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ABSTRACT This paper deals with finite-time formation control problems of unmanned aerial vehicle swarm
system with time-delay and input saturation. Using precise feedback linearization, first, the nonlinear time-
delay model of unmanned aerial vehicle is transformed into a linear second-order time-delay system. Based
on the neighbors’ states, a fixed-time distributed observer is constructed to estimate the leader’s state for each
follower unmanned aerial vehicle quickly and accurately. Moreover, by utilizing Artstein’s transformation,
the delayed second-order system is transformed into a delay-free system and a saturation function is used to
tackle the input saturation problem. Then, a finite-time formation control protocol is designed based on the
Artstein’s transformation and saturation function. Rigorous proof shows that all control inputs are bounded
and the formation control with time-delay is achieved in finite time. Finally, a simulation example is given
to verify the effectiveness of the proposed protocol.

INDEX TERMS Finite-time, formation control, unmanned aerial vehicle swarm, time-delay, input
saturation.

I. INTRODUCTION
In the past years, the cooperative formation control of
unmanned aerial vehicle (UAV) swarm has attracted an
increasing interest due to its broad applications in search and
rescue of disaster victims, detection of forest fires, surveil-
lance and reconnaissance [1], [2]. UAV swarm can constitute
a much more effective system, which means that some more
difficult tasks can be achieved through the cooperation among
UAVs. The formation control is a critical step of attempting
to control a swarm of UAVs, which control engineers have
conducted extensive research for years [3]–[5]. In general,
there are two control structures for formation control: cen-
tralized structure and distributed structure [4], [6]. Compared
with the centralized structure, the distributed control structure
has higher reliability and flexibility. Therefore, in this paper,
formation control is to develop a distributed control protocol
such that all UAVs reach andmaintain a desired formation via
local interactions.

For different kinds of UAVs, there are three main
formation control approaches, which have been devel-
oped to investigate the formation control problem, i.e.
behavior-based approach [7], leader-follower [8], [9] and

virtual structure [10]. Among these formation strategies, the
leader-follower approach is widely adopted and has been
studied extensively due to its simplicity and scalability.
In this architecture, many control protocols have been pro-
posed in the literature for various applications [1], [11], [12].
To solve the problem of multiple UAVs with uncertain
parameters, Xu and Zhen proposed a leader-follower control
law using multivariable model reference adaptive method,
which depended on less information interactions [11]. Fur-
thermore, the close formation problems for this kind of
UAV were investigated in the works of Duan and Qiu [12].
For UAV swarm with multiple leaders, the work of He,
Bai and Liang investigated the formation control problem
without collision among vehicles [1]. For formation con-
trol, convergence rate and the ability of disturbance rejection
are important performance indexes in practice which have
attracted many researchers to study finite-time formation
control technique [8], [13]–[15]. For multiple UAVs, Zhao,
Chao and Wang proposed a finite-time cooperative forma-
tion control protocol based on finite-time control theory and
precise feedback linearization [8]. Then, Hu et al. [13] inves-
tigated finite-time formation control for UAVs with input
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quantization and nonholonomic kinematic model based on
the backstepping technique. In the work of [14] and [15], the
finite-time formation control protocol was proposed for
unmanned helicopters.

Note that most of the existing literatures assumed that
the actuator of each UAV can generate arbitrary level of
control signals and time-delay is avoidable whenever each
UAV receives the states of the neighboring UAVs and pro-
cesses after receipt. Due to the physical structure, aerody-
namic configuration, performance of engines and steering
gear, input saturation limitation always exists, exceeding
which the stability of UAV might be threatened. Especially
during the flight, the UAV load burden, wind speed and other
factors will affect input saturation of UAV. Recently, these
problems mentioned above have been discussed separately
for distributed control of robots, spacecrafts and marine vehi-
cles. In the case of input saturation, finite-time formation
control approaches were proposed for marine vehicles [16],
[17], spacecrafts [18], [20], [21] and robots [22], [23]. For
time-delay caused by information transfers and processing,
finite-time formation control problems were investigated for
spacecrafts [23], [24], robots [25]. In the work of [23]
and [24], control protocols were designed by fast terminal
sliding manifold and switch function. In the control protocol,
only time-delay was considered in the sliding mode, which
may make the control protocol not applicable in practical
application. Based on [26], [25] proposed a finite-time for-
mation control protocol for non-holonomic robots with com-
munication delay, in which the control parameters need to be
very large to ensure the stability. In the practical situation,
this approach may exceed the limitation of the actuator and
threaten the stability of the closed-loop system. To the best of
our knowledge, there is no research on finite-time formation
control of UAVs with time-delay and input saturation.

Motivated by the aforementioned discussions, we consider
the finite-time formation control problem for UAV swarm
with time-delay and input saturation. The main contributions
of this paper can be summarized as follows.

(1) Since only the UAV directly connected to the leader
UAV can receive the leader’s states, a fixed-time observer is
constructed for each follower UAV.

(2) To solve the finite-time formation control problem
with time-delay, Artstein’s transformation is introduced to
transform the delayed system into a delay-free system.

(3) A finite-time formation control protocol for UAV
swarm is designed based onArtstein’s transformation and sat-
uration function. Rigorous proof is given by utilizing homo-
geneous method and Lyapunov theory.

The remainder of this paper is organized as follows.
We first address, in Section 2, preliminaries and problem
formulation. In Section 3, precise feedback linearization is
first introduced to transform the nonlinear model of UAV into
a linear system, then, a finite-time formation control protocol
is proposed based on a finite-time observer and Artstein’s
transformation. Section 4 gives the simulation example. The
conclusions and future works are provided in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. NOTATIONS AND GRAPH THEORY
Define sig(p)γ =

[
sig(p1)γ , · · · , sig(pn)γ

]T , sig(pi)γ =
|pi|γ sgn (pi), where sgn (•) is the signum function. In and
1n denote the identity matrix and identity column vec-
tor, respectively. ‖ • ‖ denotes the 2-norm. ⊗ denotes the
Kronecker product. Rn denotes n-dimensional Euclidean
space.

The topology of n agents is modeled as an undirected graph
G = {V , ζ,A}, where ζ ⊆ {(i, j), i, j ∈ V } is the edge set,
V = {1, 2, · · · , n} is a finite set of nodes, and A =

[
aij
]
n×n is

the associated adjacency matrix, where aii = 0, and aij = 1 is
the weight if (j, i) ∈ ζ or aij = 0, otherwise. The neighbor set
of i is defined as Ni =

{
j ∈ V : aij = 1

}
. Denote the matrix

D = diag {d11, d22, · · · , dnn} with dii =
∑n

j=1,j6=i aij. Then,
the Laplacian matrix L can be expressed by L = D − A and
L is symmetric.

B. DEFINITION AND LEMMAS
Definition 1 [27]: Consider the following system

ẋ = f (x), f (0) = 0, x (0) = x0, x ∈ Rn

where f (x) : U0 7→ Rn, f (x) = (f1 (x), f2 (x), · · · , fn (x))
is continuous on an open neighborhood U0 of the origin.
Let (r1, r2, · · · , rn) ∈ Rn with ri > 0. f (x) is homogenous
of degree k ∈ R with respect to (r1, r2, · · · , rn) if for any
given ε > 0, fi (εr1x1, εr2x2, · · · , εrnxn) = εk+ri fi (x), i =
1, 2, · · · , n, ∀x ∈ Rn. ẋ = f (x) is said to be homogenous if
f (x) is homogenous.
Lemma 1 [27]: Consider the following system

ẋ = f (x)+ f̂ (x), f (0) = 0, x ∈ Rn,

where f (x) is a continuous homogeneous vector field of
degree k < 0 with respect to (r1, r2, · · · , rn) and f̂ (x) is a
vector function which satisfies f̂ (0) = 0. Assume that x = 0
is an asymptotically stable equilibrium of the system ẋ =
f (x). Then, x = 0 is a locally finite-time stable equilibrium
of the system if

lim
ε→0

f̂i (εr1x1, · · · , εrnxn)
εk+r1

= 0, i = 1, 2, · · · , n, ∀x 6= 0.

In addition, the system ẋ = f (x) + f̂ (x) is globally finite-
time stable if the system is globally asymptotically stable and
locally finite-time stable.
Lemma 2 [28]: Consider the following system

V̇ = −αV
m
n − βV

c
d , V (0) = V0,

where m, n, c, d are positive odd integers satisfying m > n,
c < d, α > 0 and β > 0. Then, the equilibrium of the system
is globally finite-time stable and the settling time is bounded
by

T ≤
1
α

n
m− n

+
1
β

d
c+ d

.
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Lemma 3 [29]: If α ∈ (0, 1], the following inequality
holds (

n∑
i=1

|ri|

)α
≤

n∑
i=1

|ri|α ≤ n1−α
(

n∑
i=1

|ri|

)α
,

where ri ∈ R.
Lemma 4 [30]: Consider UAV swarm system, graph for

the follower UAVs is connected, and there is at least one
UAV that can directly obtain the leader’s information. Define
diagonal matrix H = diag (a10, a20, · · · , aN0) ≥ 0 with
ai0 > 0 if the leader is the neighbor of the ith UAV, then L+H
is positive definite and symmetric.
Lemma 5 [31]: Consider the system

ẋ (t) = Ax (t)+
k∑
i=0

Biu (t − τi), t ≥ 0,

where x (t) ∈ Rn, u (t) ∈ Rm, A ∈ Rn×n, Bi ∈ Rn×m, τi is a
positive constant.Let

y (t) = x (t)+
k∑
i=0

Lhi(A,Bi)ut ,

where ut : [−τi, 0] → Rm and Lhi(A,Bi)ut =∫ 0
−τi

eA(−hi−s)Biu (t + s)ds. Then we have ẏ (t) = Ay (t) +

Bu (t) with B =
k∑
i=0

e−AhiBi. If the system ẏ (t) = Ay (t) +

Bu (t) is finite-time stabilizable by a feedback control u (t) =
k (t) f (y (t))with k (t) bounded and f : Rn→ Rm continuous
such that f (0) = 0 and there exists α of class K such
that ‖f (y)‖m ≤ α

(
‖y‖n

)
, then the system y (t) = x (t) +

k∑
i=0

Lhi(A,Bi)ut is finite-time stabilizable by the feedback control

u (t) = k (t) f
(
x (t)+

k∑
i=0

Lhi(A,Bi)ut

)
.

C. FORMATION CONTROL PROBLEM FORMULATION
Considering UAV swarm system composed of N UAVs
(called followers) and a leader UAV (labeled as 0), the graph
for all follower UAVs is connected and at least one UAV is
connected to the leader. In the practical situation, there is
time-delay for each UAV to receive the status of the neighbor-
ing UAVs and process after receipt [32], [33]. On the forma-
tion control level, the model of the ith UAV is approximately
described as follows [8], [34].

ẋi = Vi cos θi cosψi
ẏi = Vi sin θi
żi = −Vi cos θi sinψi
V̇i = g (ηxi (t − τi)− sin θi)

θ̇i =
g
Vi

(
ηyi (t − τi)− cos θi

)
ψ̇i = −

g
Vi cos θi

ηzi (t − τi),

(1)

where xi, yi, zi denote the position in the earth-fixed iner-
tial coordinate, Vi is the speed, θi is the flight-path angle,

FIGURE 1. The earth-fixed inertial coordinate and flight path axis
coordinate.

ψi is the heading angle, g is the acceleration of gravity,
ηi =

[
ηxi, ηyi, ηzi

]T is the control input vector, ηxi, ηyi, ηzi
represent the component of overload in the axis of flight path
axis coordinates, τi denotes the constant input delay of the ith
UAV, i = 1, 2, · · · ,N .
Without loss of generality, the leader’s trajectory is gener-

ated by 

ẋ0 = V0 cos θ0 cosψ0

ẏ0 = V0 sin θ0
ż0 = −V0 cos θ0 sinψ0

V̇0 = g (ηx0 (t)− sin θ0)

θ̇0 =
g
V0

(
ηy0 (t)− cos θ0

)
ψ̇0 = −

g
V0 cos θ0

ηz0 (t),

(2)

where x0, y0, z0 denote the leader’s position in the earth-
fixed inertial coordinate, V0 is the leader’s speed, θ0 is the
leader’s flight-path angle, ψ0 is the leader’s heading angle,
η0=

[
ηx0, ηy0, ηz0

]T is the leader’s control input vector. Let
pi = [xi, yi, zi]T , the earth-fixed inertial coordinate (O−XYZ )
and flight path axis coordinate (Ot − XtYtZt ) are depicted by
Figure 1.

For UAV swarm system, formation is usually controlled
by using distributed control protocol, which is designed
on the basis of the neighbors’ states. When the number
of neighbours increases, it will cause the control input to
exceed the limitation of the actuator [35]. The saturation
constraint may deteriorate the stability of the controller
and even threaten the flight safety of the UAV. It is worth
noting that ηi =

[
ηxi, ηyi, ηzi

]T is the control input in
flight path axis coordinates. The limitation of the actuator
is the overload limit of earth-fixed inertial coordinate during
formation flight, that is, ‖ui (t)‖ =

√
u2ix + u

2
iy + u

2
iz ≤

‖umax‖, where ‖umax‖ denotes the overload limit, ui (t) =(
uix , uiy, uiz

)T , uix , uiy, uiz denote the ith UAV’s acceleration
in earth-fixed inertial coordinate. The goal of finite-time for-
mation control is to design a distributed controller ‖ui (t)‖ =√
u2ix + u

2
iy + u

2
iz ≤ ‖umax‖, which can control UAV swarm to
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maintain desired formation and track the leader UAV within
finite time.

As shown in Figure 1, ri is the expected position vector
between the ith UAV and leader UAV, and rij is the relative
position vector between the ith UAV and jth UAV. Then,
the control objective of this paper is to design a distributed
controller ‖ui (t)‖ ≤ ‖umax‖ for follower UAVs to satisfy
lim
t→T
‖pi(t)− ri − p0(t)‖ = 0, lim

t→T
‖ṗi(t)− ṗ0 (t)‖ = 0 and

‖pi(t)− ri − p0(t)‖ = 0, ‖ṗi(t)− ṗ0 (t)‖ = 0 when t ≥ T ,
where T denotes a finite-time, i = 1, 2, · · · ,N .

III. FINITE-TIME FORMATION CONTROL PROTOCOL
DESIGN FOR UAV SWARM
In this section, finite-time formation control problem with
time-delay and input saturation is investigated. First, by using
precise feedback linearization, the system (1) is transformed
into a linear system. Since only the UAV directly connected
to the leader UAV can receive the leader’s states, a fixed-time
observer is constructed for each follower UAV to estimate the
leader’s states. Then, Artstein’s transformation is introduced
to transform the delayed system into a delay-free system and
a distributed control protocol is proposed to solve finite-time
formation control problem with input saturation and time-
delay.

The model of UAV can be rewritten as

ϕ̇i = f (ϕi)+ c (ϕi) ηi (t − τi), (3)

where ϕi = (xi, yi, zi,Vi, θi, ψi)T , ηi =
(
ηxi, ηyi, ηzi

)T ,
f (ϕi) =



Vi cos θi cosψi
Vi sin θi

−Vi cos θi sinψi
−g sin θi
−

g
Vi
cos θi
0

, c (ϕi) =



0 0 0
0 0 0
0 0 0
g 0 0
0 g

Vi
0

0 0 −g
Vi cos θi

.
By using precise feedback linearization [8], the system (3)

can be transformed into the following linear system

ζ̇i = Aζi + Bui (t − τi), (4)

where ζi = (xi, yi, zi, ẋi, ẏi, żi)T , A =
(
03×3 I3×3
03×3 03×3

)
, B =(

03×3
I3×3

)
.

The state feedback transformation can be specified by

ui (t − τi) =

 0
−g
0

+ 0 (θi, ϕi)
 ηxi (t − τi)ηyi (t − τi)
ηzi (t − τi)

, (5)

where 0 is the transformation matrix and 0 (θi, ϕi) = g cos θi cosψi −g sin θi cosψi g sinψi
g sin θi g cos θi 0

−g cos θi sinψi g sin θi sinψi g cosψi

.
With pi = (xi, yi, zi)T , (4) can be expressed as the follow-

ing second-order system

p̈i = ui (t − τi), (6)

where pi ∈ R3, ui ∈ R3 denote the position, control input,
respectively, i = 1, 2, · · · ,N .

p̈0 (t) = u0 (t), (7)

where p0 ∈ R3, u0 ∈ R3 denote the position, control input of
leader UAV, respectively. The control input should not exceed
the limitation of the actuator, that is, ‖u0‖ < ρ, ρ is an
appropriate positive constant.

Since only the UAV directly connected to the leader UAV
can receive the leader’s states, distributed observer is con-
structed for each follower UAV. In order to estimate the
leader’s states quickly and accurately, fixed-time stability
theory was introduced [36], [37], and the fixed-time observer
is designed as follows:

˙̂pi =

N∑
j=0

aij ˙̂pj

N∑
j=0

aij

−
α

N∑
j=0

aij

sig

 N∑
j=0

aij
(
p̂i − p̂j

)m/n

−
β

N∑
j=0

aij

sig

 N∑
j=0

aij
(
p̂i − p̂j

)c/d

, (8)

where α, β denote observer gains and α, β > 0, m, n, c, d are
positive odd integers satisfying m > n and c < d , p̂i is the
estimate of observer for the ith UAV, p̂0 = p0.
Theorem 1: Suppose that the graph for the follower UAVs

is connected, and there is at least one UAV that can directly
obtain the leader’s information. The fixed-time observer (8)
can estimate the leader’s states in fixed-time and the settling
time is bounded by

T1 <
1
α

n
m− n

+
1
β

d
d − c

.

Proof:

Define φi =
N∑
j=1

aij
(
p̂i − p̂j

)
+ ai0

(
p̂i − p0

)
, (8) can be

rewritten as

φ̇i = −αsig(φi)m/n − βsig(φi)c/d . (9)

Choose the Lyapunov function candidate V1 (t) = 1
2φ

Tφ,
where φ =

(
φT1 , φ

T
2 , · · · , φ

T
N

)T , φi = (φi1, φi2, φi3)
T .

According to the definition of sig(•)γ , we have sig(φi)γ =[
sig(φi1)γ , sig(φi2)γ , sig(φi3)γ

]T . Then, we have

φTi sig(φi)
m/n =

3∑
j=1

∣∣φij∣∣m/n+1, φTi sig(φi)c/d = 3∑
j=1

∣∣φij∣∣c/d+1.
From Lemma 3, we can obtain that

N∑
i=1

3∑
j=1

∣∣φij∣∣m/n+1 ≥(
N∑
i=1

3∑
j=1

∣∣φij∣∣2)
m/n+1

2

= ‖φ‖m/n+1,
N∑
i=1

3∑
j=1

∣∣φij∣∣c/d+1 ≥

‖φ‖c/d+1. Taking the derivative of V1 (t), it follows that

V̇1 (t) = −α
N∑
i=1

φTi sig(φi)
m/n − β

N∑
i=1

φTi sig(φi)
c/d
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= −α

N∑
i=1

3∑
j=1

∣∣φij∣∣m/n+1 − β N∑
i=1

3∑
j=1

∣∣φij∣∣c/d+1
= −α

N∑
i=1

3∑
j=1

(
φ2ij

)m/n+1
2
− β

N∑
i=1

3∑
j=1

(
φ2ij

) c/d+1
2

≤ −α

 N∑
i=1

3∑
j=1

φ2ij

m/n+1
2

− β

 N∑
i=1

3∑
j=1

φ2ij


c/d+1

2

= −α
(
‖φ‖2

)m/n+1
2
− β

(
‖φ‖2

) c/d+1
2

= −α‖φ‖m/n+1 − β‖φ‖c/d+1

= −α2
m/n+1

2 V
m/n+1

2
1 (t)− β2

c/d+1
2 V

c/d+1
2

1 (t). (10)

Define χ1 =
√
2V1 (t), it follows that

χ̇1 ≤ −αχ
m/n
1 − βχ

c/d
1 . (11)

It follows from Lemma 2 that φi = 03 within fixed-
time and the fixed-time upper bound can be computed
as T1 < 1

α
n

m−n +
1
β

d
d−c . Then we can obtain ‖φ‖ =∥∥((L + H)⊗ I3) (p̂− 1N ⊗ p0

)∥∥ = 0 when t ≥ T1, p̂ =[
p̂T1 , p̂

T
2 , · · · , p̂

T
N

]T . Noting that the graph for the follower
UAVs is connected, and there is at least one UAV that
can directly obtain the leader’s information. According to
Lemma 4, L + H is positive definite and symmetric, and we
get

∥∥p̂− 1N ⊗ p0
∥∥ = 0, ∀t ≥ T1, which means p̂1 = p̂2 =

· · · = p̂N = p0, when t ≥ T1. This is the end of proof. �
Remark 1: From Theorem 1, we can obtain that p̂1 =

p̂2 = · · · = p̂N = p0, when t ≥ T1. Similar
to (8), we design a fixed-time observer to estimate ṗ0,

that is, ¨̂pi =

N∑
j=0

aij ¨̂pj

N∑
j=0

aij

−
α

N∑
j=0

aij

sig

(
N∑
j=0

aij
(
˙̂pi − ˙̂pj

))m/n
−

β
N∑
j=0

aij

sig

(
N∑
j=0

aij
(
˙̂pi − ˙̂pj

))c/d
. By using the same proof pro-

cess as Theorem 1, we can prove that ˙̂p1 = ˙̂p2 = · · · = ˙̂pN =
ṗ0, when t ≥ T1.
Considering the time-delay, the leader’s information

received by the ith UAV is lagging, and the lag time is
τi. Therefore, at time t , the control input of each UAV is
determined by the states of time t − τi. Then, all follower
UAVs can track the lag items of the leader UAV. As shown
in [32], [38], and [39], define the state tracking errors εpi =
pi (t) − p0 (t − τi), εṗi = ṗi (t) − ṗ0 (t − τi), where ṗi =
[Vi cos θi cosψi,Vi sin θi,−Vi cos θi sinψi]T . The time-delay
second-order system (6) (7) can be written as{

ε̇pi = εṗi

ε̇ṗi = ui (t − τi)− u0 (t − τi).
(12)

Artstein’s transformation [31] is introduced to transform
the delayed system (12) into a delay-free system. Then we

have{
y1i = εpi +

∫ 0
−τi
(−τi − s) (ui (t + s)− u0 (t + s)) ds

y2i = εṗi +
∫ 0
−τi
(ui (t + s)− u0 (t + s)) ds.

(13)

After transformation, we have{
ẏ1i = y2i − τi (ui (t)− u0 (t))
ẏ2i = ui (t)− u0 (t).

(14)

To tackle the input saturation problem, the following satu-
ration function is introduced by

sαγ (x) =

sig(x)
α, |x| < γ

γ αsig(x)α

|x|α
, |x| ≥ γ.

(15)

where α is a positive constant, γ > 0 is the
design parameter, x ∈ R. In addition, sαγ (X) =[
sαγ (x1), s

α
γ (x2), · · · , s

α
γ (xn)

]T
, X = [x1, x2, · · · , xn]T .

From [18], the following function is specified by

Sαγ (x) =


|x|α+1

α + 1
, |x| < γ

γ α |x| −
αγ α+1

α + 1
, |x| ≥ γ.

(16)

Sαγ (x) is radially unbounded and positive definite. Taking

the time derivative of Sαγ (x), we obtain that
dSαγ (x)
dt = sαγ (x).

In addition, Sαγ (X) =
[
Sαγ (x1), S

α
γ (x2), · · · , S

α
γ (xn)

]T
, X =

[x1, x2, · · · , xn]T .
For UAV swarm system, finite-time formation control pro-

tocol with time-delay and input saturation is designed as
follows. ηxi (t − τi)ηyi (t − τi)
ηzi (t − τi)

 = 0(θi, ϕi)−1
 uix (t − τi)
uiy (t − τi)+ g
uiz (t − τi)

, (17)

 uix(t)
uiy(t)
uiz(t)

 = s1γ2

(
¨̂pi
)
−k1sα1γ1

 N∑
j=1

aij
((
y1i−y1j−rij

)
+ τi

(
y2i − y2j

))
+ ai0 (y1i − ri + τiy2i)

)
− k2sα2γ1

 N∑
j=1

aij
(
y2i − y2j

)
+ ai0y2i

,
(18)

where 0 (θi, ϕi) is defined in (5), γ1 > 0, γ2 =

max
{
|u0x | ,

∣∣u0y∣∣ , |u0z|}, k1 > 0, k2 > 0, α1 ∈ (0, 1), α2 =
2α1
1+α1

, ri, rij are the relative position vectors and rij = ri − rj.
Remark 2: From Theorem 1 and Remark 1, we can obtain

that when t ≥ T1, the observer can stably estimate the
leader’s states, that is p̂1 = p̂2 = · · · = p̂N = p0, ˙̂p1 = ˙̂p2 =
· · · = ˙̂pN = ṗ0. Using the control protocol (18), the ith UAV’s
controller receives the states of its neighbors to calculate
its control input continuously and stores its control input on
interval [t − τi, t]. Then, the ith UAV’s controller converts
the control input ui into the control input ηi of the actuator
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FIGURE 2. Schematic diagram of uix − u0x .

by using (17). Meanwhile, the ith UAV’s controller stores the
history values of observer’s output on interval [t − τi, t] to
calculate the Artstein’s transformation (13) and broadcasts
its Artstein’s transformation states y1i, y2i. A uniform robust
exact differentiator [40] can accurately calculate the deriva-
tive of ṗ0, i.e. u0.
Remark 3: From (7), each UAV needs to store the his-

tory values of observer’s output and its control input
ui on interval [t − τi, t] to calculate the Artstein’s
transformation (13). The Artstein’s transformation (13)
involves integral terms

∫ 0
−τi
(ui (t + s)− u0 (t + s)) ds and∫ 0

−τi
(−τi − s) (ui (t + s)− u0 (t + s)) ds. There are two

ways to implement the integral term in practical appli-
cation. First, the Newton-Cotts formula [41] can be used
to approximate the integral precisely, which is a numeri-
cal integration method. With electronic computing equip-
ment, numerical integration can calculate integrals quickly
and efficiently. Assume that the sampling interval is 1
and the schematic diagram of uix − u0x is shown in Fig-
ure 2 on interval [t − τi, t]. By using Newton-Cotts formula,
we can obtain that

∫ 0
−τi
(uix (t + s)− u0x (t + s)) ds = 1

2
τi/1∑
l=1

1 [(uix (t − τi + (l − 1)1)− u0x (t − τi + (l − 1)1))

+ (uix (t − τi + l1)− u0x (t − τi + l1))]. The integral is
approximated by the sum of the areas of all trapezoids. Sec-
ond, the design and application of controllers can be achieved
by using Simulink and Real-Time Workshop (RTW). This
method firstly designs the controller and sets the simulation
step size in Simulink, and then uses the RTW module to
generate the corresponding code or executable file of the
target system. RTW provides a direct way from controller
model design to hardware implementation.
Remark 4: It is worth mentioning that the formation con-

trol protocol contains the component s1γ2

(
¨̂pi
)
. When t < T1,

s1γ2

(̈̂
pi
)
guarantees that the control inputs have an upper

bound. From ‖u0‖ < ρ, we can get s1γ3

(
¨̂pi
)
= u0 by choosing

γ2 = max
{
|u0x | ,

∣∣u0y∣∣ , |u0z|} when t > T1.
In this method, we design the finite-time control pro-

tocol on the basis of Artstein’s transformation and satura-
tion function, which is fully distributed using the finite-time

observer. First, we show that the finite-time formation control
protocol is bounded and the upper bound is given as follows:

‖ui‖ =
√
u2ix + u

2
iy + u

2
iz

=

∥∥∥∥∥∥s1γ2
(̈̂
pi
)
− k1sα1γ1

 N∑
j=1

aij
((
y1i − y1j − rij

)
+ τi

(
y2i − y2j

))
+ ai0 (y1i − ri + τiy2i)

)
− k2sα2γ1

 N∑
j=1

aij
(
y2i − y2j

)
+ ai0y2i

∥∥∥∥∥∥
≤
√
3k1γ

α1
1 +

√
3k2γ

α2
1 +

√
3γ2 = ‖umax‖ . (19)

Noting that the control parameters determine the upper
bound of control input, which can tackle the control input sat-
uration prolems of UAVs. For practical UAV actuator, we can
adjust the parameters of control protocol (18) to satisfy the
input saturation constraint.
Theorem 2: Consider UAV swarm system composed of N

UAVs (called followers) and a leader UAV. Suppose that the
communication topology is connected, and there is at least
one UAV that can directly obtain the leader’s information.
With the formation control protocols (17) (18), finite-time
formation control problem with time-delay and input satura-
tion can be solved if the control parameters are appropriately
selected as α1 ∈ (0, 1), α2 =

2α1
1+α1

, k1 > 0, k2 >

0, γ2 = max
{
|u0x | ,

∣∣u0y∣∣ , |u0z|}. In addition, γ1 can be
selected according to the limitation of the actuator.

Proof: According to Lemma 5, we introduce Artstein’s
transformation to transform the delayed system (12). There-
fore, we only need to prove that the system (14) is finite-time
stabilizable by control protocol (18), then the system (12)
is finite-time stabilizable by the control protocol (18) and
Artstein’s transformation (13).

Define the formation control errors for the ith UAV as

ei =
N∑
j=1

aij
((
y1i − y1j − rij

)
+ τi

(
y2i − y2j

))
+ ai0 (y1i − ri + τiy2i), (20)

gi =
N∑
j=1

aij
(
y2i − y2j

)
+ ai0y2i. (21)

From Theorem 1, we can get ¨̂pi = u0 when t > T1. Define
ūi = ui − u0, then we have ẏ2i = ūi (t) = −k1s

α1
γ1 (ei) −

k2s
α2
γ1 (gi), which leads to the following formation control

error system.

ėi = gi

ġi = −k1

 N∑
j=1

aij
(
sα1γ1 (ei)− s

α1
γ1

(
ej
))
+ ai0sα1γ1 (ei)


− k2

 N∑
j=1

aij
(
sα2γ1 (gi)−s

α2
γ1

(
gj
))
+ai0sα2γ1 (gi)

. (22)
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In what follows, the proof is divided into two steps: First,
we prove that error system (22) is globally asymptotically
stable. Then, we will prove that error system (22) is globally
finite-time stable.

First, define E =
[
eT1 , e

T
2 , · · · , e

T
N

]T ,
G =

[
gT1 , g

T
2 , · · · , g

T
N

]T , consider the following Lyapunov
function candidate

V2 (t) = k1
N∑
i=1

Sα1γ1 (ei)+
1
2
GT

(
(L + H)−1 ⊗ I3

)
G. (23)

From [18], Sα1γ1 (x) is radially unbounded and posi-
tive definite. It follows from Lemma 4 that L + H
is positive definite and symmetric. Then, we can obtain
that V2 (t) is radially unbounded and globally positive
definite.

The time derivative of V2 (t) along (22) is

V̇2 (t) = k1
N∑
i=1

ėTi s
α1
γ1
(ei)+ GT

(
(L + H)−1 ⊗ I3

)
Ġ

= k1
N∑
i=1

gTi s
α1
γ1
(ei)+ GT

(
−k1sα1γ1 (E)− k2s

α2
γ1
(G)

)
= k1

N∑
i=1

gTi s
α1
γ1
(ei)− k1GT sα1γ1 (E)

− k2
N∑
i=1

gTi s
α2
γ1
(gi)

= −k2
N∑
i=1

gTi s
α2
γ1
(gi). (24)

By the definition of saturation function sαγ (x), we get

−k2
N∑
i=1

gTi s
α2
γ1
(gi) =


−k2

N∑
i=1

3∑
j=1

∣∣gij∣∣α2+1, ∣∣gij∣∣ < γ1

−k2
N∑
i=1

3∑
j=1
γ
α2
1

∣∣gij∣∣, ∣∣gij∣∣ ≥ γ1.
(25)

From (25) we obtain that V̇2 (t) ≤ 0 and V2 (t) is
non-increasing. By LaSalle’s invariance principle, it is
concluded that

(
ET ,GT

)T will converge to the set{(
ET ,GT

)T ∣∣V̇2 (t) ≡ 0
}

as t → ∞. V̇2 (t) ≡ 0
together with (25) means gi ≡ 03, and further ġi ≡ 03,
ei ≡ 03 from (22), which implies that the equilibrium(
eTi , g

T
i

)T
= 06 of system (22) is globally asymptotically

stable.
Next, it will be proved that the error system (22) is globally

finite-time stable.
Owing to V̇2 (t) ≤ 0, we obtain thatV2 (t) ≤ V2 (0) and the

control errors ei, gi are all bounded for t > 0.When
∣∣eij∣∣ ≥ γ1

and
∣∣gij∣∣ ≥ γ1, j = 1, 2, 3, wewill show that the control errors

ei, gi converge to the region
∣∣eij∣∣ < γ1 and

∣∣gij∣∣ < γ1 in finite

time. Then, the error system (22) can be rewritten as

ėi = gi

ġi = −k1

 N∑
j=1

aijγ
α1
1

(
sgn (ei)− sgn

(
ej
))
+ ai0sgn (ei)


− k2

 N∑
j=1

aijγ
α2
1

(
sgn (gi)− sgn

(
gj
))
+ ai0sgn (gi)

.
(26)

By Definition 1, the system (26) is homogeneous with
negative degree k = −1 with respect to (2, 2, 2, 1, 1, 1).
It follows from Lemma 1 that the system (26) is local finite-
time stable. From (25), we have

V̇2 (t) = −k2
N∑
i=1

3∑
j=1

γ
α2
1

∣∣gij∣∣ ≤ 0,
∣∣gij∣∣ ≥ γ1, (27)

which implies that the system (26) is globally asymptotically
stable. Then, we can obtain that the errors ei and gi of sys-
tem (26) converge to 03 in finite time. It is easily inferred that
the control errors converge to the region

∣∣eij∣∣ < γ1,
∣∣gij∣∣ < γ1

in finite time and stay the region forever. From (27), we have

V̇2 (t) = −k2
N∑
i=1

3∑
j=1

γ
α2
1

∣∣gij∣∣ = −k2γ α21

N∑
i=1

3∑
j=1

∣∣gij∣∣2× 1
2

≤ −k2γ
α2
1

 N∑
i=1

3∑
j=1

∣∣gij∣∣2
 1

2

= −k2γ
α2
1 ‖G‖ . (28)

It follows from Theorem 3 [42] that V2 (t) of the sys-
tem (26) is homogeneous with degree l = 2. Note that the
system (26) is homogeneous with negative degree k = −1,
by using [43, Lemma 2] and [44, Proposition 2.3], we can
obtain that

V̇2 (t) ≤
(
− min
{G:V2=1}

(
k2γ

α2
1 ‖G‖

))
V

l+k
l

2 = −11V
1
2
2 (t).

(29)

where11 = min
{G:V2=1}

(
k2γ

α2
1 ‖G‖

)
. It follows from [44, Th.

3] that the control errors converge to the region
∣∣eij∣∣ < γ1,∣∣gij∣∣ < γ1 with the settling time T2 ≤

2
√
V2(0)
11

.
Then, error system (22) becomes

ėi = gi

ġi = −k1

 N∑
j=1

aij
(
sig(ei)α1 − sig

(
ej
)α1)
+ ai0sig(ei)α1


− k2

 N∑
j=1

aij
(
sig(gi)α2 − sig

(
gj
)α2)
+ ai0sig(gi)α2

.
(30)

By Definition 1, the system (30) is homogeneous with neg-
ative degree α2−1with respect to ( 2

1+α1
, 2
1+α1

, 2
1+α1

, 1, 1, 1).
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It follows from Lemma 1 that the system (30) is local finite-
time stable. From (25), we have

V̇2 (t) = −k2
N∑
i=1

3∑
j=1

∣∣gij∣∣α2+1 ≤ 0,
∣∣gij∣∣ < γ1. (31)

which implies that the system (30) is globally asymptotically
stable. It can be concluded that the system (30) is globally
finite-time stable. From (31), we have

V̇2 (t) = −k2
N∑
i=1

3∑
j=1

∣∣gij∣∣α2+1

≤ −k2

 N∑
i=1

3∑
j=1

g2ij


α2+1
2

= −k2‖G‖α2+1. (32)

Similarly, we have

V̇2 (t) ≤
(
− min
{G:V2=1}

(
k2‖G‖α2+1

))
V

2+(α2−1)
2

2 (t)

= −12V
α2+1
2

2 (t). (33)

where 12 = min
{G:V2=1}

(
k2‖G‖α2+1

)
. Then, the sys-

tem (30) is globally finite-time stable with the settling time

T3 ≤
2
√
V
1−α2
2 (0)

12(1−α2)
.

As a result, error system (22) is globally finite-time stable

with the settling time T2 + T3 ≤
2
√
V2(0)
11

+
2
√
V
1−α2
2 (0)

12(1−α2)
.

From (20) (21), we have ‖G‖ = ‖((L + H)⊗ I3)Y2‖ = 0
and ‖E‖ = ‖((L + H)⊗ I3) (Y1 − r + (τ ⊗ I3)Y2)‖ = 0,

when ∀t ≥ 1
α

n
m−n +

1
β

d
d−c +

2
√
V2(0)
11

+
2
√
V
1−α2
2 (0)

12(1−α2)
, where

Y1 =
(
yT11, y

T
12, · · · , y

T
1N

)T , Y2 = (yT21, yT22, · · · , yT2N )T , r =(
rT1 , r

T
2 , · · · , r

T
N

)T , τ = diag (τ1, τ2, · · · , τN ). According to
Lemma 4, L + H is positive definite and symmetric, and we
get y1i− ri = 03, y2i = 03, ∀t ≥ 1

α
n

m−n +
1
β

d
d−c +

2
√
V2(0)
11
+

2
√
V
1−α2
2 (0)

12(1−α2)
. It follows from Artstein’s transformation (13)

that
∫ 0
−τi
(ui (t + s)− u0 (t + s)) ds converges to 0 with the

settling time T = T1 + T2 + T3 + max {τi} ≤ 1
α

n
m−n +

1
β

d
d−c +

2
√
V2(0)
11

+
2
√
V
1−α2
2 (0)

12(1−α2)
+ max {τi}. We can obtain

that the transformation system (14) is finite-time stable with
the control protocol (18). Therefore, according to Lemma 5,
the time-delay system (6) is finite-time stable with the control
protocol (18) and Artstein’s transformation (13). We can con-
clude that the finite-time formation control problem for UAV
swarm with time-delay and input saturation can be solved
with distributed control protocols (17) (18). This is the end
of proof. �
Remark 5: In this section, we discuss finite-time formation

control problem with constant time-delay and input satu-
ration. However, the delay caused by UAV processing and
communication may be unknown constant and time-varying.
Then, the time-delay estimation method presented in [45]

FIGURE 3. The communication topology between UAVs.

TABLE 1. The initial conditions of UAV swarm.

and [46] can be used to estimate the unknown constant time-
delay. During the flight of each UAV, the controller needs
to operate within a certain time range to ensure the flight
safety of the UAV, which is called acceptable time. Therefore,
the time-delay needs to be bounded such that the operation
does not affect flight safety. For non-identical time-varying
delays, we can consider the upper bound of the delays that
exist in all UAVs, as shown in [47]. In summary, the proposed
control protocol can be extended to the finite-time formation
control problem with unknown constant delays and time-
varying delays.

IV. SIMULATION RESULTS
To verify the validity of finite-time formation control proto-
col, we give a simulation example on UAV swarm to maintain
the formation shape. Consider a UAV swarm system consist-
ing of a leader UAV and nine follower UAVs. The commu-
nication topology between UAVs is shown in Figure 3. The
trajectory of the leader is specified by

V0 = 80+ 8 sin (0.16t)
θ0 = 0.12sin (0.04t)
ψ0 = 0.02 sin (0.1t).

(34)

The initial conditions for UAV swarm are set according to
Table 1. The desired formation vectors are given by r1 =(
240 75 0

)T , r2 = (
80 25 −100

)T , r3 = (
80 25 100

)T ,
r4 =

(
−80 −25 −200

)T , r5 = (
−80 −25 200

)T , r6 =(
−240 −75 −300

)T , r7 = (
−240 −75 −100

)T , r8 =(
−240 −75 100

)T , r9 = (
−240 −75 300

)T , where the
unit is m.
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FIGURE 4. The trajectories of UAV swarm formation flight.

FIGURE 5. Position tracking of all followers.

Assume that the limitation of the actuator is 70m
/
s2, which

means the control input ‖ui‖ ≤ 70m
/
s2. The observer

parameters are chosen as α = 5, β = 4.5, m = 7, n = 5,
c = 5, d = 7. The formation controller parameters are
chosen as α1 = 0.6, α2 = 0.75, k1 = 5, k2 = 5, γ1 = 7,
γ2 = 1.4. Time-delays are chosen as τ1 = τ2 = τ3 = 0.6s,
τ4 = τ5 = τ6 = 0.8s, τ7 = τ8 = τ9 = 1s. It follows
from (19) that ‖ui‖ ≤

√
3k1γ

α1
1 +

√
3k2γ

α2
1 +

√
3γ2 =

67.52m
/
s2, which is less than the limitation of the actuator.

The simulation duration is set to 200s, and the simulation step
size is 0.001s. The trajectories of UAV swarm formation flight
are shown in Figure 4. Figure 5 shows the position tracking of
all followers. The velocities, flight-path angles, and heading
angles of UAV swarm are shown in Figure 6, Figure 7 and
Figure 8, respectively.

It can be seen from Figure 4 that all follower UAVs can
track the trajectory of the leader UAV by using the finite-time
formation control protocol (18). In Figure 5, xi− rix , yi− riy,
zi−zix converge to x0, y0, z0 in finite time, respectively, which
means that the desired formation is achieved and maintained.
Simulation results show that the velocities, flight-path angles,
and heading angles of all follower UAVs can exactly track the
items of the leader UAV, where all follower UAVs have lag
delay due to input delay. The simulation results verify that
the proposed control protocol solves finite-time formation
control problem with time-delay.

In order to better show the performance of the
proposed finite-time control protocol (18), the following

FIGURE 6. The velocities of UAV swarm.

FIGURE 7. The flight-path angles of UAV swarm.

FIGURE 8. The heading angles of UAV swarm.

finite-time formation protocol without saturation constraint
is constructed. uix

uiy
uiz

 = ¨̂pi − k1sig
 N∑
j=1

aij
((
y1i − y1j − rij

)
+ τi

(
y2i − y2j

))
+ ai0 (y1i − ri + τiy2i)

)α1
− k2sig

 N∑
j=1

aij
(
y2i − y2j

)
+ ai0y2i

α2 . (35)
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FIGURE 9. The control inputs using control protocol (18).

FIGURE 10. The control inputs using control protocol (35).

FIGURE 11. The trajectories of UAV swarm formation flight by using (35).

where the design parameters are selected as k1 = 5, k2 = 5,
α1 = 0.6, α2 = 0.75. The proof of stability is similar to
Theorem 2 and is hence omitted here.

Firstly, we compare the control inputs of control proto-
cols (18) and (35) under the same conditions. The control
inputs using control protocol (18) and control protocol (35)
are shown in Figure 9, Figure 10, respectively. Figure 9 shows
that, using the finite-time control protocol (18), the con-
trol input does not exceed the limitation of the actuator.
Figure 10 shows that the control input exceeds the limitation
of the actuator, which will deteriorate the stability of the
controller. The simulation results verify that the proposed
protocol can ensure the control input within the limitation
of actuator. For a given input saturation, we can satisfy the
saturation constraint by choosing parameters.

FIGURE 12. The velocities of UAV swarm by using (35).

FIGURE 13. The flight-path angles by using (35).

FIGURE 14. The heading angles by using (35).

UAVs are designed with instantaneous maneuver overload
in mind, and instantaneous maneuver overload is generally
greater than continuous maneuver overload. Assume that
the instantaneous limitation of the actuator is 100m

/
s2, and

UAV is destroyed when the control input exceeds 100m
/
s2.

If the instantaneous input is between 70m
/
s2 and 100m

/
s2,

the impact on the actuator of the UAV is considered to be
recoverable. The trajectories, velocities, flight-path angles,
and heading angles of UAV swarm using (35) are shown
in Figure 11, Figure 12, Figure 13, Figure 14, respectively.
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From Figure 3, the communication topology is connected
after removing the UAVs 1, 2, 7, and 8. It can be seen
from Figure 11 that the 1st, 2nd, 7th, and 8th UAVs crash
because the control input far exceeded the limitation of the
actuator. The remaining 5 UAVs can track the trajectory of
the leader UAV. Simulation results of velocities, flight-path
angles and heading angles show that the UAVs 1,2,7,8 fly
a small distance under the force of gravity and then crash.
Comparing the simulation results of the control protocol (18)
with the algorithm (35), it can be seen that the proposed
control protocol (18) solves finite-time formation control
problem with time-delay and input saturation.

V. CONCLUSION
This paper investigated finite-time formation control prob-
lems of UAV swarm system with time-delay and input sat-
uration. Linearization model was firstly derived by using
precise feedback linearization for the nonlinear model of
UAV. Then, fixed-time observer was constructed to estimate
the leader UAV’s states. By introducing Artstein’s transfor-
mation, we transformed the delayed second-order system
into a delay-free system and then a saturation function was
used to tackle the input saturation problem. With Artstein’s
transformation and saturation function, a novel distributed
control protocol was constructed to achieve finite-time for-
mation control. It was proved that the proposed observer and
control protocol can achieve finite-time formation control by
utilizing homogeneous method and Lyapunov theory. Finally,
application into formation control of UAV swarm system was
provided to demonstrate the effecttiveness of the proposed
method. The problems of finite-time formation control with
multiple leaders are future topics to be discussed.
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