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ABSTRACT The emerging fog computing and narrow-band Internet of Things (NB-IoT) wireless technolo-
gies are indispensable for the next-generation massive machine-type communication (mMTC) applications.
However, the communication capacity of NB-IoT is limited compared with the ever-growing number of
NB-IoT devices. Furthermore, the optimal assignment of different computational jobs ignites the issue of
load balancing in the fog network to ensure a well-balanced computational resource allocation. Therefore,
in this paper, we formulate a fog load balancing problem considering the communication and computation
constraints, where the objective is to minimize the load balancing cost of the fog computing network
empowered with the NB-IoT. First, we model the time resource scheduling problem in NB-IoT as a
bankruptcy game. Within the game framework, we enforce the Shapley value-based strategic policy for
the NB-IoT devices to perform uplink scheduling for mMTC applications while calculating the transmission
costs of the computational jobs. We also propose greedy iterative time scheduling (GITS), complementary to
the Shapley value-based scheduling but with less computational complexity. Second, we decompose the fog
load balancing problem into a Hitchcock–Koopmans transportation problem that defines the overutilized and
underutilized fog computing nodes based on the computational resource utilization. Subsequently, we solve
the transportation problem by applying Vogel’s approximation method (VAM), which finds a feasible load
balancing solution to ensure optimal job assignment in the fog computing network. The simulation results
illustrate that the average job load balancing cost with our approach is significantly reduced compared with
the baseline methods.

INDEX TERMS Load balancing, bankruptcy game, transport theory, Hitchcock-Koopmans transportation
problem, mMTC, fog computing, NB-IoT.

I. INTRODUCTION
In recent years, the massive utilization of the Fifth-generation
wireless (5G) applications [1], [2] has become prominent in
different spheres of life, making the role of heterogeneous
IoT devices vital. However, in the 5G paradigm [3], most IoT
devices for emerging machine-type communication (MTC)
applications [4] are less expensive and resource constrained
in terms of energy, computation, communication, and storage
capability [5]. Therefore, lightweight IoT devices demand
not only low power and extended cellular connectivity

technologies, but also computational resource accessibility
at the edge of the network. In fact, this is the reason why
fog computing [6] and Narrow-Band Internet of Things
(NB-IoT) [7] have become prevalent in next-generation Inter-
net of Things (IoT) applications and devices. Unlike cloud
computing, fog nodes [8] are able to respond promptly
to dynamically meet the demand of IoT-enabled massive
machine type communication (mMTC) applications with a
diverse range of features such as communication, computa-
tion, caching, and control [9]. On the other hand, NB-IoT is
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proposed by the 3rd-Generation Partnership Project (3GPP),
providing massive cellular connectivity and ultra-low power
consumption [10]. Therefore, the fog network empowered
with NB-IoT technology provides a uniform operating envi-
ronment in which fog nodes are considered to be an alter-
nate solution to the cloud radio access network (CRAN),
thus ensuring long-range cellular connectivity for massive
machine type communication (mMTC) applications and
devices [11].

Most resource allocation and task offloading schemes
[12]–[16] for fog-based computational task offloading defer
the excess amount of task load the cloud environment. How-
ever, there still remain two major challenges in the task
offloading and resource allocation problem, which are:

• First, the full potential of fog networks remains vastly
unexplored, which leads toward significant dissipation
of computational resources. In fact, the task loads at
different non-cooperative fog servers are often dispro-
portionately allocated, whereas the computational cost
in terms of latency becomes significantly higher than
that of the cooperative fog networks.

• Second, there is also some research on balancing the
workload among the fog nodes where communica-
tions between the computational entities are exploited.
The existing models do not consider joint radio and
computational resource allocation for the cooperative
workload-balancing problem. In fact, the communica-
tion and computational capacities of both the NB-IoT
and fog networks, respectively, are limited compared to
the ever-growing demand of the mMTC applications.
Therefore, to ensure an efficient resource allocation and
task offloading in NB-IoT empowered fog networks,
optimizing both radio and computational resources is a
possible way to tackle these capacity constraints.

Considering the above circumstances, in this paper we
exploit the inter-fog communication between neighboring
fog computing nodes and provide an efficient solution for
performing the computational job load balancing among
themselves. In addition, we also consider transmission time
scheduling over NB-IoT technology so that the fog nodes can
acquire application specific data that are sufficient for energy
efficiency and transmission reliability for energy-constrained
IoT devices. As a result, the local computational cost of the
fog nodes can be minimized by ensuring fairness during radio
resource allocation.

The main contributions of the paper are summarized as
follows:

• First, we investigate the problems of joint uplink trans-
mission time scheduling and load balancing in fog com-
puting networks, where the main goal is to minimize the
computational and communication costs for the jobs.

• Second, due to the limited resources of NB-IoT,
the bankruptcy game is a qualified model for this
scenario. Therefore, we formulate an appropriate
bankruptcy game for transmission time scheduling that

ensures energy efficiency and reliable data acquisition
from resource-constrained NB-IoT devices. The pro-
posed approach fairly allocates limited transmission
time resources provided by the fog computing nodes to
a large number of NB-IoT devices.

• Third, we propose a lightweight greedy iterative time
scheduling (GITS) algorithm that can perform trans-
mission time scheduling, even when the computational
complexity is much lower than that of computing the
Shapley value in the bankruptcy game.

• Fourth, using uplink scheduling, we calculate the trans-
mission cost for computational jobs and decompose the
fog load balancing problem into a Hitchcock-Koopmans
transportation problem. In the transportation problem,
the job load balancing cost includes the computational
cost as well as the transmission cost. Then, we apply
Vogel’s Approximation Method (VAM) to optimize the
job load balancing cost by generating feasible neighbor-
ing underloaded fog nodes and overloaded fog nodes to
initiate the inter-fog job load offloading. The proposed
approach iteratively minimizes the job load balancing
cost of the fog network and provides optimal computa-
tional job assignment. As a result, the computational job
load in the fog network becomes well-balanced while
also ensuring efficient computational resource alloca-
tion.

• Finally, we perform extensive numerical analysis to
evaluate the performance of the proposed approach to
solve the fog job load balancing problem. The sim-
ulation results depict that the VAM can significantly
reduce the average inter-fog job load distribution cost by
71.27% and 83.69% compared to that of the two baseline
methods.

The rest of the paper is organized as follows. In
Section II, we present an extensive literature of the cur-
rent research. In Section III, we present the communication
model, the computational model, and problem formulation.
Sections IV, V, and VI describe how to solve the proposed
problem using game theory, greedy approach and trans-
portation theory, respectively. In Section VII, we present an
extensive numerical analysis to validate the performance and
efficiency of our proposed approach. Finally, in Section VIII,
we conclude the discussion.

II. LITERATURE REVIEW
In this section, we discuss some of the significant related
works and challenges, which are grouped into four categories:
(i) task offloading in cloud computing, (ii) task offloading
in edge computing, (iii) load balancing in edge computing,
and (iv) fog computing empowered with NB-IoT wireless
technology.

A. TASK OFFLOADING IN CLOUD COMPUTING
The topic of task offloading to the cloud has been studied
for over a decade where the resource and energy constrained
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IoT devices offload the heavy computation jobs to the
remote cloud. In [17], Altamimi et al. have mainly focused
on communication costs for effective task offloading from
smartphones to the remote cloud. Since smartphones are
energy-constrained, an accurate energy estimation model for
WLAN is proposed that enables smartphones to decide which
tasks should be offloaded when considering the communica-
tion activities. In [18], Zhang et al. proposed an elastic model
to ensure seamless and transparent use of cloud resources to
support resource-constrained mobile devices. Reference [19]
provides an overview of the ‘‘Circus Cloud’’, where the inter-
mittent connectivity feature is focused, while explaining the
spectrum of computational contexts for remote computation
at the cloud system in mobile environments. However, task
offloading at the cloud is proven to be inefficient largely due
to limitations of the user devices in terms of energy and low
range connectivity.

B. TASK OFFLOADING IN EDGE COMPUTING
To mitigate the remote offloading limitations at the cloud,
the mobile cloud computing [20], fog computing [21], and
mobile edge computing [22] have been widely used to per-
form different compute-intensive tasks at the network edge.
In [23], Lin et al. proposed a novel linear-time rescheduling
algorithm that includes a minimal-delay solution to ensure
energy reduction by migrating tasks among the local cores
and the cloud within the Mobile cloud computing (MCC)
environment. In [24], Alam et al. proposed a reinforcement
learning-based code offloading mechanism within the fog
computing paradigm to ensure low-latency service delivery
towards mobile service consumers. In [25], Wang et al. pro-
posed an optimal resource allocation scheme in mobile edge
computing that effectively minimizes the access points’ total
energy consumption subject to the users’ individual computa-
tional constraints. However, if the computational task loads at
the edge systems are too intensive, the cloud-based offloading
mechanism is widely applied to increase the computational
service utility without exhausting the possibility of task load
balancing among edge computing entities. Therefore, in our
proposed model, we consider collaboration among the fog
computing nodes so that the computational resources of the
fog network can be utilized more efficiently. As a result,
the task load of the fog computing nodes is well-balanced and
the computational cost is significantly reduced compared to
that of the cloud-based offloading mechanism.

C. LOAD BALANCING IN EDGE COMPUTING
Several existing works have investigated task-load balancing
among edge computing nodes. In [26], Jia et al. investi-
gated the cloudlet placement problem as well as mobile user
allocation to the cloudlet in a wireless metropolitan area
network (WMAN) and proposed two heuristic algorithms.
The proposed algorithms also balance the workload between
the cloudlets so that the service response time for the tasks
can be minimized. In [27], Oueis et al. considered a multi-
user computation offloading scenario, where the focus was to

improve the users’ quality of experience (QoE) by enabling
load balancing in fog computing. Therefore, low-complexity
small cell clustering is proposed for efficient resource man-
agement in the fog computing environment. In [28], Verbelen
et al. proposed a component-based cyber foraging frame-
work to optimize application specific metrics, where both the
offloading and application configurations at runtime lower
the execution time and energy consumption. Unlike existing
works on task load balancing and offloading, in our proposed
offloading cost model, we not only consider the computa-
tion costs of the offloading and load balancing, but also the
communication costs for data acquisition from different IoT
devices. Jointly taking into account these two costs, we solve
the overall offloading cost of the fog network.

D. FOG COMPUTING WITH NB-IOT WIRELESS
TECHNOLOGY
The issue of establishing IoT empowered green communi-
cation [29] and a computing network [30] is currently con-
sidered to be one of the key challenges, especially when
considering the existing issues of heterogeneity, scalability,
interoperability, and security, and privacy [31]. Therefore,
the integration of NB-IoT communication technology has
become inevitable for the edge computing paradigm. In [32],
Yu et al. proposed a novel uplink link adaptation scheme
where data transmission reliability is guaranteed, and the
throughput of the NB-IoT systems is also improved sig-
nificantly. In [33], Oh and Shin proposed a control plane
(CP) solution to enable idle state devices to transmit small
data packets without the radio resource control connection
setup. In [34], Yang et al. addressed the challenge of low-
cost and low-power the massive IoT devices in the case of
enabling robust network acquisition and extended coverage.
However, none of the existing works have considered the
role of NB-IoT wireless technology with fog computing. In
fact, both the computation and communication cost of the
task offloading can be minimized, where the IoT devices
can efficiently transmit a small amount of data more reliably
using the NB-IoT carrier to enable edge level task execution
at the fog computing nodes.

III. SYSTEM MODEL
In Fig. 1, the F-RAN slave nodes (FSNs) are capable of
performing different offloading jobs based on the received
sensory observations from the NB-IoT devices. We consider
all the NB-IoT devices use the licensed NB-IoT carrier inside
the existing LTE carrier. The data acquisition from different
NB-IoT devices should be reliable enough to perform any
application specific computation job. Therefore, the fog sys-
tem model can be decomposed in two parts, the communica-
tion and computational models, which are discussed in detail
in the later section.

A. COMMUNICATION MODEL
In the communication model, we consider, the NB-IoT
devices are resource-constrained devices and thus it is
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FIGURE 1. Fog system model with NB-IoT devices.

essential for such devices to conserve energy for uplink
data transmission. For example, in Fig. 1, we can consider
two IoT-empowered massive machine type communication
(mMTC) applications within the smart city scenario: the
air pollution measurement service and personalized fitness
tracking application [35]. To transmit sensor observations
both reliably and energy-efficiently, all the NB-IoT gateway
devices (i.e., n1, and n3) and the wearable-device (i.e., n2,
such as a smart band, smartwatch, or smart glass) users utilize
the same licensed NB-IoT spectrum. In the case of the air
pollution measurement service, two NB-IoT gateway devices
n1 and n3 are statically deployed to collect the environmental
data from difference sensors (e.g., CO2 emission detector,
temperature sensor, gas detector) so that the air quality of
a specific geographic area can be measured and mapped
at a nearby FSN f1. Since the spectrum resource provided
by FSN f1 is limited due to the user density, FSN f1 will
require efficient spectrum resource allocation to ensure fair-
ness. Therefore, in our scenario, we propose an efficient game
theoretic approach for scheduling the transmission time for
data acquisition of the energy constrained NB-IoT devices
so that the network resources at the FSNs can be utilized
efficiently.

Let us consider a set of Fog-RAN slave nodes (FSN) F =
{1, · · · ,F} managed by the geographically closely located
Fog-RAN master node (FMN) controller. At each FSN f ∈
F , the computational operation is likely to be implemented
as one or more multi-core CPUs [36]. Therefore, we assume
each f ∈ F has a specific number of CPUs, called computing
resource blocks (CRBs). There is also a set of NB-IoT devices
N = {1, · · · ,N } where each n ∈ N is either a gateway
device or stand-alone NB-IoT device. The set of application-
specific computational jobs in the FSNs are denoted as j ∈ J .
Therefore, the observations from different NB-IoT devices
are used for the same job j ∈ J , where there is a one-to-many
mapping relation between a job and a set of NB-IoT devices.
We assume each f ∈ F has one dedicated LTE resource block
that is used as an NB-IoT resource block.

1) UPLINK TRANSMISSION TIME AND ENERGY
CONSUMPTION
The uplink transmission capacity between FSN f ∈ F
and NB-IoT device n ∈ N for the corresponding jobs
j ∈ J is calculated using the Shannon’s capacity formula
as [37]

βf ,n = bf ,n · log(1+ γf ,n), (1)

where bf ,n is the fixed bandwidth provided by the FSN
f ∈ F to the NB-IoT devices n ∈ N . The signal-to-noise-

ratio (SNR) is denoted as γf ,n =
|hf |2κ

j
f ,n

σ 2
, where hf is the

channel gain, σ is the noise factor, and κ jf ,n is the uplink
transmission power of the NB-IoT devices n ∈ N for the
corresponding job j ∈ J .
The NB-IoT transmission power over the distance between

n ∈ N and f ∈ F for collecting data for job j ∈ J is defined
as [38]

κ
j
f ,n(τ

j
f ,n, df ,n) = βf ,n · σ · df ,n ·

(
2

(
Ljf ,n

τ
j
f ,n·βf ,n

)
− 1

)
, (2)

where the number of transmitted bits for job j ∈ J by NB-
IoT device n ∈ N to the corresponding FSN f ∈ F is
denoted as Ljf ,n which utilizes the NB-IoT uplink transmis-
sion capacity βf ,n as defined in (1). Unlike traditional cellular
communication models, the transmission time τ jf ,n is one of
the key parameters that need to be optimized for the NB-IoT
wireless communication model [39]. In fact, for a job j ∈ J ,
energy consumption of the NB-IoT devices n ∈ N is incurred
because of data acquisition over a period of uplink duration
τ
j
f ,n. Since most NB-IoT devices are battery-powered, it is
essential for NB-IoT devices to conserve residual energy as
much as possible to last longer in the network [40]. Therefore,
(2) captures the effect of transmission time on the battery life
of NB-IoT devices, where much of the energy is dissipated
due to the uplink transmission power.

The total energy consumption of the NB-IoT devices for
transmitting Ljf ,n bits over distance df ,n can be calculated
as [41]

E jf ,n(τ
j
f ,n) = τ

j
f ,n · κ

j
f ,n(τ

j
f ,n, df ,n), (3)

where the transmission energy E jf ,n of the NB-IoT devices

depends on the uplink transmission time τ jf ,n and the distance

between n ∈ N and f ∈ F . Here, E jf ,n is a monotonically

increasing function of τ jf ,n for the fixed number of transmitted

bits Ljf ,n and bandwidth βf ,n.

2) PACKET ERROR RATIO (PER)
In the case of uplink transmission between the NB-IoT
devices and the FSNs for the corresponding jobs, the packet
errors in the outage probability can be significantly higher
due to Rayleigh fading, especially in the urban environ-
ments [42]. Therefore, to ensure reliable data transmission,
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the NB-IoT devices re-transmit the data packets and the FSNs
calculate the packet error probability while decoding Ljf ,n
bits, given as

pjf ,n = Pr
[
γf ,n ≤ 0f

]
= 1− eL

j
f ,n log(1−pb), (4)

where pb is the bit error rate probability and 0f is the
threshold of the signal-to-noise-ratio (SNR) for correct
demodulation.

B. COMPUTATIONAL MODEL
In the computational model, first we consider the NB-IoT
devices use the uplink channel to upload sensory observation
data to the FSNs, and then the FSNs start processing the
collected data for application specific jobs. The FSNs can also
communicate and cooperate with each other in the case of
performing computationally intensive jobs using the inter-fog
physical communication channel, where an F-RAN master
node (FMN) controller acts as the fog network coordinator.
For example, in Fig. 1, the computational job load of FSN f1
is comparatively higher than that of the neighboring FSNs f2
and f3. Therefore, f1 exploits the inter-fog physical network
connection so that a fraction of the computational jobs can be
offloaded to the relatively underloaded neighboring FSNs f2
and f3. As a result, the computational resources at the edge
computing nodes will be utilized more efficiently; in fact,
the job load of the FSNs will be well-balanced, where the
computational offloading costs among the neighboring FSNs
are much lower than that of the job offloading cost to the
remote cloud.

For a given set of FSNs F , we consider the inter-fog
offloading scenario, which is comprised of two parts. First,
each FSN f needs to determine the jobs j ∈ J ′ ⊂ J that
need to be offloaded to a neighboring FSN f ′ ∈ F . Second,
an optimal set of neighboring FSNs F ′ should be determined
by the FSN f ∈ F so that offloading cost of the offloaded job
j ∈ J is minimized.
We model the FSNs as M/M/k queues [43]–[45], where

each FSN f ∈ F has kn parallel CRBs. We assume that
the arrival and service processes of the jobs follow a Pois-
son distribution, where the arrival rate and service rate are
denoted as λf =

∑
j∈J λf ,j and µf , respectively. Each CRB

kn serves at most one job j ∈ J at a time. Moreover, all the
arriving jobs at the corresponding FSN f ∈ F join a single
queue Qf . Therefore, the utilization factor for FSN f ∈ F is
calculated as

uf =
λf

kf × µf
. (5)

The queuing delay is calculated as

qf =
C(kf , uf )
kf µf − λf

, (6)

where C(kf , uf ) is known as the Erlang’s C formula [46].

If FSN f ∈ F performs job j ∈ J locally (i.e., f2 in Fig. 1),
the computational delay can be calculated as [47]

Cf (τ jf ,n) =
Ljf ,n
cf
+

∑
n∈Af

τ
j
f ,n + qf (7)

Here, Ljf ,n is the job data size is, and τ
j
f ,n is the data transmis-

sion time for job j ∈ J for the corresponding NB-IoT device
n ∈ Af ,j. Data processing depends on the computational cycle
cf (cycles/second) of FSN f ∈ F and the queuing delay qf
that jobs in J experience at FSN f ∈ F .

For heavily loaded FSNs (f1 in Fig.1), the jobs are
offloaded to the neighboring FSN f ′ ∈ F ′\{f } (e.g., f3
in Fig.1). The total computing delay depends on the data
transmission time to the neighboring FSN, computing time,
and queuing time as

Ĉf (j,F ′) =
Ljf ′,n
cf ′
+

Ljf ,n
Rf ,f ′ (βf )

+ qf ′ + Df ,f ′ + Sf ′ (j),

∀f ′ ∈ F ′\{f }. (8)

In (8), Rf ,f ′ (βf ) is the capacity of the inter-fog uplink
communication channel, where βf is the fixed bandwidth.
The queuing delay of f ′ ∈ F for the jobs in J is denoted
as qf ′ in which J includes the local processing jobs, as well
as, the incoming jobs from the other neighboring FSNs. The
propagation delay between two FSNs f ∈ F and f ′ ∈ F
is denoted as Df ,f ′ . Sf ′ (j) is the time required for the FSN
f ′ ∈ F to fetch the necessary application from the FMN for
performing job j ∈ J , which is offloaded from the parent
FSN f ∈ F .

The computation cost for job j ∈ J of n ∈ N is

Cn,j(τ jf ,n, 9f ,j,F ′) = 9f ,jĈf (j,F ′)+ (1−9f ,j)Cf (τ jf ,n),
(9)

where 9f ,j is the binary indicator variable, which is equal to
1 when FSN f ∈ F offloads job j ∈ J to the neighboring
FSN f ′ ∈ F , otherwise the FSN performs the job locally and
9f ,j = 0.

C. PROBLEM FORMULATION
The data collection and inter-fog load balancing cost at each
FSN f ∈ F for each job j ∈ J depend on the energy
consumption of the NB-IoT devices n ∈ N for reliable data
transmission and the computational delay of jobs j ∈ J of
the NB-IoT devices n ∈ N at FSNs f ∈ F . Therefore,
the objective of the optimization problem P1 is to minimize
the computational cost for the jobs, which is accomplished by
optimizing the transmission time and fog job assignment as

Min
τ
j
f ,n,9f ,j,F ′

P1 =
∑

f ∈F ,n∈N ,j∈J
8
j
f ,nCn,j(τ

j
f ,n, 9f ,j,F ′)

subject to Enmax −8
j
f ,nE

j
f ,n(τ

j
f ,n) ≥ 0,

∀n ∈ N , ∀j ∈ J (10)

8
j
f ,nτ

j
f ,n ≤ τ

th
f , ∀n ∈ N , ∀j ∈ J (11)
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8
j
f ,n(1− ρ

j
f ,n) ≥ ρ

th
n , ∀n ∈ N , ∀j ∈ J

(12)

Ĉf ′ (9f ,j) ≤ Cthf , ∀j ∈ J , ∀f ′ ∈ F ′, f /∈ F ′

(13)∑
f ∈F

9f ,j ≤ 1, ∀j ∈ J (14)

∑
j∈J

9f ,j ≤ Qf , ∀f ∈ F . (15)

In optimization problem P1, the computational cost is
comprised of two parts, the local computational cost (i.e.,
computational delay) and the inter-fog offloading cost of jobs
in J . The local computational cost depends on the uplink
transmission time of the NB-IoT devices Eτ = (τ jf ,n),∀f , n, j
at the corresponding FSN f ∈ F . Therefore, first the trans-
mission time is optimized for the given initial assignment vec-
tor, where the corresponding constraints are (10), (11), and
(12). Second, the inter-fog load balancing cost is minimized
by reducing the computational cost of task j ∈ J , where
the decision variables are9f ,j and F ′ with the corresponding
constraints (13), (14), and (15).

The issue of maintaining energy efficiency during uplink
data transmission is crucial for relatively energy-constrained
NB-IoT devices. Hence, the constraint in (10) ensures suf-
ficient energy efficiency for each of the NB-IoT devices for
application-specific data acquisition. Enmax is the maximum
energy of each NB-IoT device and E jf ,n(τf ,n) is the energy
consumption of the NB-IoT device for job j ∈ J over the
allocated transmission time τ jf ,n.

The constraint in (11) ensures that the allocated transmis-
sion time τ jf ,n for job j ∈ J of FSN f ∈ F to NB-IoT
device n ∈ N does not exceed the threshold transmission
time τ thf of FSN f . As a result, FSN f ∈ F will schedule
the transmission time to the NB-IoT devices n ∈ N so that
the data acquisition time for job j ∈ J remains within the
maximum time resource capacity.

In (12), the packet transmission success rate for job j ∈ J
should be greater than or equal to the packet success threshold
ρthn of the NB-IoT devices using FSN f ∈ F in the allocated
transmission time τ jf ,n.
When job j ∈ J is processed primarily at FSN f ∈ F ,

the local computational cost is only calculated based on the
computational capacity, the transmission time for data acqui-
sition from different data sources, and the queuing delay.
However, if any specific job j ∈ J is offloaded to the
neighboring FSN f ′ ∈ F from FSN f ∈ F , the corresponding
inter-fog offloading cost Ĉn,j should be considered to ensure
feasible and efficient inter-fog load-balancing. Therefore,
in (13) of problem P1, the inter-fog offloading cost of job
j ∈ J of n ∈ N should not exceed a threshold set by the FSN
Cthf .

In (14), each job j ∈ J can only be scheduled to at most
one CRB of f ∈ F . In (15), The number of jobs at each
FSN f ∈ F should not exceed the size of the queue Qf (i.e.,
the workload of the FSN).

IV. TRANSMISSION TIME SCHEDULING ALGORITHM
First, the admission control is used to construct the initial
assignment vector 8j

f ,n for job j ∈ J at each FSN f ∈
F , where the energy efficient constraint (10) and reliable
transmission constraint (12) in P1 are preserved (lines 3-8,
Alg. 1). Second, transmission time scheduling is performed
based on the given 8j

f ,n, where we consider the requested
transmission time of the NB-IoT devices for any job in J
and thus perform time slot allocation using the bankruptcy
game-based scheduling algorithm. Since8j

f ,n is given for job
j ∈ J , the transmission time can only be allocated to NB-IoT
devices where8j

f ,n = 1. Therefore, for simplicity, we change
the notation of the transmission time allocation variable from
8
j
f ,n to 8f ,n.
Each of the NB-IoT devices/agents cooperates with each

other to provide optimal transmission time scheduling, where
the maximum transmission time of the FSNs is limited.
In such cases, the bankruptcy game framework provides
a special type of N-person cooperative game to solve the
transmission time scheduling problem in the fog network.
In order to solve the transmission time scheduling problem
in P1, the Bankruptcy game (BG) is applied considering the
following:

• The maximum transmission time available for the NB-
IoT subcarrier deployed in the existing LTE infrastruc-
ture is limited with respect to the ever-growing number
of NB-IoT devices in the case of different mMTC appli-
cations. As a result, in practice, the total transmission
time claimed by NB-IoT devices is not always less
than the total transmission duration provided by differ-
ent FSNs. Therefore, the bankruptcy game provides a
suitable option in situations (e.g., the debt crisis in a
bankrupt company) where the maximum transmission
time provided by the FSNs (i.e., the company) is insuffi-
cient for a large number of the NB-IoT devices (e.g. the
creditors).

• The main advantage of bankruptcy game-based time
resource scheduling is that the approach considers
resource management as a cooperative game where
the players freely participate to form coalitions and
obtain profits. During the data acquisition process for
mMTC applications, a coalition can be formed with the
corresponding NB-IoT devices via the FSNs by using
this bankruptcy game to achieve better payoffs. More-
over, using the Shapley value for such coalitions within
the Bankruptcy game framework guarantees relatively
fair and stable allocation [48] of transmission times
among the NB-IoT devices, unlike other state-of-the-art
approaches.

A. BANKRUPTCY GAME FRAMEWORK
Suppose, there is a bankrupt company that wants to allocate
its resources among creditors. The demands/claims of the
creditors are larger than the amount of money of the bankrupt
company. Therefore, to ensure a fair allocation of company
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resources, an N-person game is applied to find an equilib-
rium point that divides the resource efficiently. Based on the
bankruptcy game framework in Definition 1 below, we model
the problem of transmission time scheduling, where the NB-
IoT devices and FSNs are modeled as the players and the
bankrupt company, respectively. The notations used in this
game framework are discussed in Table 1.

TABLE 1. Notations for the Bankruptcy Game Framework for
Transmission Time Scheduling.

Definition 1: A bankruptcy problem is a pair (τ thf ,τf )
where the transmission time allocation vector τf =

[τf ,1, · · · , τf ,N ] satisfies
(a)

∑
n∈Af⊂N τn ≥ τ

th
f , ∀f ∈ F

(b) 0 ≤ τf ,n ≤ τn,∀n ∈ Af
(c)

∑
n∈Af⊂N τf ,n = τ

th
f ,∀f ∈ F .

In condition (a), a finite set of agents for each FSN f ∈
F is denoted as Af , which is a subset of the total number
of NB-IoT devices in N . For a standard bankruptcy game
scenario, condition (a) implies that the total demand or claim
of the NB-IoT devices should be greater than the total trans-
mission time τ thf for each FSN f ∈ F . Therefore, the min-
imum transmission time demand τn by each NB-IoT device
n ∈ Af ⊂ N is calculated for transmitting Lf ,n bits over
the communication channel with additive white Gaussian
noise σ , which is given as

τn =
Lf ,n

βf ,n log
(
1+ κf ,n|hn|2

γ (pn)df ,nσ

) (16)

In (16), the transmission power κf ,n is fixed, hn is the channel
fading coefficient, γ (pn) is the SNR margin that is used to
meet the target packet error rate, and βf ,n is the transmis-
sion capacity, which is calculated using (1). Condition (b)
ensures that each NB-IoT device receives a non-negative
transmission time allocation solution τf ,n which should be
less than or equal to the demand τn of each NB-IoT device.
Condition (c) dictates that the available transmission time τ thf
provided by the FSNs f ∈ F must be completely distributed
among the NB-IoT devices n ∈ {Af ⊂ N }. Based on Defini-
tion 1, the bankruptcy game framework for transmission time
scheduling is proposed in Algorithm 1.

1) COALITION AND CHARACTERISTIC FUNCTION
A coalition X always exists in a bankruptcy game so
that the agents can beneficially cooperate with each other.

Algorithm 1 Bankruptcy Game for Transmission Time
Scheduling at Each FSN f ∈ F
Input: τ thf

1 Initialize: 8, Af
Result: Eτf

2 Step 1: Admission Control
3 for n ∈ N do
4 if (10) and (12) are fulfilled then
5 8f ,n = 1
6 Af = Af ∪ {8f ,n}

7 else
8 8f ,n = 0
9 Step 2: Transmission Time Scheduling

10 for n ∈ Af do
11 Calculate coalition charactaristics function ν(X)

using (17)
12 Calculate Shapley value for n, φn(ν) using (20)

complied with I and C in (18) and (19) repectively
without violating constraints (11), and (12) in P1

13 φn(ν) is rounded as τf ,n
14 Eτf = Eτf ∪ τf ,n
15 return Eτf

Furthermore, a coalition formation game is formed, where
the coalition is expressed by a characteristic function and
the coalition of agents is denoted as X ⊂ Af (line 2 in
Alg. 1). The empty coalition and the grand coalition are
denoted as ∅ andAf , respectively. The characteristic function
for the N-person game with the pair (Af , ν), where ν is the
characteristic function, which is defined as

(a) ν(∅) = 0
(b) if X ∩ X′ = ∅, then ν(X)+ ν(X′) ≤ ν(X ∪ X′).

In 1(a), if there is no coalition, the value of the characteristic
function becomes 0. In 1(b), the condition describes the
super-additivity property of the characteristic function and is
defined as

ν(X) = max(0, τ thf −
∑
n′ /∈X

τn′ ), ∀X ⊂ {Af − ∅}, (17)

for all possible coalitions X.

2) THE CORE AND TRANSMISSION TIME
SCHEDULING STABILITY
The goal of the core is to determine the stability region for
the solution of an N-person cooperative game, where the
solutions should have rationality constraints (i.e., desirable
properties and existence conditions). The solution vector τf
is consistent if the solutions of each n ∈ Af ⊂ N are both
group rational and individually rational. Moreover, the indi-
vidual NB-IoT devices will not stay in a coalition under the
following terms:

(a) if individual NB-IoT devices receive a transmission
time less than it could obtain without coalition,
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(b) if the conditions (10)-(12) are violated during the trans-
mission time allocation process.

As a result, the transmission time allocation vector τf must
meet the additional constraints along with the other con-
straints (10)-(12) in P1, which are

I = {[τf ,1, · · · , τf ,N ]|
∑
n∈Af

τf ,n = ν(Af ), and τf ,n ≥ ν(n),

∀n ∈ Af }. (18)

Here,
∑

n∈Af τf ,n = ν(Af ) and τf ,n ≥ ν(n) represent
the group and individual rationality, respectively. Moreover,
the allocation vector τf is considered to be stable if there is no
allocation among the NB-IoT devices that violates conditions
(10)-(12) in P1 and either one of the rationality conditions
in (18). Otherwise, the coalition will be unstable, which
means the NB-IoT device is unsatisfied with the allocation.
Therefore, to obtain a stable solution vector τf , we define the
core as

C = {[τf ,1, · · · , τf ,N ]|τf ∈ I, and
∑
n∈X

τf ,n ≥ ν(X),

∀X ⊂ Af }. (19)

To obtain the core in (19), we utilize the Shapley value for
the N-person cooperative game by considering the average
marginal contributions of each NB-IoT device in each strat-
egy solution (lines 10-14 in Alg. 1). The value function is
defined as φ(ν) to compute the Shapley value, which uses the
value of NB-IoT device n ∈ N as

φn(ν)=
∑

X⊂Af ,n∈Af

(|X| − 1)!(N−|X|)!
N !

(ν(X)−ν(X−{n})),

(20)

where |X| is the number of elements in the set X. In (20),
the marginal contribution of NB-IoT device n ∈ Af is
captured effectively by averaging over all the sequences by
which the grand coalition could be built up.

V. GREEDY ITERATIVE TIME SCHEDULING
Although the Shapley value for solving the transmission
time scheduling problem is computationally less complex
than the other methods such as τ -value and nucleolus [49],
the computational complexity of the Shapley value is rela-
tively still high enough to ensure fast convergence for the
problem. Therefore, in this section, we provide an alterna-
tive heuristics-based solution to solve the transmission time
scheduling problem which can converge much faster than
when computing the Shapley value.

The objective of Greedy Iterative Time Scheduling (GITS)
is to ensure reliable connectivity to a massive number of NB-
IoT devices so that small data can be acquired from multiple
sources for executing the jobs at the FSNs.

In the admission control phase (lines 2-8 in Alg. 2), each
NB-IoT device n ∈ N checks whether or not the initial
conditions are met for assignment at the FSNs f ∈ F
(lines 3-4 in Alg. 2). If conditions (10) and (12) are satisfied,

Algorithm 2 Greedy Iterative Time Scheduling (GITS)
at Each FSN f ∈ F
Input: τ thf , N

1 Initialize: 8, Af , τ resf ← 0
Result: Eτf

2 Step 1: Admission Control
3 for n ∈ N do
4 if (10) and (12) are fulfilled then
5 8f ,n = 1
6 Af = Af ∪ {8f ,n}

7 else
8 8f ,n = 0
9 Step 2: GITS

10 Sort Af based on τn in descending order
11 τ resf ← τ thf
12 if τ resf ≥

∑
n∈Af τf ,n then

13 τ resf ← τ thf −
∑

n∈Af τf ,n
14 Update Eτf
15 else
16 Atemp

f = ∅, A′f = ∅
17 while ∃n ∈ A and ∃n /∈ A′f do
18 Select n ∈ A
19 Calculate τn using (16)
20 if τ resf ≤ τn and ∃n /∈ Atemp

f then
21 τ resf ← τ resf − τn

22 Update Eτf ,A
temp
f

23 else
24 Update A′f
25 return Eτf

the initial assignment variable is set to φf ,n = 1, otherwise
φf ,n = 0 (lines 5-8 in Alg. 2). After that, each FSN f ∈ F
sorts the output of the initial assignment Af in descending
order based on the transmission time requirement τn of each
n ∈ Af ⊂ N (line 10 in Alg. 2). As a result, each FSN
f ∈ F can support a massive number of NB-IoT devices by
prioritizing the NB-IoT devices that require less transmission
time to transmit a small amount of job data. Subsequently,
the initial residual transmission capacity τ resf of f ∈ F is set
to the maximum transmission capacity of the corresponding
FSN f ∈ F (line 11 in Alg. 2). If the initial residual capacity
can support the requirements of n ∈ Af , the residual capacity
is recalculated and the transmission time scheduling vector
Eτf is updated accordingly (lines 13-14 in Alg. 2). However,
if the transmission time requirements exceed the residual
capacity of the FSN f ∈ F , the GITS procedure is initiated
to iteratively schedule the transmission time for the NB-IoT
devices (lines 16-24 in Alg. 2). In this process, the residual
capacity is iteratively updated based on the transmission time
requirements of the NB-IoT devices n ∈ Af . If the transmis-
sion time requirements of the NB-IoT device n ∈ Af are met,
the residual capacity of FSN f ∈ F is recalculated and the
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transmission time vector Eτ andAtemp
f are updated accordingly

(lines 20-22 in Alg. 2). Otherwise, NB-IoT device n ∈ Atemp

is not added to the list Atemp
f , and is therefore added to the

rejection list A′f (lines 23-24 in Alg. 2). Finally, the GITS
procedure terminates once theNB-IoT devices reside in either
Atemp
f or A′f .

VI. THE VOGEL’s APPROXIMATION METHOD FOR
INTER-FOG COMPUTATIONAL JOB ASSIGNMENT
The problem of inter-fog computational job assignment is an
exponential time problem that cannot be solved in polynomial
time. However, the problem P1 can also be reduced to a base
problem of the generalized assignment problem (GAP) [50],
which is a classical generalization of a well-knownNP-hard
problem, namely the bin packing problem [51]. Therefore,
the solution of the computational job assignment problem in
P1 is three-fold. First, we determine the sets of underloaded
and overloaded FSNs, which are denoted as Fu ⊂ F and
Fo ⊂ F , respectively. By using (5), the utilization of each
FSN f ∈ F can be calculated, and if the utilization factor
is uf > 1, the corresponding FSN f ∈ F belongs to the
overloaded set Fo ⊂ F . Otherwise, f ∈ F belongs to the
underloaded set Fu ⊂ F . Second, at each FSN f ∈ Fo,
the offloading requests are formed as a binary offloading
decision vector 9f = (ψf ,j), f = 1, · · · ,F, and j =
1, · · · , J , which is comprised of off-loadable jobs j ∈ Qf .
Therefore, we determine the off-loadable jobs at the FSNs
f ∈ Fo mentioned in P1 as

9f = [ψf ,j, · · · , ψf ,J ] =

{
1, if λmax<λf (j)
0, otherwise.

, ∀f ∈Fo

(21)

In (21), we assume that the maximum job computational
capacity of the FSNs are limited within an job arrival rate
of λmax . Therefore, at each FSN f ∈ Fo, if the computational
load λf (j) of the job j ∈ Qf is greater than the maximum job
arrival rate λmax , the job j ∈ Qf is off-loadable and added
to the vector 9f . Otherwise, the job can be processed locally
at f ∈ Fo. Finally, each overloaded FSN f ∈ Fo needs to
find an appropriate neighboring underloaded FSN from the
set Fu, where the inter-fog job computational job assignment
cost in (8) is minimum. From equation (8), we observe that,
the inter-fog computational job assignment decision not only
depends on the computational capacity of the neighboring
underloaded FSNs in Fu, but also on different factors such
as the inter-fog job data transmission time, the queuing delay
of the neighboring FSN for the existing jobs, and the time
to fetch application for offloaded job execution. Moreover,
in an online scenario, finding an appropriate neighboring FSN
f ′ ∈ Fu for job offloading is challenging due to the fact
that different FSNs in F have the different computational
capacities (i.e., the number of residual CRBs), as well as
with different incoming job demands from the overloaded
FSNs f ∈ Fo and existing job demands of the neighbor-
ing underloaded FSN f ′ ∈ Fu. Therefore, we introduce

a new decision variable 2 for the inter-fog job offloading
problem in P1, which is the job assignment vector used to
model the problem as a Hitchcock-Koopmans problem [52].
The linear programming representation of a transportation
problem is:

Min
2

P2 =
∑
f ∈Fo

∑
f ′∈Fu

θf ,f ′ Ĉf ,f ′ (22)

∑
f ∈Fo

θf ,f ′ ≤ k̄f ′ , ∀f
′
∈ Fu (23)

∑
f ′∈Fu

θf ,f ′ ≥
∑
f ∈Fo

9f ,∀f ∈ Fo (24)

θf ,f ′ ≥ 0, ∀f ′ ∈ Fu, ∀f ∈ Fo. (25)

The goal in P2 is to find an |Fo| × |Fu| array of numbers
2 = (θf ,f ′ ), f = 1, · · · , |Fo|, f ′ = 1, · · · , |Fu|, that
minimizes the inter-fog job assignment cost Ĉf ,f ′ of filling
shortages of CRBs in the overloaded FSNs from the surplus
CRBs at the underloaded FSN. In (23), k̄f ′ is the residual
number of idle CRBs at the underloaded FSNs in Fu, which
represents the supply constraint. Constraint (24) ensures the
off-loadable jobs at the overloaded FSN will be assigned
to the underloaded FSN where it represents the demand.
In (25), θf ,f ′ is a non-negative integer that represents the
number of jobs offloaded from the supply point of f ∈ Fo
(i.e., overloaded FSN) to the destination point of f ′ ∈ Fu
(i.e., underloaded FSN). To solve the Hitchcock-Koopmans
transportation problem for the computational job assign-
ment, first we apply an iterative procedure known as Vogel’s
Approximation Method (VAM) [53], [54] which calculates
the feasible and optimal solution of the problem. The basic
steps of VAM for solving the computational inter-fog job
assignment problem are given below.

Step 1: Initialization of the balanced opportunity cost
matrix, O with dimensions |Fo| × |Fu|

1(a) If the demand is greater than the supply,
the opportunity cost matrix is balanced by adding
dummy rows to O.

1(b) If the supply is greater than the demand, the
opportunity cost matrix is balanced by adding dummy
columns to O.
Step 2:: Calculation of the penalty cost for each row
and column by subtracting the lowest cell cost in the
row or column from the next lowest cell cost in the same
row or column.
Step 3: Determination of the row or column with the
largest penalty. Arbitrarily break the tie if the largest
penalty and the second largest penalty of the row and
the columns are equal.
Step 4: Assignment of the maximum number of jobs
from the overloaded FSN in the row to the underloaded
FSN with the smallest offloading cost.

4(a) Adjustment of the supply and demand and
remove the satisfied rows or columns and set the values
to 0.
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Step 5: Follow the stopping criteria 5(a) If exactly
one row or column with zero supply or demand remains
uncrossed out, then stop.

5(b) Repetition of the steps 2, 3, and 4 until condi-
tions (23), (24), and (25) are all fulfilled.
Step 6: Computation of the total transportation cost
(i.e., the inter-fog job assignment cost) for the feasible
assignments 2.

VII. SIMULATION RESULTS
Figure 2 depicts a network scenario with F = 20, where the
NB-IoT device density per FSN is 10. Within the range of
each FSN, the number of NB-IoT devices is uniformly dis-
tributed. The number of jobs at each FSN is a random number
from the exponential distribution with mean 5. In addition,
the simulation results are obtained based on a machine with
a 3.00 GHz Intel i5-7400 CPU and 16 GB RAM. The main
parameters for the simulation are provided in Table 2.

FIGURE 2. An example simulation setup.

A. SIMULATION SETTING
At each complete iteration during the simulation, the network
is randomized based on the simulation parameters in Table 2
and the performance of the proposed approach is illustrated.
Using the simulation, we compare our proposed approaches
with two baseline methods, which are given below.

(1) Isolated FSN: In this approach, there is no coopera-
tion between neighboring FSNs, and individual FSNs
are considered to be isolated data-centers-in-a-box. In
other words, the FSNs are treated as self-sufficient
computational resource blocks (CRBs) as the job load
increases at each FSN, where the jobs are served
locally.

(2) Nearest Neighbor Offloading: In the nearest neighbor
offloading approach, the neighboring FSNs cooperate
among themselves and the over-utilized FSNs offload
the excess amount of jobs to their nearest underutilized
FSNs.

TABLE 2. Simulation settings.

B. LOAD BALANCING COST ANALYSIS
In this subsection, we analyze the load balancing cost of
different methods in terms of the load balancing cost and
queuing delay with the increased number of FSNs and com-
putational jobs in the fog network.

In Fig. 3, we compare the performance of the proposed
VAM-based load balancing with the isolated FSN and the
nearest neighbor offloading methods in terms of the average
cost. At a small number of fog computing nodes in the
network (i.e., |F | = 4), the average cost is relatively high
for all the methods due to the smaller number of FSNs in the
network that provide the computational services for the jobs.
However, starting from |F | = 4, placing two additional FSNs
in the network decreases the average cost linearly by 40%.
Moreover, when the fog computing network size reaches
up to |F | = 20 from |F | = 4, the average costs of the
isolated FSN and the nearest neighbor offloading are signif-
icantly increased by 84.4857% and 81.1062%, respectively
compared to that of the proposed VAM-based load balancing
solution. As a result, in Fig. 3, we can infer three crucial
observations. First, after a certain number of FSN placements
(i.e., |F | = 14) in the network, the placement of additional
FSNs follows the law of diminishing returns [58] in terms of
job load assignment cost minimization. Second, in the case
of overloaded FSNs, offloading the excess amount of jobs
to the neighboring underloaded FSNs is not the best option
for ensuring a well-balanced network. In fact, this is the
reason why the proposed VAM approach significantly out-
performs the nearest neighbor offloading approach. Unlike
the nearest neighbor approach, the offloading decision of the
proposed approach considers not only the propagation and
transmission costs for load-balancing, but also the system
utilization of the underloaded FSNs. Finally, the cooperation
between the FSNs in the network can significantly reduce
congestion during the computational service by the FSNs.
Therefore, the nearest neighbor offloading approach incurs
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FIGURE 3. Comparison of average cost between the proposed method
and the baseline methods, |N | = 10 per FSN.

FIGURE 4. Comparison of cumulative average cost between the proposed
method and the baseline methods, |F | = 20.

a 4% smaller cost than that of the isolated FSN approach.
Overall, the proposed approach is shown to be more effi-
cient than that of the two baseline methods. On the other
hand, Fig. 4 depicts the number of FSNs as fixed at |F | =
20 while the number of computational jobs varies between
|J | = [55, 165], the cumulative average cost of the nearest
neighbor offloading and the isolated FSN increase drastically
by 71.215% and 72.367%, respectively, compared to that of
the proposed VAM approach for job assignment.

In Fig. 5, a comparison of the average queuing delay
is depicted, where the number of FSNs is given in
increasing order. The average delay of the proposed
VAM approach is significantly reduced by 97.006% and
96.2595% compared to the isolated FSN and nearest neighbor
offloading approaches, respectively. Meanwhile, the queuing
delay between the nearest neighbor and the isolated FSN
approaches is reduced by 19.957%; this is because in the
case of the nearest neighbor, the nearby FSNs cooperate with
each other to perform the job inside the FSN network. As a

FIGURE 5. Comparison of average delay between different methods,
|N | = 10 per FSN, µ = 0.125.

result, the nearest neighbor offloading approach ensures bet-
ter performance gain than that of the isolated FSN approach.
On the other hand, the proposed VAM-based job load bal-
ancing approach has a significant advantage over the nearest
neighbor approach. Unlike the nearest neighbor offloading
approach, the offloading policy of the proposed approach
depends on the expected queuing delay of the jobs at the over-
loaded FSNs, in which can easily offload to the corresponding
underloaded FSNs. In addition, the underloaded FSNs only
admit jobs that do not exceed their own system capacity.
Under these circumstances, the proposed VAM approach
significantly outperforms the nearest neighbor approach. In
the case of the isolated FSN approach, due to the increased
network size and lack of interactions between nearby FSNs,
some of the FSNs become highly congested as the num-
ber of jobs increases. On the other hand, the underutilized
FSNs remain inactive and do not contribute to the network,
so that average delay of different jobs can be reduced. In fact,
the job load discrepancy between the overloaded FSNs and
underloaded FSNs increases significantly compared to that
of the proposed VAM approach. This proves the efficiency
of the proposed approach, particularly that the computational
capacity of the network is fully utilized and the job load is
well-balanced. Overall, from Fig. 5 we can also verify that
the proposed approach is effective in enhancing the quality
of service (QoS) for different jobs compared to the other two
baseline approaches.

In Fig. 6, we also analyze the effects of increased job load
when the number of FSNs in the network is fixed at |F | = 20.
From Fig. 6, it is noticeable that the cumulative average delay
increases sharply in the case of baseline methods compared
to the proposed approach. In fact, with an increasing number
of jobs, the cumulative average delay results of the isolated
FSNs and the nearest neighbor offloading are respectively
96.7097%, and 95.8902% higher than that of the proposed
VAMapproach. This clearly proves the fact that, the proposed
VAM approach is more suitable in real environments where
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FIGURE 6. Comparison of cumulative average delay between the
proposed method and the baseline methods, |F | = 20.

the number of computational jobs may increase or decrease
drastically.

C. LOAD BALANCING BENEFIT ANALYSIS
In this subsection, we analyze the achieved gain or benefit of
computational job assignment between the different methods
in terms of average response time with increasing number of
FSNs and computational jobs in the fog network.

FIGURE 7. Comparison of average response time between different
methods, |N | = 10, µ = 0.0625.

In Fig. 7, the average response time between the different
approaches are evaluated, where the service rate of the FSNs
is set to µ = 0.125. From the simulation, we observe that
as the network size increases, the proposed VAM approach is
proven to be more effective than that of the other approaches
in terms of the average response time. When the network size
is |F | = 20, we observe that the average response time of
the proposed approach is reduced by 80% compared to the
network size |F | = 4. The reason behind this is that as the
network size increases, the number of off-loadable FSNs also
increases, which leads to more options for the overloaded
FSNs to offload jobs to the underloaded FSNs. In the case

FIGURE 8. Comparison of mean response time between the VAM,
Isolated FSN, and Nearest neighbor offloading approaches, |F | = 20,
|J | = [50,165].

of the nearest neighbor approach, when the network size is
|F | = 4, the average response time is at a maximum as com-
pared to when the network size isF = 20. If the network size
is |F | > 12, the average response time gradually decreases
in nearest neighbor approach. However, the average response
time of the nearest neighbor approach is still 96.2595%
higher than that of the proposed VAM approach when the
number of FSNs in the network is |F | = 20. The average
response time is significantly reduced for the proposed VAM
approach compared to that of the other two baseline meth-
ods which clearly correspond to the fairness of the job load
balancing process among the FSNs. In fact, the efficiency
of job load balancing is defined for the individual FSNs
where the proposed VAM approach can significantly opti-
mize the job assignment decision to ensure a reduced average
response time under different network sizes than that of the
baseline methods. On the other hand, in Fig. 8, we observe
that the cumulative average response time of job offloading
through the proposed VAM approach is significantly reduced
by 97.9618% and 97.4878%, respectively compared to that of
the isolated FSN and nearest neighbor offloading approaches.
This clearly demonstrates that the proposed VAM approach
is less sensitive to the increased job load after placing a
certain number of FSNs in the network than that of the
other two baseline methods. Moreover, the performance gap
between the nearest neighbor offloading and the isolated FSN
approach is small even with a different amount of computa-
tional load in the network. The reason for this is that both the
nearest neighbor offloading and the isolated FSN approaches
are very sensitive to drastic increases in computational jobs
in the network, and thus the performance varies noticeably
compared to the proposed VAM approach.

D. COMPUTATIONAL TIME ANALYSIS
In this subsection, we perform a computational time analy-
sis between the different methods with an increased num-
ber of FSNs and computational jobs in the fog network.
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FIGURE 9. Comparison of computation times between the Shapley value
and GITS algorithms, |F | = [4,20], |N | = [40,220].

Figure 9 depicts a computational time comparison between
computing the Shapley value and utilizing the greedy iterative
time scheduling (GITS) approach, where the number of FSNs
is |F | = [4, 20] and NB-IoT devices are distributed ran-
domly throughout the network. We repeated the simulation
100 times to simulate the user mobility in the network. We
also recorded the maximum and minimum computational
times for both algorithms to show the range of values for the
algorithmic running time for both proposed algorithms. From
Fig. 9, we observe, the running times of both approaches
increase sharply as the number of NB-IoT devices increases.
Furthermore, the mean running time of the Shapley value
and GITS approaches are 0.0197 seconds and 0.0159 sec-
onds, respectively. In fact, the computational complexity of
the Shapley value is 19.289% larger than that of the GITS
approach. As a result, we can infer that the Shapley value-
based time scheduling approach is more sensitive compared
to the GITS approach in terms of user mobility. However,
the running time of the Shapley value is still tolerable and
practical due to the admission control policy at different
FSNs, which is based on the channel conditions and energy
resource availability at the corresponding NB-IoT devices. In
fact, the bankruptcy game is enforced distributedly at differ-
ent FSNs where the number of the served NB-IoT devices
is limited due to the admission control-based NB-IoT device
association policy. Nevertheless, the running time can also
be significantly reduced if the Shapley value is pre-computed
before transmission time allocation. In real network sce-
narios, this is usually accomplished by the FSNs or the
FMN at a fixed time interval to meet the shifting dynamics
of the NB-IoT devices. Thus, both proposed approaches
are proven to be effective at ensuring adaptive transmission
time scheduling depending on the number of NB-IoT device
arrival rates. In Fig. 10, the average running time of the VAM
approach is given by the increasing job arrivals at the FSNs.
The mean running time of the proposed VAM approach is
0.034 seconds whereas the running times of the isolated FSN

FIGURE 10. Comparison of running times between the VAM, Nearest
neighbor offloading, and Isolated FSN approaches, |F | = [4,20].

FIGURE 11. Comparison of mean computation time between the VAM,
Isolated FSN, and Nearest neighbor offloading approaches, |F | = 20.

and nearest neighbor offloading approaches are 0.0146 sec-
onds and 0.0087 seconds, respectively. The running time of
the proposed VAM approach is 57.0588% and 74.4118%
higher, respectively, than that of the isolated FSN and nearest
neighbor offloading approaches. Moreover, as the job load
increases, the number of iterations to optimize the job assign-
ment cost increases. This is expected since the proposedVAM
provides the optimal job assignment decision with increas-
ing number of job demands, achieving significant perfor-
mance gain compared to the other baseline methods. Since
the proposed approach is applied in the FMN, which has a
higher computational capacity than the FSNs, the FMN can
meet the computational time requirements to ensure job load-
balancing for the FSNs. In addition, from Fig. 11, we observe
that with increasing job load and a fixed network size of
|F | = 20, the mean running time of the proposed VAM
approach is 0.0543 seconds, whereas the running times of
the isolated FSN and nearest neighbor offloading approaches
are 0.0128 seconds and 0.0108 seconds, respectively.
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The running time of the proposed VAM approach is 76.427%
and 80.110% higher, respectively, than that of the isolated
FSN and nearest neighbor offloading approaches.

VIII. CONCLUSION
In this paper, we focus on the inter-fog load balancing prob-
lem, where the objective is to minimize the computational
costs with respect to communication and computation con-
straints in the fog network empowered with the NB-IoT wire-
less technology. Therefore, we proposed a Bankruptcy game
framework for distributive and strategic time scheduling that
is well-suited for data acquisition from NB-IoT devices in
a fog computing network. Unlike conventional approaches,
the proposed Shapley value-based approach can fairly sched-
ule the limited time resources provided by the NB-IoT car-
rier to the NB-IoT devices. We also proposed a relatively
lightweight greedy transmission time scheduling algorithm
that complements the Shapley value-based time scheduling
approach. Further, we formulated the inter-fog load offload-
ing problem as a Hitchcock-Koopmans problem and solved
the problem using Vogel’s approximation method for load
balancing among the cooperative fog computing nodes so that
the inter-fog offloading cost is optimized efficiently. Finally,
we validated the performance of the proposed approaches
through extensive numerical analyses in terms of different
performance metrics.
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