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ABSTRACT This paper pays close attention to the adaptive neural network tracking control. Aiming at
a class of uncertain nonlinear systems with completely unknown output disturbance and unknown time
delay, a corresponding robust control method is proposed based on the backstepping design technology.
Neural network approximation is introduced as a very effective estimation technique for modeling uncertain
partitions in the design process of virtual controller. The suitable Lyapunov–Krasovskii function is con-
structed, and by using the organic combination of Young’s inequality, unknown time delays are compensated.
Nussbaum function is used to handle unknown virtual control directions. A practical robust control method is
proposed to deal with the controller singularity problems. A priori knowledge is not required for this method.
In this method, all signals achieve semi-global uniform ultimate boundedness, and it is demonstrated that the
tracking error eventually converges the region around the origin. The simulation results verify this method’s
feasibility and effectiveness.

INDEX TERMS Adaptive control, nonlinear systems, time-delay, output disturbance, neural networks.

I. INTRODUCTION
In recent years, a hot topic is adaptive control andmany effec-
tive control strategies have been proposed, including adap-
tive backstepping design [2], [3], intelligent control [5], [6],
sliding mode control [7], distributed control [8], [9] and
more. And the adaptive neural network control has caused
widespread concern. It has become an important part of adap-
tive control. The adaptive control method is a control method
that can effectively deal with the uncertainty of the model.
Adaptive neural control is a control method combining neural
network and adaptive control, which can effectively deal
with the nonlinear part of the system and the uncertainty of
the model. And thus it has been extensively used. Highly
uncertain nonlinear systems often use this method to con-
trol [10], [11], [13], [16]–[19]. Because of their general

approximation performance, the basic concept is to use neural
network to estimate the uncertain nonlinear function and then
use the backstepping. The technique gradually constructs
Lyapunov functions to design nonlinear systems, and lots of
researches have been accomplished. In addition, there are
several types of effective modeling and control methods. For
example, the recurrent neural network method can effectively
model time-varying matrices, and most recursive neural net-
work models do not require offline learning in advance [34].
Zeroing neural dynamics is a systematic and effective method
that has been officially promoted from CZNN (conventional
Zhang neural network) since 2008. It has been widely used
in neural network models and nonlinear optimization [35].
The Jacobian-matrix-adaption method is a conventional con-
trol method for finding the joint variable vector by first
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calculating the inverse or pseudo-inverse of the Jacobian
matrix, which can conveniently handle the control system
with redundancy [36].

For nonlinear dynamics systems, neural network can-
didate computing architecture shows that multi-layer neu-
ral networks may be ideal for real-time adaptive control.
In [14] and [27], multilayer neural networks were untilized.
The radial basis function network has its foundation in con-
ventional approximation theory. It has the capability of uni-
versal approximation [24]. In [15] and [20], based on the
above theories, unknown function can be approached by
using radial basis functions for the approximation. In [12],
an approximate adaptive backstepping method is proposed.
In [1], [23], and [25], the above method is extended to adap-
tive neural control, in order to avoid possible controllers,
adaptive control is achieved through backstepping tech-
niques. For a system which is multi-input and multi-output,
an output feedback tracking controller is proposed [21]. For
unknown systems, neural networks approximate unknown
functions. In [21], backstepping technology not only ensures
that all signals are bounded, but also makes the error of track-
ing time-varying signals within a small range. In uncertain
nonlinear systems, uncertain parameters, uncertain dynam-
ics and external disturbances are also ubiquitous. For sta-
bilization and performance recovery of nonlinear systems
with unmodeled dynamic, a time-scale separation redesign
is presented [37]. And in [38], it proposes two different
robust redesign techniques based on time scale separation.
In [39], a high-gain predictor is designed for output feed-
back control of nonlinear systems in the presence of input,
output, and state delays. The actual design can be used
for the decoupling backstep design because a new control
function is proposed [4]. In [22], it has been investigated
that MIMO stochastic nonlinear systems which have high-
frequency gains. Utilizing the combination of Nussbaum gain
and adaptive neural network, it can be sure that all signals are
bounded.

One of main advantages of previous work is to ensure
system’s stability, because of the expectation of the adaptive
law is in view of the Lyapunov stability theory. For the
research of nonlinear systems, previous work has certain
enlightenment. In [15] and [23], the system has an unknown
time delay. In [22], the systems have an unknown smooth
nonlinear function. And in [11], it has the unknown distur-
bance. In [27] and [32], the virtual control coefficients ϕi = 1.
In [21], [29], and [33], the virtual control coefficients ϕi is
an unknown constant. In [4], [26], [30], and [31], the virtual
control coefficients was extended to time-varying. However,
it hasn’t been discussed that the nonlinear systemswhich have
unknown time delays, unknown disturbance and unknown
time-varying virtual control coefficient. And, the system out-
put of the nonlinear system has an unknown time-varying
disturbance. This type of nonlinear systems is widespread
in reality. So it is necessary to study it at the present stage.
In the current study, unknown time delays use Lyapunov-
Krasovskii function for compensation. Nussbaum function is

used to handle unknown virtual control directions. Practical
robust control deals with controller singularity problems.
This article has the following contributions: i) The contin-
uous function κ(·) is introduced to avoid the possibility of
controlling the saturation of the actuator. At the same time,
the problem that the system output has unknown time-varying
interference in the nonlinear system is solved. ii) The com-
bination of the use of integral Lyapunov function and Nuss-
baum function is used to prevent the problem of controller
singularity problem and solve the unknown virtual control
direction problems in nonlinear systems. iii) Time delay
τi is removed by the Lyapunov-Krasovskii functional and
the organic combination of Young’s inequality, which makes
neural network parametrization. iv) Neural network approxi-
mation is introduced as a very effective estimation technique
for modeling uncertain partitions in the design process of
virtual controller. The smooth virtual control functions are
provided by introducing of continuous even functions qi(·).
Because any degree of need can be distinguished by smooth
virtual control functions, the practical control of backstepping
design can be achieved.

The paper is structured in the following sections. The
problem formulation and preparation are given in section 2.
In section 3, the adaptive controller is designed and the
system’s stability of is ensured. This method’s performance
is reflected in the results of extensive simulation studies
in section 4. In section 5, the work is summed up.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PLANT DYNAMICS
Consider a class of nonlinear SISO systems with time-delay.

ẋi = ϕi(x̄i)xi+1 + fi(x̄i)+ ξi(x̄i(t − τi))
+3i(x, t), 1 ≤ i ≤ n− 1,

ẋn = ϕn(x̄n)u+ fn(x̄n)+ ξn(x̄n(t − τn))
+3n(x, t),

xi = φi(t), t ∈ [−τmax, 0], i = 1, . . . , n,
y = x1 + d(t),

(1)

where x̄i = [x1, x2, . . . , xi]T , x = [x1, x2, . . . , xn] ∈ Rn are
state variables, u ∈ R is system input and y ∈ R is system
output, ϕi(·), fi(·) and ξi(·) are smooth functions which are
unknown, 3i(x, t) is a disturbance and it is time-varying,
τi are time delays which are unknown, i = 1, . . . , n. d(t)
is an unknown disturbance, which is a bounded smoothing
function, i.e. |ḋ(t)| ≤ Dmax. By the adaptive controller
designed, signals are bounded and y(t) meets the reference
signal yd (t). ȳd = [yd , ẏd , . . . , y

(i)
d ]T , i = 1, 2, . . . , n − 1,

and it is desired trajectory.
Assumption 1: Functions ϕi(x̄i) are unknown, but 0 <

ϕi0 ≤ |ϕi(x̄i)| ≤ ϕ̄i(x̄i),∀x̄i ∈ Ri, among them,ϕi0 is constants
and smooth functions ϕ̄i(x̄i) are known.
Assumption 2: ϕ̄i(x̄i) meets the formula l−i ≤ ϕ̄i(x̄i) ≤ l+i

and Ii := [l−i , l
+

i ] ⊂ [ϕi0,+∞).
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Assumption 3: x̄di, i = 2, . . . , n, are desired trajectory
continuous vectors, and x̄di ∈ �di ⊂ Ri with �di known
compact sets.
Remark 1: In the case where the above assumptions are

met, the unknown ϕi(x̄i) are positive or negative. So we
consider ϕi(x̄i) > 0. Furthermore ϕi0, l

−

i and l+i are only for
analysis, it isn’t necessarily to know their true value.
Assumption 4: Unknown functions ξi(x̄i(t)) and known

positive smooth functions βi(·) satisfy the inequality
|ξi(x̄i(t))| ≤ βi(x̄i(t)).
Assumption 5: For 1 ≤ i ≤ n, positive constant p∗i and

nonnegative smooth function 9i satisfy ∀(t, x) ∈ R+ × Rn

|3i(x, t)| ≤ p∗i 9i(x̄i).
Remark 2: The unknown time delays have a upper bound

τmax i.e. τi ≤ τmax, i = 1, 2, . . . , n. The differential equation
(1) can describemany practical physical processes. For exam-
ple, the cold rolling mills [2]. And most recycling processes
inherit the delay through their state equations.
Lemma 1: Let N (·) be an Nussbaum-type function which

are smooth and functions V (·), ζ (·) are smooth [22]. And
V (t) ≥ 0, ∀t ∈ [0, tf ). If

V (t) ≤ C0 + e−C1t
∫ t

0
(g(·)N (ζ )+ 1)ζ̇eC1τdτ,∀t ∈ [0, tf )

where C0 and C1 represents constant and C1 > 0, and g(·)
is a bounded and time-varying parameter, and then V (t), ζ (t)
and

∫ t
0 g(·)N (ζ )ζ̇dτ are bounded on [0, tf ).

Lemma 2: When ε > 0, and for any ϑ ∈ R, there is [28]

0 ≤ |ϑ | − ϑ tanh
(
ϑ

ε

)
≤ λε,

where λ = e−(λ+1), i.e. λ = 0.2785.
Lemma 3: Even function qi(x) : R→ R [1]

qi(x) =



1, |x| ≥ νai + νbi
cqi
∫ x
νai
[( νbi2 )2 − (σ − νai −

νbi
2 )2]n−idσ,

νai < x < νai + νbi

cqi
∫
−νai
x [( νbi2 )2 − (σ + νai +

νbi
2 )2]n−idσ,

− (νai + νbi) < x < −νai
0, |x| ≤ νai

where

cqi =
[2(n− i)+ 1]!

ν
2(n−i)+1
bi [(n− i)!]2

,

vai, vbi > 0, (i = 1, 2, · · · , n).
Lemma 4: Even function

κ(a) =
a2 cosh(a)
1+ a2

, ∀a ∈ R

is continuous, and monotonically increasing.

B. RBFNN APPROXIMATION
Function ξ (Z ) : Rq → R uses the following RBFNN for
approximation in the paper.

ξnn(Z ,W ) = W T S(Z ), (3)

where Z ∈ � ⊂ Rq, W = [ω1, ω2, . . . , ωl]T ∈ Rl, and
S(Z ) = [s1(Z ), . . . , sl(Z )]T , Gaussian functions is selected
for si(Z ) ,

si(Z ) = exp

[
−(Z − ηi)T (Z − ηi)

$ 2
i

]
, i = 1, 2, . . . , l.

where $ is the width and ηi = [η1, η2, . . . , ηq]T . And
network (3) meets the following formula.

ξ (Z ) = ξnn(Z ,W ∗)+ ε(Z ), ∀ ∈ �Z ,

where the NN approximation error is |ε(Z )| ≤ ε∗. Ideal
weights is W ∗ and it makes for all Z ∈ �Z , |ε| ≤ ε∗, where
constant ε∗ > 0. In addition,W ∗ is bounded on the�Z , where
‖W ∗‖ ≤ ωm, ωm is a positive constant.
Obviously, W ∗ needs to use functions to approximate,

because W ∗ is usually unknown. On the basis of the discus-
sion in [28]:

W ∗ = argmin
(W )

[
sup
Z∈�Z
|ξnn(Z ,W )− h(Z )|

]
.

In design, Ŵ is used to estimateW ∗, and the estimation error
is represented by W̃ = Ŵ −W ∗.

III. ADAPTIVE CONTROL DESIGN AND
STABILITY ANALYSIS
There are n steps in the process. At every step, the appropriate
Lyapunov function Vi(t) is used to develop αi(t). The follow-
ing coordinate changes are used to design control laws and
adaptive laws:

z1 = y− yd , zi = xi − αi−1, i = 2, . . . , n,

where u(t) is used to stabilize the system, it is designed in
the last step, and αi(t) is present in the intermediate step. The
definition of a compact set is as follows

�zi := zi ∈ �Zi | |zi| ≤ czi ,

�I
zi := zi ∈ �Zi | czi < |zi| ≤ czi + c

ε
zi ,

�O
zi := zi ∈ �Zi | |zi| ≥ czi + c

ε
zi ,

with �zi being a compact set, �Zi = �zi ∪ �
I
zi ∪ �

O
zi ∪ �di,

and czi , c
ε
zi > 0. For conciseness of notation, function Vzi (t),

VUi (t), and Vi(t) are as follows:

Vzi (t) =
1
2
z2i (t), (4)

VUi (t) =
1
2

i∑
j=1

∫ t

t−τmax
Uj(x̄j(τ ))dτ, (5)

Vωi (t) =
1
2
W̃ T
i 0
−1
i W̃i, (6)

Vbi (t) =
1

2γbi
b̃2i , (7)

Vi(t) = Vzi (t)+ VUi (t)+ Vωi (t)+ Vbi (t), (8)
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where positive function Uj(x̄i(t)) = β2j (x̄j(t)). The unknown
functions Qi(Zi) will be approximated by NNs as

Qi(Zi) = W ∗1
T S(Zi)+ εi(Zi); ∀Zi ∈ �O

zi , (9)

where

Q1(Z1) = f1(x1)+
1
2z1

β21 (x1)+ 2D2
max − ẏd ,

Qi(Zi) = fi(x̄i)+
1
2zi

i∑
j=1

β2j (x̄j)

−

i−1∑
j=1

∂αi−1

∂xj
(ϕj(x̄j)xj+1 + fj(x̄j))

+
1
2
zi

i−1∑
j=1

(
∂αi−1

∂xj
)2 − wi−1, (10)

with

Z1(t) = [x1, yd , ẏd ]T ⊂ �O
z1 ,

Zi(t) =
[
x̄i, αi−1,

∂αi−1

∂x1
,
∂αi−1

∂x2
, . . . ,

∂αi−1

∂xi−1
, ωi−1

]T
∈ �O

zi , 2 ≤ i ≤ n,

wi−1 =
∂αi−1

∂ζi−1
ζ̇i−1 +

∂αi−1

∂ x̄di
˙̄xdi +

i−1∑
j=1

∂αi−1

∂Ŵj

˙̂Wj

+

i−1∑
j=1

∂αi−1

∂ b̂j

˙̂bj +
i−1∑
j=1

∂αi−1

∂kj
k̇j. (11)

The practical adaptive control is proposed, for i = 1, . . . , n

αi = qi(zi)N (ζi)(kizi + Ŵ T
i S(Zi)

+ b̂i9̄i(x̄i) tanh
[
zi9̄i(x̄i)
εi

]
), (12)

ζ̇i = ki(t)z2i + Ŵ
T
i S(Zi)zi

+ b̂izi9̄i(x̄i) tanh
[
zi9̄i(x̄i)
εi

]
, (13)

˙̂bi = γbi(zi9̄i(x̄i) tanh
[
zi9̄i(x̄i)
εi

]
− σbib̂i), (14)

˙̂Wi = 0i(S(Zi)zi − σwiŴi), (15)

ki(t) =
3
4
+ ki0 + ki1(t), (16)

where

ki1 =
εi0κ(zi)

2z2i

i∑
j=1

∫ t

t−τmax

Uj(x̄j(τ ))dτ, (17)

ki0 > 0, εi > 0, matrix 01 = 0T1 > 0, εi0 > 0 is a constant,
σwi , σbi are small constants for σ -modification introduced
into the system. When i = n, αn = u(t).
Remark 3: If we let

ki1 =
εi0

2z2i

i∑
j=1

∫ t

t−τmax
Uj(x̄j(τ ))dτ

as in [4], it is will found that if czi is chosen to be very
small. We introduce the function κ(·) into ki1 because it can
effectively avoid the saturation of the execution controller
when ki1(t) takes a very large value.
Step 1:

ż1(t) = ϕ1(x1(t))[z2(t)+ α1(t)]+ f1(x1(t))

+31(x, t)+ ξ1(x1(t − τ1))− ẏd (t). (18)

Consider the difference of V1, noting (18), we have

V̇1 = z1z2ϕ1(x1)+ z1[ϕ1(x1)α1(t)+ f1(x1)

+ ξ1(x1(t − τ1))+31(x, t)+ ḋ(t)− ẏd (t)]

+
1
2
U1(x1)−

1
2
U1(x1(t − τ1))

+ W̃ T
1 0
−1
1
˙̃W1 +

1
γb1

b̃1
˙̃b1. (19)

Applying the inequalities

z1ḋ(t) ≤
1
8
z21 + 2ḋ2(t),

z1z2ϕ1(x1) ≤
1
8
z21 + 2z22ϕ

2
1 (x1),

z1ξ1(x1(t − τ1)) ≤
1
2
z21 +

1
2
ξ21 (x1(t − τ1)),

and Assumption 4, then (19) becomes

V̇1(t) ≤
3
4
z21 + z1ϕ1(x1)α1 + z1Q1(Z1)+ z131(x, t)

+W̃ T
1 0
−1
1
˙̃W1 +

1
γb1

b̃1
˙̃b1 + ϕ21 (x1)z

2
2.

Note that (9) and the inequalities

z1ε1 + z131(x, t) ≤ |z1|ε∗ + |z1|p∗191(x1)

≤ |z1|b∗19̄1(x1),

where

b∗1 = max{ε∗1, p
∗

1}, 9̄1(x1) = 1+91(x1)

we have

V̇1(t) ≤
3
4
z21 + z1ϕ1(x1)α1 + z1W

T
1 S(Z1)+ b

∗

1|z1|9̄1(x1)

+W̃ T
1 0
−1 ˙̂W1 +

1
γb1

b̃1
˙̂b1 + 2ϕ21 (x1)z

2
2.

(20)

Adding and subtracting

k1z21 + z1Ŵ
T
1 S(Z1)+ z1b̂19̄1(x1) tanh

[
z19̄1(x1)
ε1

]
.

We can get

V̇1(t) ≤ −k10z21 + ϕ1(x1)q1(z1)N (ζ1)ζ̇1 + ζ̇1

+ b∗1|z1|9̄1(x1)− b∗1z19̄1(x1) tanh
[
z19̄1(x1)
ε1

]
−k11z21 − σω1W̃

T
1 Ŵ1 − σb1 b̃

T
1 b̂1

+ 2z22ϕ
2
1 (x1). (21)
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By completing the squares

−σω1W̃
T
1 Ŵ1 =

1
2
σω1‖W

∗

1 ||
2
−

1
2
σω1‖W̃1‖

2,

−σb1 b̃
T
1 b̂1 =

1
2
σb1b

∗
2

1 −
1
2
σb1 b̃

2
1,

and using Lemma 3, equation (21) can be further written as

V̇1 ≤ −k10z21 − ε10κ(cz1 )VU1 −
1
2
σω1‖W̃1‖

2

−
1
2
σb1 b̃

2
1 + [ϕ1(x1)q1(z1)N (ζ1)+ 1]ζ̇1

+ 0.2785b∗1ε1 +
1
2
σω1‖W

∗

1 ‖
2
+

1
2
σb1b

∗

1
2

+ 2z22ϕ
2
1 (x1).

This yields

V̇1 ≤ −C11V1+C12+[ϕ1(x1)q1(z1)N (ζ1)+1]ζ̇1+2ϕ21 (x1)z
2
2,

(22)

where C11 > 0, C12 > 0 are defined as

C11 = min

{
2k10, ε10κ(czi ),

σω1

γmax(0
−1
1 )

, σb1γb1

}
,

C12 = 0.2785b∗1ε1 +
1
2
σω1‖W

∗

1 ‖
2
+

1
2
σb1b

∗

1
2
.

Let ρ1 = C12/C11, upon multiplication of (22) by eC11t , then
integrating it over [0, t], we get

V1(t) ≤ ρ1 + [V1(0)− ρ1]e−C11t

+ e−C11t
∫ t

0
[ϕ1(x1)q1(z1)N (ζ1)+ 1]ζ̇1eC11tdτ

+ e−C11t
∫ t

0
ϕ21 (x1)z

2
2e
C11τdτ,

≤ ρ1 + V1(0)

+ e−C11t
∫ t

0
[ϕ1(x1)q1(z1)N (ζ1)+ 1]ζ̇1eC11tdτ

+ 2e−C11t
∫ t

0
ϕ21 (x1)z

2
2e
C11τdτ. (23)

Noting Assumption 2, we have inequality

e−C11t
∫ t

0
ϕ21 (x1)z

2
2e
C11τdτ

≤ e−C11t
∫ t

0
ϕ̄21 (x1)z

2
2e
C11τdτ,

≤ e−C11t l+1
2

sup
τ∈(0,t)

[z22(t)]
∫ t

0
eC11τdτ,

≤
1
C11

l+1
2

sup
τ∈(0,t)

[z22(t)]. (24)

Next to the stability analysis:
a) Region 1: z1 ∈ �O

z1

⋃
�I
z1 . Noting (23)(24) and

Assumption 1 and 2, we known that if z2 are bounded, we can
regard ϕ1(x1)q1(z1) in (23) as g(·), which take a value in
interval I = [ϕ10q1(cz1 ), l

+

1 ], with 0 /∈ I . According to the

Lemma 1,V1(t), z1, x1, ζ1, Ŵ1 and b̂1 are bounded. In the next
steps, we will dealt with z2.
b) Region 2: z1 ∈ �z1 . In this area, |z1| ≤ cz1 and x1 =

z1+yd are already bounded. Consider Vz1 (t) and VU1 (t), they
all bound. Now, we consider Vω1 (t), and Vb1 (t).Their time
derivation along (15)(14)respectively, are

V̇w1 (t) = W̃ T
1 [S(Z )z1 − σω1Ŵ1], (25)

V̇b1 (t) = b̃1

(
z19̄1(x1) tanh

[
z19̄1(x1)
ε1

]
− σb1 b̂1

)
.

(26)

Applying the inequalities

W̃ T
1 S(Z1)z1 ≤

kω1
2
‖W̃1‖

2
+

1
2kω1

ST (Z1)S(Z1)z21, (27)

−σω1W̃
T
1 Ŵ1 ≤ −

1
2
σω1‖W̃1‖

2
+

1
2
σω1‖W

∗

1 ‖
2, (28)

−σb1 b̃1b̂1 = −σb1 b̃
2
1 − σb1 (b̃1b

∗

1),

≤ −σb1 b̃
2
1 +

σb1

2
b̃21 +

σb1

2
b∗1

2
,

=
σb1

2
b∗1

2
−
σb1

2
b̃21, (29)

and

b̃1z19̄1(x1) tanh
[
z19̄1(x1)
ε1

]
≤
kb1
2
b̃21 +

1
2kb1

z219̄
2
1 (x1) tanh

2
[
z19̄1(x1)
ε1

]
. (30)

Therefore, noting (27)(28), we have

V̇w1 (t) ≤ −
1
2
(σω1 − kω1 )‖W̃1‖

2

+
1

2kω1
ST (Z1)S(Z1)z21 +

1
2
σω1‖W

∗

1 ‖
2. (31)

choose kω1 such that σ ∗ω1 := σω1 − kω1 > 0, and let

Cw1 :=
1
2
σ ∗ω1/λmax(0

−1
1 ),

λw1 = sup
z1∈�z1

{1/kω1S
T (Z1)S(Z1)z21 + 1/2σω1‖W

∗

1 ‖},

and ρω1 := λw1/Cw1 , it follows from (31) that

Vω1 ≤ [Vω1 (0)− ρω1 ]e
−cw1 t + ρω1 , (32)

≤ Vω1 (0)+ ρω1 . (33)

Noting (30)(29), (26) can be written as

V̇b1 (t) ≤ −
1
2
(σb1 − kb1 )b̃

2
1

+
1

2kb1
z219̄

2
1 (x1) tanh

2
[
z19̄1(x1)
ε1

]
+
σb1

2
b∗1. (34)

In (34), note that 0 < tanh(·) < 1, (34) can be written as

V̇b1 (t) ≤ −
kb1
2γb1

b̃21 +
1

2kb1
z219̄1(x1)+

σb1

2
b1∗. (35)
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choose kb1 such that σ
∗
b1
:= σb1 − kb1 > 0, and let

Cb1 =
1
2
σ ∗b1 , λb1 := sup

z1∈�z1

{
1

2kb1
z219̄

2
1 (x1)+

σb1

2
b∗1

2
}

and ρb1 := λb1/Cb1 , it follows from (35) that

Vb1 ≤ [Vb1 (0)− ρb1 ]e
−Cb1 t + ρb1 , (36)

≤ Vb1 (0)+ ρb1 . (37)

From (33)(37), we can conclude that Vω1 (t),Vb1 and W̃1, b̃1
are bounded. According to the (5), V1(t) is bounded for z1 ∈
�z1 because Vz1 (t), VU1 , W̃1 and b̃1 are bounded.
Step i (2 ≤ n ≤ n − 1): The recursion process is similar

for step i = 2, . . . , n− 1.

V̇i(t) = zizi+1ϕi(x̄i)+ zi[ϕi(xi)αi(t)+ fi(xi)

+ ξi(xi(t − τi))+3i(x, t)− α̇i−1]

+
1
2

i∑
j=1

Uj(x̄j(t))−
1
2

i∑
j=1

Uj(x̄j(t − τj))

+ W̃ T
i 0
−1
1
˙̃Wi +

1
γbi

b̃i
˙̃bi.

Since αi is a function of x̄i−1, ζi−1, x̄di , Ŵ1, . . . , Ŵi−1,

b̂1, . . . , b̂i−1, k1, . . . , ki−1, and α̇i−1 can be expressed as

α̇i−1 =

i−1∑
j=1

∂αi−1

∂xj
ẋj + wi−1(t),

=

i−1∑
j=1

∂αi−1

∂xj
[ϕj(x̄j)xj+1 + fj(x̄j)+ ξj(x̄j(t − τj))

+3j(x, t)]+ wi−1(t), (38)

where

wi−1(t) =
∂αi−1

∂ζi−1
ζ̇i−1 +

∂αi−1

∂ x̄di
˙̄xdi +

i−1∑
j=1

∂αi−1

∂Ŵj

˙̂Wj

+

i−1∑
j=1

∂αi−1

∂ b̂j

˙̂bj +
i−1∑
j=1

∂αi−1

∂kj
k̇j.

All previous subsystems will experience an unknown time
delay due to the ˙̄xi−1 and α̇i−1 required in the recursive
backstep design and should be compensated for in this step.
And Lyapunov-krosovskii function (5) can compensate for
the unknown time delay τi, and τi−1, . . . , τ1.
Applying Assumption 4, and noting (1)(4)(38)

V̇zi = zizi+1ϕi(x̄i)+ zi[ϕi(x̄i)αi + fi(x̄i)]

+ zi3i(x, t)+ ziξi(x̄i(t − τi))

− zi

 i−1∑
j=1

∂αi−1

∂xj
[ϕi(x̄j)xj+1 + fj(x̄j)]+ wi−1


− zi

i−1∑
j=1

∂αi−1

∂xj
ξj(x̄j(t − τj))

− zi
i−1∑
j=1

∂αi−1

∂xj
3j(x, t).

Noting (10) and using the inequalities

zizi+1ϕi(x̄i) ≤
1
4
z2i + z

2
i+1ϕ

2
i (x̄i),

ziξi(x̄i(t − τi)) (39)

≤
1
2
z2i +

1
2
ξ2i (x̄i(t − τi)),

≤
1
2
z2i +

1
2
β2i (x̄i(t − τi)),

− zi
i−1∑
j=1

∂αi−1

∂xj
ξj(x̄j(t − τj)) (40)

≤

i−1∑
j=1

|zi
∂αi−1

∂xj
||ξj(x̄j(t − τj))|,

≤

i−1∑
j=1

[
1
2
z2i

(
∂αi−1

∂xj

)2

+
1
2
ξ2j (x̄j(t − τj))

]
,

=
1
2
z2i

i−1∑
j=1

(
∂αi−1

∂xj
)
2
+

1
2

i−1∑
j=1

β2j (x̄j(t−τj)

We have

V̇zi ≤
3
4
z2i + ziϕi(x̄i)αi + ziQi + zi3i(x, t)

− zi
i−1∑
j=1

∂αi−1

∂xj
3j(x, t)+

1
2

i∑
j=1

β2j (x̄j(t − τj))

−
1
2

i∑
j=1

β2j (x̄j)+ z
2
i+1ϕ

2
i (x̄i). (41)

Noting Assumption 5, we have

zi3i(x, t) ≤ |zi|p∗i 9i(x̄i), (42)

−zi
i−1∑
j=1

∂αi−1

∂xj
3j(x, t) ≤ |zi|

i−1∑
j=1

|
∂αi−1

∂xj
p∗j 9j(x̄j). (43)

Noting (4)-(8), (41)-(43), we have

V̇i ≤
3
4
z2i + ziϕi(x̄i)αi + ziW

∗
i S(Zi)+ ziεi

+ |zi|p∗i 9i(x̄i)+ |zi|
i−1∑
j=1

|
∂αi−1

∂xj
|p∗j 9j(x̄j)

+
1
2

i∑
j=1

β2j (x̄j(t − τj))−
1
2

i∑
j=1

β2j (x̄j)

+
1
2

i∑
j=1

Uj(x̄j(t))−
1
2

i∑
j=1

Uj(x̄j(t − τj))

+ W̃ T
i 0
−1
i
˙̃Wi +

1
γbi

b̃i
˙̃bi + z2i+1ϕ

2
i (x̄j). (44)
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Note that (44) and the inequalities

ziεi + |zi|p∗i 9i(x̄i)+ |zi|
i−1∑
j=1

p∗j |
∂αi−1

∂xj
|9j(x̄j)

≤ |zi|

ε∗i + p∗i 9i(x̄i)+
i−1∑
j=1

p∗j |
∂αi−1

∂xj
|9j(x̄j)

 ,
≤ b∗i |zi|9̄i(x̄i),

where

b∗i = max{ε∗i , p
∗

1, p
∗

2, . . . , p
∗
i }

and

9̄i(x̄i) ≥ 1+9i(x̄i)+
i−1∑
j=1

|
∂αi−1

∂xj
|9j(x̄j)

is a smooth positive function.

9̄i = 1+9i +

i−1∑
j=1

(
1
4

(
∂αi−1

∂xj

)2

+ 1

)
9j.

Thus, (44) can be rewritten as

V̇i ≤
3
4
z2i + ziϕi(x̄i)αi + ziW

∗
i S(Zi)+ b

∗
i |zi|9̄i(x̄i)

+W̃ T
i 0
−1
i
˙̃Wi +

1
γbi

b̃i
˙̃bi + z2i+1ϕ

2
i (x̄j).

Noting (12)-(17) , we also obtain

V̇i ≤ −ki0z2i − εi0κ(zci )VUi −
1
2
σwi‖W̃i‖

2
−

1
2
σbi b̃

2
i

+ [ϕi(x̄i)qi(zi)N (ζi)+ 1]ζ̇i + 0.2785b∗i εi
1
2
σwi‖W

∗
i ‖

2

+
1
2
σbib

∗
i
2
+ ϕ2i (x̄i)z

2
i+1.

Similarly this yields

V̇i ≤ −Ci1Vi + Ci2 + [ϕi(x̄i)qi(zi)N (ζi)+ 1]ζ̇i + ϕ2i (x̄i)z
2
i+1,

(45)

where the constants Ci1 > 0 and Ci2 > 0

Ci1 = min

{
2ki0, εi0κ(zci ),

σwi

γmax(0
−1
i )

, σbiγbi

}
,

Ci2 = 0.2785b∗i εi +
1
2
σwi‖W

∗
i ‖

2
+

1
2
σbib

∗
i
2
.

Let ρi = Ci2/Ci1, uponmultiplication of (45) by eCi1t ,we get

Vi(t) ≤ ρi + [Vi(0)− ρi]e−Ci1t

+ e−Ci1t
∫ t

0
[ϕi(x̄i)qi(zi)N (ζi)+ 1]ζ̇ieCi1tdτ

+ e−Ci1t
∫ t

0
ϕ2i (xi)z

2
i+1e

Ci1τdτ, (46)

≤ ρi + Vi(0)+ e−Ci1t
∫ t

0
[ϕi(x̄i)qi(zi)N (ζi)+ 1]

×ζ̇ieCi1tdτ + e−Ci1t
∫ t

0
ϕ2i (xi)z

2
i+1e

Ci1τdτ. (47)

Noting Assumption 2, we have inequality

e−Ci1t
∫ t

0
ϕ2i (xi)z

2
i+1e

Ci1τdτ ≤
1
Ci1

l+i
2

sup
τ∈(0,t)

[z2i+1(τ )].

(48)

The stability analysis is next.
a) Region 1: zi ∈ �O

zi

⋃
�I
zi . Noting (47)(48), we known

that if zi+1 is bounded, we can regard ϕi(xi)qi(zi) in (23)
as g(·), which is evaluated in I = [ϕi0qi(czi ), l+i ], with

0 /∈ I . According to the Lemma 1, Vi(t), zi, xi, ζi, Ŵi and b̂i
are bounded.

The processing of zi+1 will take place in the following
steps.
b) Region 2: zi ∈ �z1 . zi, zi−1, . . . , z1 are bounded, so that

xi, xi1 , . . . , x1 are bounded as well. The boundedness analysis
process for Ŵi and b̂i are similar to the process performed in
Region 2 of Step 1, similar (32)-(33),(36)-(37), we have

Vωi ≤ [Vωi (0)− ρωi ]e
−cwi t + ρωi , (49)

≤ Vωi (0)+ ρωi , (50)

Vbi ≤ [Vbi (0)− ρbi ]e
−Cbi t + ρbi , (51)

≤ Vbi (0)+ ρbi , (52)

where

ρbi := λbi/Cbi ,

σ ∗wi := σwi − kwi > 0,

Cwi :=
1
2
σ ∗wi/λmax(0

−1
i ),

λwi := sup
zi∈�zi

{
1
kwi

ST (Zi)S(Zi)z2i +
1
2
σwi‖W

∗
i ‖},

ρωi := λwi/Cwi ,

σ ∗b1 := σb1 − kb1 > 0,

Cb1 :=
1
2
σ ∗b1 ,

λb1 := sup
z1∈�z1

{
1

2kb1
z219̄

2
1 (x1)+

σb1

2
b∗1

2
},

ρb1 := λb1/Cb1 .

From (50)(52), we can deduce that Vωi ,Vbi are bounded,
and therefore, W̃i, b̃i are bounded. According to the (8),
Vi(t) is bounded for zi ∈ �zi (i = 2 . . . , n − 1) because
Vzi (t),VU1 (t), W̃i(t) and b̃i(t) are bounded.
Step n: we have

zn = ϕn(x̄n)u+ fn(x̄n)+ ξn(x̄n(t − τn))+3n(x, t)− α̇n−1.

The time derivative of Vn(t) is

V̇n ≤
1
2
z2n + znϕn(x̄n)αn + znW

∗
n S(Zn)+ znεn

+ |zn|p∗n9n(x̄n)+ |zn|
n−1∑
j=1

|
∂αn−1

∂xj
|p∗j 9j(x̄j)

+
1
2

n∑
j=1

β2j (x̄j(t − τj))−
1
2

n∑
j=1

β2j (x̄j)
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+
1
2

n∑
j=1

Uj(x̄j(t))−
1
2

n∑
j=1

Uj(x̄j(t − τj))

+ W̃ T
n 0
−1
n
˙̃Wn +

1
γbn

b̃n
˙̃bn.

Similarly, we have

V̇n ≤
1
2
z2n + znϕn(x̄n)αn + znW

∗
n S(Zn)

+ b∗n|zn|9̄n(x̄n)+ W̃ T
n 0
−1
n
˙̃Wn +

1
γbn

b̃n
˙̃bn,

where

b∗n = max{ε∗n, p
∗

1, p
∗

2, . . . , p
∗
n},

9̄n(x̄n) ≥ 1+9n(x̄n)+
n−1∑
j=1

|
∂αn−1

∂xj
|9j(x̄j),

9̄n = 1+9n +

n−1∑
j=1

(
1
4

(
∂αn−1

∂xj

)2

+ 1

)
9j,

consider the control given by (12)-(17), similar previous
steps, we have

V̇n ≤ −(kn0 +
1
4
)z2n − εn0κzcnVUn −

1
2
σwn‖W̃n‖

2

−
1
2
σbn b̃

2
n + [ϕn(x̄n)qn(zn)N (ζn)+ 1]ζ̇n

+ 0.2785b∗nεn +
1
2
σwn‖W

∗
n ‖

2
+

1
2
σbnb

∗
n
2
.

Similarly this yields

V̇n ≤ −Cn1Vn + Cn2 + [ϕn(x̄n)qn(zn)N (ζn)+ 1]ζ̇n, (53)

where the constants Cn1 > 0 and Cn2 > 0

Cn1 = min
{
2kn0 +

1
2
, εn0κ(zci ),

σwn

γmax(0
−1
n )

, σbnγbn

}
,

Cn2 = 0.2785b∗nεn +
1
2
σwn‖W

∗
n ‖

2
+

1
2
σbnb

∗
n
2
.

Let ρn = Cn2/Cn1, upon multiplication of (53) by eCn1t , then
we can get result of integrating it over [0, t]

Vn(t) ≤ ρn + [Vn(0)− ρn]e−Cn1t

+ e−Cn1t
∫ t

0
[ϕn(x̄n)qn(zn)

× N (ζn)+ 1]ζ̇neCn1tdτ, (54)

≤ ρn + Vn(0)+ e−Cn1t
∫ t

0
[ϕn(x̄n)qn(zn)

× N (ζn)+ 1]ζ̇neCn1tdτ. (55)

Stability analysis is performed in two regions, similar to
the previous steps.
a) For zn ∈ �O

zn

⋃
�I
zn , the u(t) is invoked, Similar to the

discussion in Region 1 of step 1, we can regard ϕn(xn)qn(zn)
in (55) as g(·), which is evaluated in I = [ϕn0qn(czn ), l

+
n ].

In addition zn(t), Ŵn(t), and b̂n(t) are bounded because we

can deduce ζn(t) and Vn(t) from (55) and Lemma 1. From the
boundedness of zn(t), we conclude

e−Cn−1,1t
∫ t

0
ϕ2n−1(xn−1)z

2
n−1e

Cn−1,1τdτ,

which is bounded at step n − 1. According Lemma 1,
Vi(t), zi(t), ζi(t), Ŵi(t), b̂i(t), and xi(t) are bounded.
b) For zn ∈ �zn , zn is bounded, so zn−1, . . . , z1 and

xi, xi−1, . . . , x1 are all bounded.The boundedness analysis
process for Ŵn and b̂n are similar to the process performed
in Region 2 of step i.
Theorem 1: Consider the nonlinear control system (1),

the control laws (12) and adaptive laws (13)(14)(15). Under
Assumptions 1-5 and some bounded conditions, the system
(1) has the following properties.

1) All signals in system (1) are SGUUB, and

Z = [ZT1 , . . . ,Z
T
n ]

T

remains in the compact set

�Z := �Z1

⋃
· · ·

⋃
�Zn ,

which is specified as

�Z =

{
Z |

n∑
i=1

z2i ≤ A0,
n∑
i=1

‖W̃i‖
2
≤ A1

n∑
i=1

b̃2i ≤ A2,

x̄di ∈ �di, i = 2, . . . , n.
}

(56)

2) All signal in system 1 will converge to a collection.

�S =

{
Z |

n∑
i=1

z2i ≤ A
∗

0,

n∑
i=1

‖W̃i‖
2
≤ A∗1,

n∑
i=1

b̃2i ≤ A
∗

2,

x̄di ∈ �di, i = 2, . . . , n.
}

where A0,A∗0,A1,A
∗

1,A2,A
∗

2 > 0 are constants.
Proof:

V (t) =
n∑
i=1

Vzi (t)+ VUi (t)+ Vωi + Vbi (t), (57)

where Vzi (t),VUi (t),Vωi ,Vbi (t) are defined in (4)(5)(6) and
(7), respectively. There are three cases.
Case 1: All zi ∈ �O

zi

⋃
�I
zi , i = 1, . . . , n; At case 1, all

the control effort are involved, we have

e−Cn1t
∫ t

0
[ϕn(x̄n)qn(zn)N (ζn)+ 1]ζ̇neCn1τdτ

is bounded, letting dn0 be the upper bound of it, dn = ρn +
Vn(0) and µn1 = dn + dn0 in (55), noting (8) we have

Vn(t) ≤ µn1, (58)

z2n ≤ 2µn1, ‖W̃n‖
2
≤

2µn1
λmin(0

−1
n )

, b̃2n ≤ 2γbnµn1. (59)
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It follows form (58) that Vn(t) is bounded. Therefore, zn, Ŵn
and b̂n are bounded. And let

di0 = e−Ci1t
∫ t

0
[ϕi(x̄i)qi(zi)N (ζi)+ 1]ζ̇neCi1τdτ.

Noting (48), we have

Vi(t) ≤ ρi + Vi(0)+ di0 +
2
Ci1

(l+i )
2µi+1,1.

Let

di = ρi + Vi(0)+
2
Ci1

(l+i )
2µi+1,1, µi1 = di0 + di.

Noting (13), we have

Vi(t) ≤ µi1,

z2i ≤ 2µi1, ‖W̃i‖
2
≤

2µi1
λmin(0

−1
i )

, b̃2i ≤ 2γbiµi1. (60)

Furthermore, we noting (54), we rewrite it as

Vn ≤ µ∗n1 + [Vn(0)− ρn]e−Cn1t ,

where µ∗n1 = d∗n + dn0, d∗n = ρn. As t 7→ ∞, Vn ≤ µ∗n1.
Hence, according to the Vn in (8), when t 7→ ∞, we can get
the following inequalities:

Vn(t) ≤ µ∗n1,

z2n ≤ 2µ∗n1, ‖W̃n‖
2
≤

2µ∗n1
λmin(0

−1
n )

, b̃2n ≤ 2γbnµ∗n1. (61)

For zi and Ŵi, we can deduce a similar conclusion as follows:

Vi(t) ≤ µ∗i1,

z2i ≤ 2µ∗i1, ‖W̃i‖
2
≤

2µ∗i1
λmin(0

−1
i )

, b̃2i ≤ 2γbiµ∗i1. (62)

Thus, noting (59)(60) we have
n∑
i=1

z2i ≤ 2
n∑
i=1

µi1, (63)

n∑
i=1

‖W̃i‖
2
≤

n∑
i=1

2µi1
λmin(0

−1
i )

,

n∑
i=1

b̃2i ≤ 2
n∑
i=1

γbiµi1.

Furthermore, noting (61)(62), we have
n∑
i=1

‖zi‖2 ≤ 2
n∑
i=1

µ∗i1, (64)

n∑
i=1

‖W̃i‖
2
≤

n∑
i=1

2µ∗i1
λmin(0

−1
i )

,

n∑
i=1

b̃2i ≤ 2
n∑
i=1

γbiµ
∗

i1,

with µ∗i1 = d∗i + di0 and

d∗i = ρi +
2
Ci1

l+i
2
µi+1.

As t 7→ ∞, from(61)(62), we have

lim
t→∞
‖z‖ ≤

√√√√2
n∑
i=1

µ∗i1.

The analysis is for zi ∈ �O
zI

⋃
�I
zi i.e. |zi| ≥ czi ,

i = 1, 2, . . . , n. Let

zmin ,

√√√√ n∑
i=1

c2zi

and

zmax ,

√√√√2
n∑
i=1

µ∗i .

First, if zmax ≥ zmin, z starting at �O
zi

⋃
�I
zi , but when z

converges to a boundary smaller than �O
zi

⋃
�I
zi , i.e. zmin,

the situation reveals zmax ≤ zmin. when a difference control is
applied it falls into another compact set, the only properties
is limt→∞ ‖z‖ ≤ zmin. Hence, we can get

lim
t→∞
‖z‖ ≤ max


√√√√2

n∑
i=1

µ∗i1 ,

√√√√ n∑
i=1

c2zi


Case 2: All zi ∈ �zi , i = 1, . . . , n. In the situation, zi’s are

bounded. All control αi(t) = 0, (i = 1, 2, . . . , n), from the
previous analysis, noting (6)(7)(33)(37)(50)(52), we letting
µω1 = Vωi (0)+ ρωi , µbi = Vbi (0)+ ρbi , we have

‖W̃i‖
2
≤

2µω1
λmin(0

−1
i )

, b̃2i ≤ 2γbiµbi . (65)

Furthermore, note that (32)(36)(49)(51). As t →∞, we have
Vωi ≤ ρωi , Vbi ≤ ρbi . Therefore, we can deduce the
following inequalities

‖W̃i‖
2
≤

2ρωi
λmin(0

−1
i )

, b̃2i ≤ 2γbiρbi . (66)

Thus, noting (65), we have
n∑
i=1

z2i ≤ 2
n∑
j=1

c2zi ,

n∑
i=1

‖W̃i‖
2
≤

n∑
i=1

2µω1
λmin(0

−1
i )

,

n∑
i=1

b̃2i ≤ 2
n∑
i=1

γbiµbi.

Furthermore, noting (66), when t →∞ we have
n∑
i=1

z2i ≤ 2
n∑
j=1

c2zi ,

n∑
i=1

‖W̃i‖
2
≤

n∑
i=1

2ρωi
λmin(0

−1
i )

,

n∑
i=1

b̃2i ≤ 2
n∑
i=1

γbiρbi.
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Case 3: Some zi’s are belong to zi ∈ �O
zi

⋃
�I
zi , while other

zj’s are belong to zj ∈ �zj . let

I = {i | zi ∈ �O
zi

⋃
�I
zi}, J = {j | zj ∈ �zj}.

a) For those zi ∈ �o
zi

⋃
�I
zi , the corresponding control

effort αi(t) adaptation law for Ŵi, b̂i are invoked, and accord-
ing to (47)(48), we get

Vi(t) ≤ ρi + Vi(0)+ di0 +
1
Ci1

l+i
2

sup
τ∈(0,t)

z2i+1(τ ) (i ∈ I/n),

where I/n = I − n. Letting

υi+1 =

{
czi+1 if zi+1 ∈ �zi+1 ,
√
2µi+1 if zi+1 ∈ �O

zi+1

⋃
�I
zi+1 ,

then supτ∈(0,t) z
2
i+1(τ ) ≤ υ

2
i+1. Defining VI (t) =

∑
I
Vi(t) and

positive constants

CBIi =


ρi + Vi(0)+ di0 +

1
Ci1

l+i
2
υ2i+1,

if zi ∈ �O
zi

⋃
�I
zi , (i ∈ I/n)

µn1, if zn ∈ �O
zn

⋃
�I
zn , (i = n)

we have that

z2i ≤ 2CBIi, ‖W̃Ii‖
2
≤

2CBIi
λmin(0

−1
i )

, b̃2i ≤ 2γbiCBIi. (67)

Furthermore, we note that (46)(48).
As t →∞, we have Vi(t) ≤ C∗BIi ,
where

C∗BIi =


ρi + di0, if zi ∈ �o

zi

⋃
�I
zi +

1
Ci1

l+i
2
υ2i+1,

(i ∈ I/n)
µ∗n1, if zn ∈ �o

zn

⋃
�I
zn , (i = n)

we have that

z2i ≤ 2C∗BIi, ‖W̃Ii‖
2
≤

2C∗BIi
λmin(0

−1
i )

, b̃2i ≤ 2γbiC∗BIi.

(68)

b) For those zj ∈ �zj , i.e. |zj| ≤ czj . The analysis is the
same case 2. We get

n∑
J

z2j ≤ 2
n∑
J

c2zj ,

n∑
J

‖W̃j‖
2
≤

n∑
J

2µwj
λmin(0

−1
j )

,

n∑
J

b̃2j ≤ 2
n∑
J

γbjµbj. (69)

As t →∞ we have
n∑
J

z2j ≤ 2
n∑
J

c2zj ,

n∑
J

‖W̃j‖
2
≤

n∑
J

2ρωj
λmin(0

−1
j )

,

n∑
J

b̃2j ≤ 2
n∑
J

γbjρbj. (70)

From the (a) and (b) in case 2, noting (65)(67), we have

n∑
i=1

z2i ≤ 2

(∑
I

CBIi +
∑
J

c2zj

)
,

n∑
i=1

‖W̃i‖
2
≤

∑
I

2CBIi
λmin(0

−1
i )
+

∑
J

2µwj
λmin(0

−1
j )

,

n∑
i=1

b̃2i ≤ 2

(∑
I

γbiCBIi +
∑
J

γbiµbi

)
.

Furthermore, noting (66)(68), when t →∞ we have

n∑
i=1

z2i ≤ 2

(∑
I

C∗BIi +
∑
J

c2zj

)
,

n∑
i=1

‖W̃i‖
2
≤

∑
I

2C∗BIi
λmin(0

−1
i )
+

∑
J

2ρωj
λmin(0

−1
j )

,

n∑
i=1

b̃2i ≤ 2

(∑
I

γbiC∗BIi +
∑
J

γbiρbi

)
.

Synthesizing case (1)(2)(3), we have

n∑
i=1

z2i ≤ max
{
2

n∑
i=1

µi1, 2
n∑
j=1

c2zi ,

2

(∑
I

CBIi +
∑
J

c2zj

)}
, A0, (71)

n∑
i=1

‖W̃i‖
2
≤ max

{ n∑
i=1

2µi1
λmin(0

−1
i )

,

n∑
i=1

2µω1
λmin(0

−1
i )

,

∑
I

2CBIi
λmin(0

−1
i )
+

∑
J

2µwj
λmin(0

−1
j )

}
, A1,

(72)
n∑
i=1

b̃2i ≤ max
{
2

n∑
i=1

γbiµi1, 2
n∑
i=1

γbiµbi,

2

(∑
I

γbiCBIi +
∑
J

γbiµbi

)}
, A2. (73)

As t →∞, we have
n∑
i=1

z2i ≤ max
{
2

n∑
i=1

µ∗i1, 2
n∑
j=1

c2zi ,

2

(∑
I

C∗BIi +
∑
J

c2zj

)}
, A∗0, (74)
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n∑
i=1

‖W̃i‖
2
≤ max

{ n∑
i=1

2µ∗i1
λmin(0

−1
i )

,

n∑
i=1

2ρωi
λmin(0

−1
i )

,

∑
I

2C∗BIi
λmin(0

−1
i )
+

∑
J

2ρωj
λmin(0

−1
j )

}
, A∗1,

(75)
n∑
i=1

b̃2i ≤ max
{
2

n∑
i=1

γbiµ
∗

i1, 2
n∑
i=1

γbiρbi,

2

(∑
I

γbiC∗BIi +
∑
J

γbiρbi

)}
, A∗2. (76)

From (71-73), Vi(t), zi, Ŵi, and b̂ is bounded. And x1 is
bounded because yd is bounded and z1 = x1 − yd . For
z2 = x2 + α1, α1 and x2 are both bounded. Same as before,
it can be come true that all αi−1 and xi, i = 3, . . . , n are
bounded. Thence, system’s states xi, i = 1, 2, . . . , n are
bounded.

Considering (57)(71-73), we have�Z defined in (56) over
which NN approximation is done under conditions that guar-
antee its feasibility.

From (74-76), as t →∞, we can conclude
n∑
i=1

‖zi‖2 ≤ A∗0,
n∑
i=1

‖W̃i‖
2
≤ A∗1,

n∑
i=1

b̃2i ≤ A∗2.

i.e., 2) is hold.

IV. SIMULATION STUDIES
Consider a second-order system rule.

ẋ1 = ϕ1(x1)x2 + f1(x1)+ ξ1(x1(t − τ1))+31(x, t),
ẋ2 = ϕ2(x)u+ f2(x)+ ξ2(x(t − τ2))+32(x, t),
y = x1 + d(t),

where

ϕ1(x1) = 0.6+ 0.1 sin x1, f1(x1) = 0.1ex1 ,
ϕ2(x) = 4.5+ 0.4 sin (x1x2), f2(x) = 0.4x21 + x1x2,
ξ1(x1) = 0.2x21 cos x1, β1(x1) = 0.2x21 ,
ξ2(x) = 0.1x22 sin x1 cos x2, β2(x) = 0.1x22 ,

31(x, t) =
0.4 sin x2
x21 + x1 + 7

, φ1(t) = φ2(t) = 0,

32(x, t) =
0.3(1− e−x

2
2 )

1+ ex
2
1x2

, τ1 = τ2 = 3 sec,

yd = 0.5(cos(t)+ cos(0.3t)), d(t) = sin(t).

31 and 32 satisfy the following inequalities

|31(x, t)| ≤ p∗191(x1),

|32(x, t)| ≤ p∗292(x2),

where

p∗1 = 0.4, p∗2 = 0.3,

91(x1) =
1

x21 + x1 + 7
,

92(x) =
1− e−x

2
2

1+ ex
2
1x2
.

The initial conditional laws of the previous design was
chosen as:

9̄1 = 1+91,

9̄2 = 1+92 + [
1
4
(
∂α1

∂x1
)2 + 1]91,

˙̂bi = γbi (zi9̄i(x̄i) tanh[
zi9̄i(x̄i)
εi

]− σbi b̂i),

˙̂Wi = 0i(S(Zi)zi − σwiŴi);

ζ̇i = ki(t)z2i + Ŵ
T
i Si(Zi)zi

+ b̂izi9̄i(x̄i) tanh[
zi9̄i(x̄i)
εi

],

α1 = q1(z1)N (ζ1)(k1(t)z1 + Ŵ T
1 S(Z1)

+ b̂19̄1(x1) tanh[
z19̄1(x1)
ε1

]),

u = q2(z2)N (ζ2)(k2(t)z2 + Ŵ T
2 S(Z2)

+ b̂29̄2(x̄2) tanh[
z29̄2(x̄2)
ε2

]),

where

N (ζi) = eζ
2
i cos ((π/2)ζi), (i = 1, 2)

are Nassbaum functions,

Z1 = [x1, yd , ẏd ]T ,

Z2 = [x1, x2, α1, ∂α1/∂x1,w1]T

and

ki(t) =
3
4
+ ki0 + ki1(t)

with constant ki0 > 0 and ki1(t) being chosen as

ki1(t) =
εi0 cosh(zi)

2(1+ z2i )

∫ t

t−τmax

i∑
j=1

Uj(x̄j(τ ))dτ, (i = 1, 2)

where

x1(0) = 0.3, x2(0) = 0,

b1(0) = b2(0) = 0, Ŵ1(0) = Ŵ2(0) = 0,

01 = diag[1.5], 02 = diag[0.2],

σω1 = 1.5, σw2 = 0.1,

σb1 = σb2 = 0.1, ε1 = 0.1,

ε2 = 1.2, k10 = 1.2,

k20 = 2.5, ε10 = 0.1,

ε20 = 0.5, γb1 = γb2 = 0.5.

The performance of a controller is greatly affected by the
center and width of the RBF. It has been indicated [24], [28]
that Gaussian RBFNNs can evenly approximate a sufficiently
smooth function over a closed bounded subset. Therefore
we can select the centers and widths in the following sim-
ulation studies. Specifically, Ŵ T

1 S(Z1) contains 27 nodes
(i.e. l1 = 27) with centers ηl(l = 1, . . . , l1) evenly
spaced in [−2.5, 2.5]× [−3.5, 3.5]× [−4.5, 4.5], and widths
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FIGURE 1. Output y (t)(‘‘–’’) and reference yd (‘‘- -’’).

FIGURE 2. Tracking error.

FIGURE 3. Control input u.

$l = 0.5(l = 1, . . . , l1). Ŵ T
2 S(Z2) contains 243 nodes

(i.e. l2 = 243) with centers ηl(l = 1, . . . , l2) evenly spaced
in [−4, 4]×[−4, 4]×[−4, 4]×[−4, 4]×[−4, 4], and widths
$l = 3(l = 1, . . . , l1).
The effectiveness of design is illustrated by the

Fig.1–Fig.6. Good tracking performance is shown in Fig.1
and Fig.2, it is clear that the system output signal can quickly

FIGURE 4. Boundedness of weights ‖Ŵ1‖:‘‘solid line.’’ ‖Ŵ2‖:‘‘dash line’’.

FIGURE 5. Boundedness of parameters ‖b̂1‖:‘‘solid line.’’ ‖b̂2‖:‘‘dash
line’’.

FIGURE 6. Adapting parameters ζ1:‘‘solid line.’’ N(ζ1):‘‘dash line’’.

track the reference signal. These imply that a great perfor-
mance of tracking can be obtained based on the designed
NNs feedback control scheme. The boundedness of input
is represented in Fig.3. Fig.3 shows that during the initial
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FIGURE 7. Adapting parameters ζ2:‘‘solid line.’’ N(ζ2):‘‘dash line’’.

tracking of the control system, the system control generates
a small amount of jitter, mainly because the system is still
in the adjustment phase. When the slope of the reference
signal changes greatly, especially when the slope is in the
positive and negative alternation region, there will be having
a large effect on the control signal of the system. However,
as can be seen from Fig.3, the system can obtain excellent
tracking effect just after 6 seconds, which indicates that the
control method of this paper can achieve a good control effect.
In Figs.4 the boundness of weights Ŵ1, Ŵ2 are shown. And
b̂1 and b̂2 are illustrated in Figs.5. Fig.6 and Figs.7 show the
variations of Nussbaum gain N (ζ1),N (ζ2) and parameters
ζ1, ζ2 respectively, which are also bounded.

V. CONCLUSION
For the nonlinear system with strict feedback of unknown
time delay and unknown output disturbances, an control
method is designed to solve. In this design method, a priori
knowledge of the symbols is not required to be mastered.
By using Lyapunov-Krasovskii functionals, we can make up
for the unknown time delays. Nussbaum function is used to
handle unknown virtual control directions. Practical robust
control is utilized to solve controller singularity problems.
The backstepping design method can ensure SGUUB of all
the signals. Furthermore, the output can converge to the
attachment of the origin. The feasibility of the method is
demonstrated by simulation results.
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