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ABSTRACT Human activity recognition (HAR) has received a lot of attention due to its wide applications
in recent years, while the improvement of recognition accuracy is seemingly considered to be one of the
great challenges in this field. In this paper, a novel wearable device for improving the activity recognition
accuracy is proposed based on the different multiple sensors, which simultaneously collects the muscle
activity and motion information. The muscular activity is monitored by measuring the air pressure in an
air bladder contacting the targeted muscle, while the motion information, such as three-axis accelerations
and angular velocities of body movement, is collected via the on-body inertial measurement unit (IMU)
sensor. The performance of the air-pressure sensor is verified by comparing with the electromyography
and the IMU sensors. To implement our device, we collect the labeled activities data from eight subjects
as they perform 11 daily activities. Some commonly used features from raw data are calculated, and five
popular classification techniques are evaluated in terms of the accuracy, recall, precision, and F-measure.
The experimental results indicate that the proposed wearable device can improve the performance of HAR
system. Particularly, the usage of air-pressure sensor can eliminate the confusions among dynamic activities,
such as walking and going upstairs, which is an open problem in HAR.

INDEX TERMS Human activity recognition (HAR), wearable device, air-pressure sensor, inertial measure-
ment unit (IMU), pattern classification.

I. INTRODUCTION
Human activity recognition (HAR) is an important research
field which has a wide application prospect [1]–[3], such
as the industrial automation [4], the sports and entertain-
ment assessments [5], [6], and especially the health care and
rehabilitation tasks [7]–[11]. In recent years, it has made a
great progress due to the development of advanced sensory
technologies and classification algorithms. However, the con-
tinuing success of activity recognition motivates steps toward
more challenging and application-oriented scenarios. One of
the most important and unavoidable challenges in this field is
how to improve the recognition accuracy with a small number
of sensor nodes.

Researchers have done a lot of work to address this
challenge. Before introducing the related work, we out-
line the structure of the HAR system. Generally, a typical

HAR system can be divided into five modules, including
sensing, segmentation, feature extraction, classification and
post-processing [12] (see Figure 1). According to the choice
of sensing module, the HAR system is generally classified
into two categories, namely the vision-based and the sensor-
based systems. The vision-based system usually collects data
through visual sensing facilities or depth sensors, e.g. cam-
eras and laser sensors [13]–[15]. Themost outstanding advan-
tage of vision-based system is that users do not need to wear
additional sensors.

On the contrary, the sensor-based system requires the users
to wear or carry some devices, such as the wearable sensors
and smartphones, which often use inertial sensors to gather
the activity information. For example, Pierleoni et al. [10]
designed a high reliability wearable device for elderly fall
detection. Hsu et al. [16] presented a wearable inertial
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FIGURE 1. The structure of a typical HAR system.

sensor network and its associated activity recognition algo-
rithm for accurately recognizing human daily and sport
activities. Varkey et al. [17] used a wireless sensor-based
wearable system to complete human motion recognition.
In addition, there are many different wearable devices for
HAR in [18], [23], and [24]. Although the vision-based
method is intuitive and information-rich, it suffers from issues
relating to the privacy or ethics and its recognition perfor-
mance highly depends on light condition, visual angle and
other outer factors [3], [12]. In consideration of the short-
comings of vision-based method, this paper will focus on the
HAR system using the sensor-based method.

On the base of summarizing literatures, we have found
that most researchers focus on the feature extraction and
classification in the sensor-based HAR system. In the feature
extraction aspect, Khan et al. [25] explored the significance
of augmented-signal features and a hierarchical recognizer.
Some time-domain features, such as the Integral of Mod-
ulus, zero-crossings, correlation-coefficient and root mean
square, are also used in [9] and [26]. Meanwhile, many
frequency-domain features are calculated for activity recog-
nition, including the DC component of Fast Fourier Trans-
form (FFT), Power Spectral Density (PSD), peak frequency,
entropy, Dominant Frequency (DF) [27]–[29]. On the other
hand, researchers have also made remarkable breakthroughs
in classification algorithms. Alvarez-Alvarez et al. [30] used
an automatic method for learning body posture recognition
based on the hybridization of fuzzy finite state machines
and the genetic algorithm. Meanwhile, the deep learning and
transfer learning related methods show their strong learn-
ing capacities and many excellent properties. Consequently,
there are many encouraging applications of deep learning and
transfer learning in activity recognition [12], [31]–[34].

All of these above researches including the feature extrac-
tion and classification methods have improved the accuracy
of activity recognition. However, these improvements pay the
cost of computing and storage to a certain extent, which also
bring more complexity both in the arithmetic and implemen-
tation, and limit the widespread use and application. There-
fore, this paper tries to avoid these problems and improve
the accuracy of HAR from the sensing aspect which is rarely
mentioned.

Over the past decade, micro-electromechanical systems
and sensor technologies have made a substantial progress,
which is beneficial for designing small-size, light-weight and
low-cost wearable devices [35]. Almost all wearable devices
use IMU sensors to collect activity data, including the accel-
eration and angular velocity. These types of activity data are
both useful information to recognize activities, but it should

be noticed that the muscular activity is the basis of human
daily activities. The IMU sensors are good at capturing the
body parts orientations and movements while the muscular
activity can reflect the body parts shapes andmovements [36].
They each have their own advantages capturing different
information and can complement each other to some extent.
One intuitive thought is that the accuracy of HAR systems
might be further improved if we can combine the muscle
activity information with IMU sensors.

The electromyography (EMG) is known to be one of
the most common methods of measuring muscle activity.
Wu et al. [36] proposed a wearable system using IMU and
surface EMG sensors for recognizing American Sign Lan-
guage in real-time using IMU and surface EMG sensors.
Scheme and Englehart [37] summarised the related work
which used EMG signals of targeted muscles to the con-
trol of powered upper-limb prostheses. Thalmic Labs Co.
developed a gesture recognition armband bracelet, the Myo,
which measures EMG signals to control digital devices [38].
However, the EMG signal is too sensitive to environmen-
tal disturbances, such as the electrical noise, sweat stains
and muscle fatigue. In addition, the cost and usage of
EMG electrodes also limit its applications. In order to mea-
sure the muscle activities conveniently and steadily, the air-
pressure sensor is utilized instead of EMG electrodes in this
study.

Some researchers used the air-pressure sensor to complete
fall detection and gait monitoring [39], [40]. What about
using the air-pressure sensor to measure muscle activity?
Note that the muscle activity is accompanied by the muscle
deformation, Kong and Jeon [41] and Jun et al. [42] respec-
tively designed air-pressure sensors with air-bladders contact-
ing the interested muscles. Thereby, the muscular activity can
be obtained bymeasuring the change of the air-pressure in the
air-bladders.

In this paper, a novel wearable activity recognition device
consisting of air-pressure and IMU sensors is proposed.
The device node encompasses one IMU and two air-
pressure sensors, which transmits the activity data through
a wireless network. The detailed design and measurement
principle are introduced, and the performance of the air-
pressure sensor with air-bladders is verified by comparing
with the commercial EMG and IMU sensors. A dataset
of eight healthy subjects is built using only one device
node, which includes 11 classes of daily living activi-
ties data, i.e. sitting, standing, lying, walking, running,
going upstairs, going downstairs, from sitting to stand-
ing, from standing to sitting, from sitting to lying and
from lying to sitting. These selected activities represent
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FIGURE 2. The module structure diagram.

the majority of everyday living activities and are worth
studying [2], [25], [43]. Some commonly used features are
extracted from raw data, including the mean, median, vari-
ance, standard deviation, etc. Moreover, five popular super-
vised classification techniques, namely k-Nearest Neighbor
(k-NN), Decision Tree (DT), Naive Bayes (NB), Support
Vector Machine (SVM) and Random Forest (RF), are evalu-
ated in terms of the accuracy, recall, precision and F-measure.
And the significance of adding air-pressure sensors to the
wearable device is explored and proved.

The main contributions of this study are: 1) a novel
wearable activity recognition device using air-pressure and
IMU sensors; 2) the verification of performance improve-
ments for the proposed HAR system by the comparison of
three classification experiments.

The remainder of this paper is organized as follow.
Section II gives the detailed design of our wearable
device. The measurement principle and performance of
the air-pressure sensor with air-bladders are introduced in
Section III. Section IV presents the experimental setup of
HAR system. The results of HAR experiment are reported
and analyzed in Section V. Finally, the paper is concluded
and future researches are discussed in Section VI.

II. THE WEARABLE DEVICE
On the basis of our previous work [44], [45], we designed
a small-size, light-weight and low-cost wearable prototype
device. It consists of four parts: the control module, the power
module, the IMU module and the air-pressure module.
Figure 2 gives the overall module structure diagram.

The control module controls the working process of the
whole device node, which collects and transfers sensor data.
In this study, we choose the nRF24LE1 (Nordic Semiconduc-
tor, Norway) as the controller module, which is a member of
the low-cost, high-performance family of intelligent 2.4 GHz
RF transceivers with an embedded 8-bit microcontroller. The
nRF24LE1 communicates with the IMU sensor through the
serial port to obtain motion data, and collects the real-time
voltages of two pressure sensors via AD converters. In addi-
tion, it builds wireless networks through the Radio Frequency
(RF), with the highest air data rate of 2 Mbps.

The Attitude and Heading Reference System (AHRS)

FIGURE 3. (a) The physical map and (b) the scenario wearing the
wearable device.

GY-953 is chosen as the IMU module, which consists of a
three-axis accelerometer, a three-axis gyroscope and a three-
axis magnetometer. The full measuring range of the acceler-
ation, the angular velocity and the magnetic field intensity
are respectively ±2g, ±2000dps and ±4915µT . The air-
pressure module uses XGZP6847 (CFsensor Ltd, China) to
measure the pressure of the air-bladder, which converts the
air-pressure into the corresponding voltage. The air-bladder
is made of polyvinyl chloride (PVC) films, the size of which
is 50mm × 50mm. It is connected to the air-pressure sensor
through a rubber tube, which is also sealed with a hoop. As for
the power module, we use a rechargeable lithium battery
of 600mAh and a low dropout regulator (LDO) TPS7333Q
to provide a stable voltage of 3.3 V.

Figure 3(a) shows the physical map of the wearable device.
The size of the device node is 45mm × 43mm, and the
maximum duration of the device is more than 4 hours,
which is longer than the Xbus Kit from Xsens (Enschede,
Netherlands) [2]. When using this device, we should attach
the air-bladders close to the targeted muscles and fix them
using an inelastic ribbon. Figure 3(b) shows the scenario of
the left thigh wearing the wearable device, two air-bladders
of which are closely attached to the quadriceps and biceps
femoris respectively. This wearable device is easier to use
than EMG sensors, since it works well even not being directly
attached onto the skin. In addition, the cost of proposed device
is also much lower than EMG sensors due to the use of cheap
control module, IMU chips and air-pressure sensors. Specifi-
cally, the price of the EMG sensor, SX230-1000 (Biometrics
Ltd.) used in Section III, is about $1490. While the cost of the
proposed wearable device is only about $50.
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FIGURE 4. The principle of the air-pressure sensory subsystem.

FIGURE 5. The output curve of air-pressure sensor.

III. PRINCIPLE AND PERFORMANCE
Since the GY-953 is a commercially available AHRS,
we mainly introduce the principle and performance of the air-
pressure sensory subsystem in this section.

A. PRINCIPLE
The proposed wearable device consists of two air-pressure
sensors which respectively connect to the corresponding
sealed air-bladder. When the targeted muscle contracts,
the volume of the air-bladder contacting the muscle will
change, and thereby the air pressure inside will also be influ-
enced. Figure 4 presents the principle of the proposed air-
pressure sensor with an air-bladder.

The air-pressure sensor accurately converts air pressure
to the corresponding voltage according to the relationship
in Figure 5. In this study, the rated pressure of air-pressure
sensor is 20kPa.

However, the placement of air-bladders is related to the
locations where the air-bladders are placed and how they are
attached to those locations, which undoubtedly affects the
measurement accuracy [2]. If there are more muscle fibers in

the locations of air-bladders, the measurement will be more
accurate. Similarly, the tighter the binding, the higher the
measurement accuracy will be achieved. Although the air-
bladders works well even not being directly attached onto the
skin, we still suggest that the users wear less clothes when
using the proposed wearable device since the clothes reduce
the transmitted muscle deformation.

B. PERFORMANCE
To characterize the air-pressure sensors and evaluate the per-
formance of the wearable device, we have conducted some
comparison experiments.

1) SENSITIVITY
The first experiment involved the analysis of the air-pressure
sensor sensitivity to the muscle activity. We compared the
measured air-pressure with the EMG signal, which might
be the most common and intuitive information reflecting
the muscle activity. For this purpose, a certified commercial
EMG sensor, SX230-1000 (Biometrics Ltd.), was utilized.
And the sampling frequency of the EMG sensor was 40 Hz,
while the sampling frequency of the wearable device was set
to 20 Hz. These two sampling frequency were high enough
to ensure accurate recognition [12], [46], [47].

In this comparison experiment, the air-pressure and
EMG sensors simultaneously measured the quadriceps mus-
cle activity of left thigh. The subject who participated in the
experiment was asked to sit in the chair, and control his thigh
muscles to perform contraction at different degrees. In this
process, the subject should complete the maximum voluntary
contraction (MVC). Figure 6(a) gives the raw EMG sig-
nal and Figure 6(b) shows the comparison result of EMG
and air-pressure signals which were all normalized by the
MVC value. Meanwhile, the EMG signal was also rec-
tified and processed by the enveloping line. As a result,
the calculated correlation coefficient between the air-pressure
and EMG signals is 0.815, which implies that the air-
pressure signal presents uniform value with the EMG sig-
nal. Better yet, the air-pressure signal shows less noise
and smoother visual performance than the EMG signal,
which allows us not to use the complicated filter for signal
de-noising.

2) REPEATABILITY
The second experiment was devoted to the evaluation of the
repeatability of the air-pressure sensor. For collecting air-
pressure data, the subject was asked to walk normally, who
worn the wearable device as shown in Figure 3(b). Besides,
the device also collected the attitude angle of the thigh which
was measured by the GY-953.

Figure 7 shows the comparison of the angle with the air-
pressure during a small segment of the whole walk, which
contained 8 walking cycles. The air-pressure signal was also
normalized by the MVC value. The maximum correlation
coefficient between the air-pressure and angle reached up
to 0.945, which passed the significance inspection. Since the
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FIGURE 6. (a) Raw EMG signal and (b) the comparison result.

FIGURE 7. The comparison of the angle with the air-pressure.

change of joint angle is also caused by the muscle activity,
we can still think that the air-pressure is a measure of muscle
activity. Therefore, the air-pressure sensor has an encourag-
ing performance in measuring repeated human body activity.

IV. HAR EXPERIMENT SETUP
As shown in Figure 1, the typical HAR system includes five
modules. This section will introduce the experimental setup
in terms of these modules.

TABLE 1. List of the selected activities.

TABLE 2. List of the selected features with brief descriptions.

A. DATA COLLECTION
7 male and 1 female healthy subjects (age: 22 ± 4 years,
body mass: 70 ± 10 kg, height: 170 ± 8 cm) participated in
the experiments. Each subject wore the wearable device as
shown in Figure 3(b) and carried out 11 different activities
for more than 3 hours in their own way without specific con-
straints. These different activities and their labels are given
in Table 1.

In addition, the sampling frequency of the wearable device
was set to 20 Hz. And the raw data contains 9-dimensional
signals: 2-D pressure signals, 1-D pressure difference signal,
3-D acceleration signals and 3-D gyroscope signals.

B. DATA PRE-PROCESSING
Data pre-processing is one of the most critical steps in the
HAR system, which contains the segmentation and features
extraction. The sliding window technology is generally used
in the segmentation, which divides sensor signals into small
time segments. In this paper, we adopted a sliding window
of 2 seconds with the overlap rate of 50%, which covered
40 samples and slid back for 1 second each time. Meanwhile,
10 common features were extracted from the raw data, which
were widely used in the HAR [2], [35], [36], [48]. Table 2
shows the list of 10 selected features in this paper. Finally,
the feature dimensions of acceleration and gyroscope are
30 while the dimension of air-pressure is 28 (there is only one
correlation coefficient between two air-pressure sensors). The
feature selection is often performed before the classification
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FIGURE 8. The result of binary classification.

in other related studies, which selects a subset of relevant
features from the original feature set [2], [49]. However, since
the selected features from different dimensional raw data may
be different, the feature selection procedure is omitted to
carry out the intuitive comparison experiments in the later
section.

C. CLASSIFICATION
Five popular classification algorithms are adopted in this
paper, namely the k-NN, DT, NB, SVM and RF. The fea-
tures extracted from the raw sensor data are used as inputs
of the classification algorithms. Meanwhile, a 10-fold cross
validation is done for the feature dataset from each subject
separately. The 10-fold cross validation means the feature
dataset is divided into ten subsets randomly. Then the process
that the model is trained with nine subsets and tested on the
rest subset is repeated for ten times.

All classification algorithms are programmed by
MATLAB script and they are implemented through
MATLAB built-in classifier functions except SVM, which is
implemented through the LIBSVM toolbox written by Chih-
Chung Chang and Chih-Jen Lin. In the classification, we set
the number of the neightbors in k-NN and the trees in RF to 5,
and we adopted the linear kernel function and set the penalty
coefficient to 40 in SVM. In addition to the above parameters,
all other parameters take default values.

acurracy =
TP + TN

TP + TN + FP + FN
, (1)

recall =
TP

TP + FN
, (2)

precision =
TP

TP + FP
, (3)

F − measure =
2 ∗ recall ∗ precision
recall + precision

. (4)

Most important of all, three different experiments were
conducted to test the wearable device: the air-pressure clas-
sification (APC), the motion classification (MC), and the
comprehensive classification (CC). For the APC, only the
features from 2-D pressure signals and 1-D pressure dif-
ference signal are used as inputs of the classification algo-
rithms. On the contrary, the MC uses only the features from
3-D acceleration signals and 3-D gyroscope signals as inputs.
For the CC, the whole feature dataset from 9-D signals is used
as inputs.

FIGURE 9. Representation of the number of samples in each class for
each subject.

D. EVALUATION
Last but not least, the evaluation is an important part of HAR.
This paper evaluates the classification algorithms in term of
the accuracy, recall, precision and F-measure [2], [36].

In the case of binary classification, the typical classifica-
tion result is shown in Figure 8. We assume that TP,FN ,FP
and TN respectively represent the sample number of true
positive, false negative, false positive and true negative. And
then we can get equations (1)-(4).

V. EXPERIMENTAL RESULT
In this study, we totally obtained 16433 feature samples from
eight subjects and the number of samples per subject is more
than 1600. Figure 9 shows the percentage of samples per
class for eight subjects, where the values averaged over the
subjects are also provided. The distribution of activities is
more uniform than [2], which makes the classification more
representative.

A. RESULTS
Figure 10 shows the classification result of eight subjects.
We can see that the DT, NB and RF present very good classi-
fication capability and high recognition rate while the k-NN
and SVM have a relatively poor classification performance.

It is noteworthy that different classification algorithms
have significantly different performance. The accuracy is the
most important evaluation index of the classification algo-
rithms. As we can see from Figure 10(a), the accuracy of the
APC is higher than the MC and the CC in the k-NN and SVM
classification algorithms while the accuracy of the CC is
highest in DT, NB andRF classification algorithms. The same
situation is also shown in the F-measure, recall and precision.
In addition, the F-measure, recall and precision in this study
are very close to each other for all classifiers, which indicates
that all classifiers have achieved balance performance on the
dataset [36].

Table 3 shows the average performance of five classi-
fication algorithms in the APC, MC and CC. The fourth
row ‘‘Improvement’’ is the difference between the CC and
the MC, which indicates the performance improvement after
adding the air-pressure features. Among three experiments,
the CC achieves the best average performance in the accuracy,
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FIGURE 10. (a) The classification accuracy, (b) the classification F-measure, (c) the classification recall and (d) the classification
precision.

TABLE 3. Average performance in the APC, MC and CC.

precision, recall, and F-measure while theMC gives the worst
average performance, which clearly conveys the performance
improvement after adding the air-pressure features. Among
four evaluation indexes, the most noticeable improvement
is on the accuracy, which increases from 92.9% to 95.1%.
The performance improvement is very meaningful for more
reliable HAR, which also indicates that the air-pressure data
is necessary and significant.

B. SIGNIFICANCE OF AIR-PRESSURE SENSOR
In human activities, there are some activities that are very
similar in the movement or posture, such as going upstairs,

going downstairs and walking. If only the acceleration and
angle velocity of the thigh are considered, the similar motion
information will make these activities confusing relative to
each other, which has been perplexing many researchers for
a long time [2], [12]. However, these activities might be
different in muscle activities, which could be measured by the
air-pressure sensor. In order to validate the above conjecture,
the global confusion matrices of k-NN and SVM are given
in Tables 4, 5, 6 and 7 in theMC andAPC experiments, which
can identify the patterns that are difficult for the air-pressure
and motion information to recognize. Although the k-NN
and SVM have a relatively poor classification performance,
they are still algorithms worthy of further study in HAR. The
k-NN is a lazy learning classifier and it does not require a
trained model, which is one of the simplest and most mature
machine learning algorithms. More importantly, it does not
need to be retrained if new activity category or data is added
to the train dataset. On the other hand, the SVM is a small
sample learning classifier with solid theoretical foundation.
The sensor-based HAR is basically thought as a small sample
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TABLE 4. Global confusion matrix obtained with k-NN in MC.

TABLE 5. Global confusion matrix obtained with k-NN in APC.

TABLE 6. Global confusion matrix obtained with SVM in MC.

problem owing to data acquisition difficulties of some daily
activities, such as from lying to sitting and from sitting to
standing. Therefore, the SVM seems to be a very appropriate
method for HAR. In addition, the SVM has good general-
ization performance, which is also important for future HAR
study.

Tables 4 and 6 are the confusion matrices in the MC.
It is obvious that confusions occur in dynamic activities
such as (WA, GU, GD) and transition activities such as
(SIT2ST, ST2SIT) and (SIT2LY, LY2SIT) in most cases.
In general, the confusions in dynamic activities are owing
to the similar information while the confusions in transition
activities are mainly due to the size of sampling window
and the extracted features. The duration of human transition

activities, such as from sitting to standing, is usually about
2 seconds that is equal to the size of sampling window [50],
while most of the selected features in this paper are statis-
tical features which means that they hardly have time series
information in the roughly same length of time. The extracted
features from transition activities such as (SIT2ST, ST2SIT)
and (SIT2LY, LY2SIT) are similar to each other, which bring
the confusions among transition activities.

Tables 5 and 7 are the confusion matrices in the APC.
As seen from the confusion matrices, the confusions in
transition activities also exist, namely (SIT2ST, ST2SIT)
and (SIT2LY, LY2SIT) have confusions, which are also
mainly due to the size of sampling window and the extracted
features. However, there are hardly any confusions among
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TABLE 7. Global confusion matrix obtained with SVM in APC.

dynamic activities in the APC. k-NN and SVM algorithms
can accurately recognize these dynamic activities (WA, RUN,
GU, GD). In addition, the static activities (SIT, ST, LY) are
still accurately classified in the APC.

In a HAR system, it is important to eliminate the confu-
sions among activities. As shown in the Tables 4-7, the pre-
cision of dynamic activities such as (WA, GU, GD) in the
APC are much higher than that in the MC. In addition, there
are much fewer samples corresponding to the transition activ-
ities (SIT2ST, ST2SIT, SIT2LY, LY2SIT). The classifiers
are expected to assign more importance on the remaining
activities since they have more samples and contribute more
to the overall accuracy. Although the air-pressure sensor does
not eliminate the confusions among activities completely,
it greatly reduces the confusions among dynamic activities.
Therefore, the air-pressure information reflecting the muscle
activities is significant for the wearable device in HAR tasks.

VI. CONCLUSION AND FUTURE RESEARCH
We have proposed a novel wearable device for HAR tasks
combining the air-pressure and IMU sensors.We respectively
compared the air-pressure sensor to the EMG and IMU sen-
sors, which illustrates that the air-pressure sensor possesses
encouraging sensitivity and repeatability for measuring mus-
cle activities. Meanwhile, three different HAR experiments,
namely the APC, the MC and the CC, were carried out. The
experimental setup is introduced and the experimental results
are analyzed in term of the accuracy, recall, precision and
F-measure. The results show that the proposed wearable
device can improve the average performance of HAR system
and the air-pressure data is conducive to eliminate the confu-
sions among dynamic activities.

On the basis of the existing work, there are many possible
extended researches in the future. Firstly, we have found
that the air bladders leak and the wearable device is easy
to fall off in their long-term use. The inelastic ribbons also
cause discomfort for users. So we will improve the device
hardware and the usage method to enhance the user experi-
ence, and we specially hope to design a fabricated band to
fix the device [42]. Secondly, we have completed the HAR
of 11 daily activities in this paper while there are still many

other daily activities, such as riding elevator [2], [51]. It is
meaningful to apply the proposed wearable device to recog-
nize human activities as many as possible. Finally, according
to the preceding analysis, further studies on the segmentation
and feature extraction modules in Figure 1 will also be carried
out.
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