/2,

and hence all eigenvalues of D̄jω(κ) which are equal to the
eigenvalues of P1/2D̄jω(κ)P−1/2 are less than β̃ in magnitude.
If the graph is not irreducible we can obtain the same result
using the strongly connected components. After all if D̄ has
a block triangular structure then D̄jω(κ) has the same block
triangular structure and the eigenvalues of the whole matrix
are the union of the eigenvalues of the blocks on the diag-
onal. We can guarantee that the blocks on the diagonal are
irreducible and hence the previous argument applies.
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