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ABSTRACT In software defined networking (SDN), control connections between switches and the con-
troller are established by either an in-band or an out-of-band control mechanism. In this paper, we focus
on in-band controlling. In an in-band controlling, a switch constructs a control connection (usually TCP
connection) to the controller through a data path. To ensure path availability, better load balancing, and
robustness, multi-path TCP (MPTCP) has been introduced for control channels instead of TCP. Since
MPTCP has multiple subflows, each subflow may acquire different paths to fully utilize MPTCP for control
connection of SDN. Essentially, the controller should be connected to multiple gate switches first and then,
each non-gate switch fabricates an MPTCP connection with multiple subflows to the controller through
the gate switches. In such MPTCP-based in-band controlling environment, the selection of gate switches
is crucial in achieving availability and reliability of the control channel. For example, multiple subflows
through the chosen gate switches should be disjoint as much as possible. In this paper, we first illustrate an
objective of in-band controlling and then, we propose a heuristic algorithm to compute a gate switch set that
achieves the objective. To be specific, we want to make the subflows disjoint and short lengthed for high
availability. We investigate the performance of the proposed algorithm with the two baseline algorithms,
i.e., exhaustive search and random search. Through extensive simulation, we demonstrate that the proposed
algorithm performs much better than the random search and is comparable to the exhaustive search.

INDEX TERMS SDN, MPTCP, in-band controlling, gate switch selection, robustness of control channel.

I. INTRODUCTION
Traditional IP networks have become very complicated. Sim-
ilarly, they are also difficult to reconfigure due to the diversity
among vendor-specific networking devices [1]. Furthermore,
both the data and control plane are vertically integrated
inside networking devices. Thus, it is troublesome to deploy
new networking architecture into the existing IP networks.
To foster rapid deployment of a new networking architecture,
Software Defined Networking (SDN) has been introduced as
a new networking paradigm since last decade. Most network
vendors are frequently adopting SDN in the hope to make
their networks more flexible and manageable.

In SDN, the control and data plane are decoupled from
each other. The SDN controller manages the control plane
and the underlying networking devices (or switches) handle
the data plane. Thus, the switches have become naturally
the forwarding elements without any control plane func-
tionality. One way to instantiate SDN is to use OpenFlow,

which is themost well-known protocol between the controller
and the switches [2]. Controllers can add,modify, and remove
the flow entries of the switches by utilizing the OpenFlow
messages. Thus, network operators can design applications
operating on top of the SDN controller, which can efficiently
configure, manage, and control the underlying network [3].

Due to this decoupling of the control and data planes,
the reliability of the control channels between the controller
and switches are fundamental for the appropriate operation
of the network. If the control channel is not operating due
to some reasons, the network devices may not transmit the
packets through appropriate paths. In SDN, the control con-
nection can be established either in in-band manner or out-of-
band fashion. Unlike the out-of-band mechanism, in in-band
situation, the control connection may not work properly due
to the congestion of the data links or link failures. Especially,
in OpenFlow protocol, the control connection between the
controller and a switch is commonly a TCP connection. So the
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TCP connection may be terminated when the underlying path
is not available.

To overcome this problem, we have proposed an MPTCP
based in-band controlling mechanism [4]. Basically, the con-
troller and a switch constitute an MPTCP connection with
multiple disjoint subflows. By adopting MPTCP in control
connections, we can get three-folded benefits: link failure
resiliency of the control connection, less delay of Open-
Flow control messages, and higher bandwidth for control
traffic in SDN network [5], [6]. For the MPTCP based con-
trol connection, we have designed the algorithms that select
two gate switches [4]. To be precise, we have defined the
problem of selecting a set of two gate switches, through
which other switches establish an in-band control connection
with the controller. The proposed algorithms work appropri-
ately in selecting two gate switches and the resulting sub-
flow paths from each switch are disjoint paths. However,
the previous work lacks in completeness and performance.
First, the algorithms accomplish for only selecting two gate
switches, not more than two. Second, it is not apparent that
how to define the disjointedness when the number of gate
switches is more than two because some switches may have
the smaller number of outgoing links than the number of
gate switches. In this case, we cannot adequately utilize
the chosen gate switches. Finally, we claim that the com-
putation time of the heuristic algorithms can be lessened
further.

To refine and intensify our previous work, in this paper,
we propose an algorithm to select an arbitrary number of gate
switches set. Furthermore, we introduce a practical definition
of disjointedness called ‘‘k-partially disjoint’’ that can be
used in an in-band based controlling. Basically, we denom-
inate a set of k paths as the k-partially disjoint paths when
a path is the complete disjoint with any of the other k − 1
paths. Through simulation experiments, we investigate the
performance of our proposed algorithm with the other two
baseline algorithms, namely, Exhaustive Search and Random
Search and determine that our proposed algorithm, Centroid
First, performs comparable to Exhaustive Search, but with
much less computation time.

The remainder of the paper is organized as follows.
Section II describes the related works and the basic idea
of using MPTCP in SDN network. The definition of the
k-partially disjoint paths in a network and the detailed expla-
nation of the proposed algorithm are presented in section III.
In section IV, we analyze the performance of our proposed
algorithm with the other two methods and section V con-
cludes the paper.

II. BACKGROUND & RELATED WORKS
In this section, we, first, describe some works related to
in-band controlling in the SDN and some ideas related to
MPTCP. Then, we discuss some works associated with com-
puting the disjoint paths in a network. Finally, we describe the
MPTCP based inband controlling that has been introduced in
our previous work [4].

For improving the reliability and the high performance
of SDN network, Prithviraj et al. [7] discuss the problems
related to the complexity of SDN controller, the host net-
work, and the data plane. To address these problems along
with the deployment of the distributed controller in the SDN
network, they present a novel architecture, InitSDN, which
designs SDN network in a more flexible and reliable way,
without adding any complexity in the controllers. Moreover,
to address the problems associated with the scalability, relia-
bility and the uneven load distribution between the distributed
controllers, Dixit et al. [8] propose ElastiCon, an elastic dis-
tributed controller architecture, in which the controller pool
expands and shrinks dynamically based on the temporal and
spatial variations in traffic conditions and the traffic load is
dynamically shifted or moved across different controllers so
that each controller can operate within specified work load
capacity. Further, they also propose a novel switch migration
protocol for enabling the load shifting and balancing across
the controllers. In addition, to overcome the overload on the
single controller, Hassas Yeganeh and Ganjali [9] propose a
novel distributed control plane framework, Kandoo, for scal-
ability of control plane (controllers), which consists of two
layers of controllers, first the bottom layer (local controllers),
which handles and executes the local control applications that
are close to the switches, second, the top layer (centralized
root controller), which executes non-local application.

Moreover, Sachin et al. [10] propose an in-band control
communication mechanism between the switches and the
controller by separating the queues for the data and the
control traffic. By doing this, control traffic experiences less
delay for exchanging the control messages in the network.
In addition, failures in the data plane (switch or link failures)
can also affect both the data and control traffic in an in-band
controlling, so they also discuss the fast failure recovery
of the data and control traffic in an OpenFlow based SDN
network. In addition, Sharma et al. [11] propose an automatic
bootstrapping method in which the controller establishes an
in-band control channel with other switches. They examine
different types of topologies (linear, ring, star and mesh)
for investigating the performance of their proposed method.
Moreover, for avoiding from the failure situation of both the
control and data channels after failure of data plane in the
in-band based OpenFlow network, Sachin et al. [12] employ
two well-known recovery techniques: restoration and protec-
tion for in-band based OpenFlow networks, and demonstrate
that restoration of the control channel delays in restoration
of data channel due to the in-band based network, but the
protection of both the channels can achieve the carrier grade
recovery requirement.

Multi-path TCP (MPTCP) is the major modification of the
regular TCP, transport layer protocol, which uses multiple
paths (TCP subflows in MPTCP context) for communication
between two devices [13]. The MPTCP connection manages
multiple TCP subflows and each TCP subflow works the
same as a normal TCP. The multiple subflows may be dis-
tributed across multiple disjoint paths between end devices
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for the communication. Raiciu et al. [6] examine the perfor-
mance to employ Multi-path TCP in large-scale datacenters.
By exploring the multiple paths simultaneously in advance
and by linking the congestion response of subflows on these
different paths, they determine that traffic can be shifted away
from congestion in the network. Furthermore, they demon-
strate that MPTCP can be used for both higher utilization of
the network and fair allocation of capacity to these subflows
of the MPTCP connection in the datacenter networks [6].
They also analyze the performance of single-path TCP and
Multi-path TCP with different topologies with different traf-
fic patterns. In addition, Jingpu et al. [5] propose a responsive
MPTCP system for SDN based datacenters for adjusting the
number of subflows forMPTCP connection. Their system has
two components: a centralized controller, which calculates
the additional number of subflow routes intelligently from
the current network conditions and a monitor (running on
each server in the datacenter), which adjusts the number
of subflows in datacenter networks. Moreover, due to the
popularity and significant benefits of exploiting MPTCP in
networks, it has been widely utilized in different wireless
networks, so that the users may adopt higher throughput,
better user experience, and robust connections using existing
wireless technologies (WiFi and 3G/4G) simultaneously in
their smart phones [14], [15].

However, if multi-paths are available between a source and
destination pair in the network, it may enhance throughput
and route resiliency as compared to the single path rout-
ing between them. Peter and Sylvie [16] present the perfor-
mance analysis of multi-path routing and describe how the
multi-path routing is suitable for the load balancing mech-
anism in an ad-hoc network than a single path routing. But
multi-paths can contain shared link(s) in their paths and these
paths may not be disjoint paths between any source - destina-
tion pair. Therefore, it is desirable that a source - destination
pair has asmany disjoint paths as possible, which can improve
the utilization of the bandwidth, lessen the congestion, and
decrease the packet drops. Deepinder et al. [17] present a
distributed distance-vector algorithm that computes multiple
disjoint paths having minimum total cost between source and
destination pairs.

Moreover, Farabi and Fernando [18] elaborate the Dis-
joint paths problem, Availability-Based Disjoint paths prob-
lem, Maximally Disjoint paths problem, Domain-Disjoint
paths problem, Shared Risk Link Group(SPLG) Disjoint
paths, and Region Disjoint paths problem in details. Dis-
joint path pairs problem is also discussed. Zheng et al. [19]
propose the mathematical models and algorithms that seek
the set of K arc-disjoint paths and the set of K vertex-
disjoint paths in a network, which can be used alternatively,
if link(s) or node fails in a network. Stavros et al. [20] pro-
pose a solution of network survivability problem by finding
the best k-disjoint paths having minimum total cost between
a pair of source and destination in Trellis graph technique.
Yong and Narasimha et al. [21] propose techniques which
reduce the backup path computing and finding the disjoint

backup path(recovery path) with the primary path and that
backup path will be used in case of the fast failure recovery
and for the multi-path routing in a network. However, these
k-disjoint paths finding algorithms are not well suitable for
our proposedmodel,MPTCPbased in-band controlling in the
SoftwareDefinedNetworking, described in our previouswork
because we focus on the disjoint paths from a node (switch)
to multiple other nodes (switches), not from a node to another
node [4].

For achieving the high performance and low latency in
the datacenter, Yu and Deng [22] propose a load balancer
for FatTree (well-known topology for the datacenter) with
the support of multi-paths in OpenFlow based network. They
use dynamic load balancing routing algorithm in their load
balancer, which computes multiple flows efficiently by deter-
mining the currently available bandwidth on all alternative
links and then assigns the paths to each flow in the network
for load balancing. Moreover, for the better quality of experi-
ence (QoE) of real-time video and the high bandwidth aggre-
gation over multi-paths in the network, Hyunwoo et al. [23]
propose to dynamically adjust the number of MPTCP sub-
flows (paths) by including and eliminating any MPTCP
path from the MPTCP subflow connections (bundle) under
varying network conditions and available paths statistics.
They also analyze the performance of MPTCP with different
flows and SCTP (Stream Control Transmission Protocol)
with a single path for downloading the files of different sizes
under varying network conditions. In addition, to achieve
the efficient and high end-end throughput and better load
balancing, Van der Pol et al. [24] present prototype which is
entirely based on multipath routing using MPTCP in Open-
Flow network. Moreover, for avoiding collision and a bottle-
neck of traffic in OpenFlow network and efficient utilization
of multipath routing, Nakasan et al. [25] propose a Simple
Multipath OpenFlow Controller (SMOC) for splitting and
distributing the traffic using MPTCP subflows in the net-
work. SMOC only adopts the current topology information to
avoid bottlenecks in the network. SMOC enhances the overall
bandwidth utilization of MPTCP connection and network
performance. They also compare the performance of SMOC
with the POX’s original Spanning tree controller. In addition,
Marcus et al. [26] propose to forward MPTCP subflows over
multi-paths so that they can improve the throughput in shared
bottlenecks with full utilization of the bandwidth. They can
achieve network resiliency by using subflows in different dis-
joint paths and improve the overall throughput by distributing
the different subflows over multi-paths in the network.

Recently, some efforts have been devoted to enhance the
resiliency of in-band channels using MPTCP.
González et al. [27] propose a mechanism which utilizes
both the in-band and out-of-band control paths simulta-
neously for enhancing the OpenFlow control channel via
multi-paths using subflows of MPTCP connection. In their
proposed solution, they deploy dedicated connection (out-of-
band path) from each data plane element to the controller
for initializing the OpenFlow control connection and getting
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topology related information. As the number of the data plane
elements increases, it would be indeed an overhead for the
control plane (controller) to manage both the in-band and
out-of-band connections. But in our approach, we utilize the
data paths across the network for constructing the in-band
control channel with the controller through the chosen gate
switches. Furthermore, González et al. [27] do not discuss
well what the advantages of using out-of band paths for the
robustness of in-band control connection is and why they
obtain topology information through these dedicated data
paths. More importantly, the proposed algorithm in [27] only
considers a very small topology for computing all available
paths between any data plane element and the controller.
However, it becomes very complicated to find out all possible
available paths between each source and destination data
plane element pair in very large size topology. In addition,
the paths computed between any pair of source and destina-
tion are likely to be partially disjoint paths instead of complete
disjoin paths in a large size topology. On the other hand,
in our proposed mechanism [4] and proposed algorithms in
this work, we consider large size topologies for computing
k-partially disjoint paths for in-band control channel between
each source node to the controller through the chosen gate
switches.

Even though these articles demonstrate some related
works on exploiting the SDN network to improve MPTCP
performance but they do not employ MPTCP for the
improvement and robustness of control channel in SDN
network [22], [23], [26]. Therefore, we mainly focus on
applying Multi-path TCP (MPTCP) for the control channels
in SDN network and our objective here, is to determine the
k- partially disjoint paths for the k gate switches in SDN net-
works so that other switches can establish an in-band control
channel with the controller through these gate switches by
using multiple subflows of the MPTCP connection.

A. MPTCP BASED INBAND CONTROLLING
Since the MPTCP based inband controlling is the principal
focus in this paper, we present its comprehensive description
in a separate subsection. In the MPTCP based in-band con-
trolling, the controller is connected to a set of k switches of
the network, which are designated as the gate switches. All
other switches have the control connections to the controller
through the gate switches [4]. Fig. 1 describes an example of
the MPTCP based in-band controlling having three (k = 3)
gate switches, g1, g2, and g3. At the beginning, the controller
builds the out-of-band control connections with these gate
switches. Other switches such as node v establish in-band
control connections through these gate switches. Actually,
setting up the in-band control connections may determine a
step-by-step procedure because the switches near the gate
switches can initiate the in-band connections first, and then
further away switches can generate the connections later.
The detailed procedure for establishing the in-band control
connections is out of the scope of this paper and can be
discussed in the future work.

FIGURE 1. An in-band controlling scenario.

In OpenFlow, a control connection is absolutely a
TCP/SSL connection between the controller and a switch.
However, in the MPTCP based in-band controlling, the con-
trol connection is an MPTCP connection instead of a single
TCP connection. The number of sub-flows is same as the
number of gate switches, k , to maximize the disjointedness of
the sub-flows. For example, in Fig. 1, a switch, v, constitutes
three MPTCP subflows with the controller through these
gate switches. Multiple sub-flows in MPTCP enhances the
reliability of the control connection in that the breakdown
of the data path of a sub-flow does not terminate the control
connection. Besides the reliability, such model can also pro-
vide load balancing capability because the control messages
are distributed over multiple subflow paths while the data
traffic in the data plane exists. One thing to perceive is that
even though we increase the number of gate switches, k ,
the disjointedness of the subflows is restricted by the degree
of the switch. For example, if the switch has only two adjacent
switches, then it can have at most two disjoint paths to two
of k gate switches. Thus, we introduce a new definition of
disjoint paths to maximize the effectiveness of the large k in
the next section.

III. MPTCP BASED IN-BAND CONTROLLING
AND GATE SWITCH SELECTION
In this section, we first define the k-partially disjoint paths,
which are used for diversifying the subflows for the MPTCP
based in-band control connections. Then, we propose an
algorithm that computes the k-partially disjoint paths in an
efficient way. Finally, we propose a heuristic algorithm that
selects the set of k gate switches and also explain two baseline
algorithms.

A. K- PARTIALLY (EDGE) DISJOINT PATHS
With the fundamental concept of the MPTCP based in-band
controlling, in this subsection, we describe the definition of
k-partially disjoint paths from a switch to the k gate switches.
Actually, it is truly evident that the reliability of the MPTCP
based in-band controlling depends on the disjointedness of
the sub-flows of the control connections. However, it may
not be the straightforward procedure to determine the com-
plete k disjoint paths from a switch to the k gate switches.
Furthermore, the disjointedness is limited by the degree of
a switch. Thus, in this work, we employ a loose definition
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of the disjoint paths. When a set of gate switches is elected,
the other switches constitute the disjoint paths to the k gate
switches based on the definition of the k-partially disjoint
paths. For that circumstance, in this subsection, we also intro-
duce a k-partially disjoint path computation algorithm and an
enhancement algorithm to reduce the computation time.
• Definition a set of k- partially edge-disjoint paths: the
set of paths in which a path in the set is edge-disjoint
with at least one another path in the set.

From now on, we use k- partially disjoint paths as the same
context as the k- partially edge-disjoint paths. For example,
in Fig. 1, the three paths, v − a − g1, v − b − d − g2, and
v− b− c− g3, are 3-partially disjoint paths. The numbers on
the edges are the weights of the edges. It should be noted that
these paths to the gate switches may not be the shortest paths
to the gate switches. For example, the shortest path from v
to g2 is v − a − d − g2, which holds a shared link with the
shortest path v − a − g1. Actually, there can be many such
3-partially disjoint paths. Instead of proposing an algorithm
that computes optimal k-partially disjoint paths with some
objectives, in this paper, we introduce a simple mechanism
for computing a set of k- partially edge-disjoint paths from
a switch to the k gate switches. Obviously, there are cases
where such paths do not exist. However, if there exists one,
the proposed algorithm finds it. For the description of the gate
switches selection algorithms, we first define some notations.
• Let G = (V ,E) be the graph of vertices, V, and
edges, E.

• Let m = |V | be the total number of nodes in G, i.e. V =
{1, 2, 3,. . . ,m}.

• Let w(i, j) be the weight of a link (i, j).
• Let k be the number of gate switches in the network.
• Let P(k) be the set of all possible subsets of k nodes
in V .

• Let S = {g1, g2, . . . , gk} ∈ P(k) be a set of k gate
switches, where gj ∈ V .

• Let sp(v,w,G′) be the shortest path from v to w on a
subgraph G′ of G.

• Let sp(v,w) be the set of links on the shortest path
between a node v and a node w, where v,w ∈ V .

• Let spl(v,w) be the path length of the path sp(v,w).
• Let dp(v, gj, S) be the set of links on the k-partially
disjoint path between a node v and a gate switch gj over
the gate switch set S.

• Let dpl(v, gj, S) be the path length of the path
dp(v, gj, S).

Now, we present a simple algorithm that computes the
k-partially disjoint paths from a switch v to k gate switches
in S = {g1, g2, . . . , gk}. The approximate scheme of the
algorithm is as follows. First, we compute the shortest path
from v to g1. Initially, this is considered as the partially
disjoint path from v to g1. Suppose that we have i-partially
disjoint paths to the first i gate switches in S. Now, we require
to compute a partially disjoint path from v to gi+1. In order
to do that, we find the shortest path from v to gi+1 in
graph G. If that shortest path is edge-disjoint with one of the

previously discovered partially disjoint paths up to gi,
this path is the partially disjoint path to gi+1. Otherwise,
we remove the edges of the partially disjoint path from v
to gi, which is the lastly computed path, then we find the
shortest path from v to gi+1. This path is called as the
partially edge-disjoint path from v to gi+1. The purpose of
removing the lastly discovered partially disjoint path is to
evenly distribute the paths across the multiple outgoing links
of v. By repeating aforementioned procedure up to gk , the
k-partially disjoint paths to S is determined. The proposed
algorithm is a generalization of the algorithm presented in
our previous paper [4], where we consider only the case of
k = 2. The details of the algorithm are described in Algo. 1.

Algorithm 1 Disjoint Paths
1: Input: (G, S, v)
2: Output: {dp(v, g1), dp(v, g2), · · · , dp(v, gk )}
3: S: Set of gate switches, i.e., {g1, g2, · · · , gk}
4: v: A Switch
5: Compute shortest paths, sp(v, gj), from v to each gj ∈ S
6: dp(v, g1) = sp(v, g1) // declare shortest path from v to g1

as partially edge-disjoint path for g1
7: F ← {g1} // save g1 as first partially edge-disjoint gate

switch
8: S ← S −F // update the gate switch set S by subtracting
F

9: for gj ∈ S do
10: for gl ∈ F do
11: flag← false
12: if No shared links in sp(v, gj) and sp(v, gl) then
13: flag← true // update flag to true if shortest paths

for gj, gl are edge-disjoint paths
14: break
15: if flag == false // if no partially edge-disjoint gate

switches then
16: h← last added element of F
17: G′ ← remove links on dp(v, h) from G // delete

dp(v, h) path from original G
18: dp(v, gj)← sp(v, gj,G′) // Find shortest path for gate

switch gj from updated G′

19: F ← F ∪ {gj} // update partially edge-disjoint gate
switch set F by adding gj

20: S ← S − {gj} // update the set S by removing gate
switch gj

21:

22: Return {dp(v, g1), dp(v, g2), · · · , dp(v, gk )}

It should be noted that in line 6 of Algo. 1, we consider the
shortest path to g1, i.e., sp(v, g1) is also a disjoint path to g1.
We demonstrate this algorithm by illustrating the example
in Fig. 1. Suppose we want to compute the 3-partially disjoint
paths from node v to gate switches g1, g2, and g3. Initially,
the shortest path from v to g1 (v − a − g1) is the partially
disjoint path from v to g1. Next, we compute the shortest path
from v to g2, which is as follows v − a − d − g2. But this
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path is not disjoint with the previously computed partially
disjoint path to g1. Thus we eliminate the edges of the path
v− a− g1 and determine the shortest path to g2 again. The
newly computed path is v− b− d − g2, which is considered
as the partially disjoint path to g2. Finally, we compute the
shortest path from v to g3 on G, which is v− b− c− g3. This
path is actually disjoint from the partially disjoint path to g1,
namely, v−a−g1. So, we consider this path v−b−c−g3 as the
partially disjoint path to g3. Hence, we successfully determine
the 3-partially disjoint paths to the three gate switches.

B. ENHANCEMENT OF DISJOINT PATH COMPUTATION
Actually, we can improve the performance of the Algo. 1 by
exploiting natural disjointedness. For example, if the initial
k shortest paths to k gate switches, gj ∈ S, are naturally
k-partially disjoint paths, we do not need to run Algo. 1.
That is the best case. However, even though it is not the best
case, some pairs of the k shortest paths might be disjoint.
In such situation, we expect to employ Algo. 1 only for
those gjs that do not produce disjoint shortest paths. To be
precise, in Algo. 1, in line 7, we introduce F as the set of the
gate switches that provide the natural disjoint shortest paths.
The rest of the algorithm is identical. We characterize this
procedure as the Pre-Checking operation for the k-partially
disjoint path finding algorithm. The Pre-Checking algorithm
requires only O(k2) number of path comparison operation,
in which we only necessitate to investigate whether a pair of
shortest paths are the edge-disjoint or not.

However, this Pre-Checking method incorporates a very
interesting property, which can be utilized to lessen the
Pre-Checking computation time even further. Essentially,
the shortest paths are usually k-partially disjoint paths and
if not, no shortest path finds another the shortest path that
is disjoint. In other words, sometimes the shortest paths are
actually k-partially disjoint paths. Therefore, we can consider
the shortest paths as k-partially disjoint paths. Otherwise,
we need to run the Algo. 1 with F ← {g1}. There is no
intermediate case left where F holds a proper subset of k gate
switches. The proof of this property is given in Theorem 1.
Theorem 1 (Natural Disjointedness): Among the shortest

paths from a switch to the gate switchs, if a shortest path
is disjoint with another shortest path, the shortest paths are
actually k-partially disjoint paths.
Proof of Theorem 1: Suppose that there are k shortest paths

from a switch v to k gate switches {g1, g2, · · · , gk} and that
the shortest paths v to gi (v → gi) and v to gj (v → gj) are
actually disjoint. We claim that all the other paths are disjoint
with either v→ gi or v→ gj. If so, all the shortest paths have
at least one disjoint shortest path.

Let a link (x, y) be the last link on the shortest path v→ gl
that is shared by either v → gi path or v → gj path (Refer
to Fig. 2). Since v → gi and v → gj are disjoint, (x, y)
belongs to only one of the two shortest paths. Suppose that
(x, y) is shared with v→ gi without loss of generality. Then
the y → gl segment of the shortest path v → gl is disjoint
from the shortest path v → gj because (x, y) is the last link

FIGURE 2. An example for the Proof of Theorem 1.

on the shortest path v → gl that is shared by either v → gi
path or v → gj path. Furthermore, the v → y segment of
the shortest path v → gl should be the same as the v → y
segment of the shortest path v→ gi because the paths v→ gi
and v → gl are shortest paths due to the optimality of the
shortest paths. Thus, v → y segment of v → gl is disjoint
from v → gj. Since both v → y and y → gl segments of
v→ gl are disjoint from v→ gj, the shortest path v→ gl is
disjoint from the shortest path v→ gj. �

Theorem 1 presents a useful way to reduce the computa-
tion time to examine whether the shortest paths are actually
k-partially disjoint paths. The Pre-checking procedure works
as follows. First, we compute the shortest paths to the k gate
switches. Then, we take one shortest path and check whether
this shortest path is disjoint with any other shortest path. If do
so, we comprehend that the shortest paths are actually the
k-partially disjoint paths. This procedure adopts only O(k)
path comparison operations whether or not the shortest paths
are actually k-partially disjoint path.

FIGURE 3. An in-band controlling scenario.

Fig. 3 exhibits such an example, which is identical to the
Fig. 1 with the weight changes of two links: (v − a) and
(v− b). The shortest paths from v to gate switches (g1, g2, g3)
are v − b − d − g1, v − b − d − g2, and v − b − c − g3,
respectively. It should be noted that these three shortest paths
are not actually disjoint between any pair of the shortest paths.
If we employ the Pre-Checking property that we discussed
earlier, we first take the path v − b − d − g1 and compare it
with v− b− d − g2. The two paths are not actually disjoint.
Thenwe compare the shortest path, v−b−d−g1 with another
shortest path v−b−c−g3, which are not disjoint, either. Thus,
we can conclude that the shortest paths of node v to the gate
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switches are not k-partially disjoint paths. Let’s take another
example with the switch c. The shortest paths from the switch
c to the three gate switches are c−b−d−g1, c−b−d−g2, and
c−g3, respectively. Suppose we take the shortest path, c−g3
and compare it with the other shortest paths. If we compare
c−g3 with the shortest path, c−b−d−g1, they are actually
disjoint paths. Then, we can immediately conclude that the
three shortest paths from a switch c to the gate switches are
k-partially disjoint paths based on the Theorem 1.

C. GATE SWITCH SET SELECTION METHODS
We have described the definition of k-partially disjoint paths
so far. In theMPTCP based in-band controlling, the set of gate
switches of length k is selected first, and then, other switches
utilize the k-partially disjoint paths determined by the algo-
rithm described in the previous subsection. So, the perfor-
mance of the in-band controlling extremely depends on how
to select the gate switches. For that matter, we need to define
the objective of selecting the gate switches. Roughly speak-
ing, we want to select gate switches in such a way that the
disjoint path lengths from a switch to the chosen gate switches
are as small as possible. By performing this way, we can
reduce the latency of the control messages that are exchanged
between a switch to the controller. Determining such paths is
a challenging problem [4]. We have suggested several gate
switch selection methods only for k = 2 in our previous
work [4]. However, we observe that the methods proposed in
our previous work are designed inefficiently [4]. Thus, in this
paper, we propose a heuristic for gate switch selectionmethod
for an arbitrary k , the size of gate switch set.

Before we present the heuristic algorithm, we describe
the objective function for the gate switch selection problem.
In brief explanation, we want to compute a gate switch set, S,
of size k that satisfies the objective function (1).

minimize
S∈P(k)

∑
v∈V

∑
gj∈S

dpl(v, gj, S) (1)

Basically, for the given gate switch set S, we compute the
sum of k-partially disjoint path lengths from all the switches
to all the gate switches. By achieving (1), we can have shorter
k-partially disjoint paths. However, as we mentioned earlier,
achieving (1) is considerably challenging. We conjecture
that this is an NP-hard problem. So we propose a heuristic
algorithm.

Beforewe propose the heuristic algorithm,we describe two
baseline algorithms: Exhaustive Search and Random Search.
In Exhaustive Search, we examine every possible set S, S ∈
P(k). For each S ∈ P(k), we employ the k-partially disjoint
path finding algorithm, Algo. 1. Then we measure the sum of
disjoint path lengths for S. Then, finally, we choose set S that
achieves (1). The Exhaustive Search method is described in
Algo. 2.

However, the Exhaustive Search demands to check
(
|V |
k

)
gate switch sets and for each test, approximately k times
shortest path computing is required, which leads to an intol-
erably long time.

Algorithm 2 Exhaustive Search
1: Input: G, k
2: Output: S∗

3: md ←∞ // set maximum distance md to∞
4: S∗ ← φ // declare best gate switch set to empty set

initially
5: for each S in P(k) do
6: d ← 0 // set total distance d to 0 for each set S
7: for each v ∈ V do
8: Find the k-partially edge disjoint paths from i to S
9: for each gj ∈ S do
10: d ← d + dpl(v, gj) // update d by adding dpl of

each gj in set S
11: // if distance d of current set S is less than maximum

distance md
12: if d < md then
13: md ← d // update maximum distance md by d
14: S∗← S // update best set S∗ by switches of set S
15:

16: Return S∗

Algorithm 3 Random Search
1: Input: G, k , r
2: Output: Ŝ
3: r is the number of iterations
4: md ←∞ // set maximum distance md to∞
5: Ŝ ← φ // declare best gate switch set to empty set

initially
6: for cnt = 0, cnt++, while cnt < r do
7: S ← a randomly selected switch set from P(k)
8: d ← 0 // set total distance d to 0 for each set S
9: for each v ∈ V do
10: Find the k-partially edge disjoint paths from i to S
11: for each gj ∈ S do
12: d ← d + dpl(v, gj) // update d by adding dpl of

each gj in set S
13: // if distance d of current set S is less than maximum

distance md
14: if d < md then
15: md ← d // update maximum distance md by d
16: Ŝ ← S // update best set Ŝ by switches of set S
17:

18: Return Ŝ

Next, we illustrate another baseline algorithm called the
Random Search, which is described in the Algo. 3. Basically,
unlike the Exhaustive search, instead of examining all sets of
k switches in P(k), we randomly choose a small number of
elements inP(k) and for each selected element, we exploit the
k-partially disjoint path finding algorithm, Algo. 1. The per-
formance of Random Search totally depends on the number
of switch sets that we examine. If the number is large, we have
a high chance to discover a better solution while having the
significantly long computation time, and vice versa. As it
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can be seen in Algo. 3, the only difference between Random
Search and Exhaustive Search algorithms is the number of
elements in P(k) to be examined.

Now, we propose a heuristic algorithm called Centroid
First. This algorithm is based on the following heuristic.
Intuitively, when a gate switch set S shows a small sum of
disjoint path lengths, S is likely to show a small sum of
shortest path lengths. Even though the reverse is not always
true, it is likely that when a gate switch set S reveals a
small sum of the shortest path lengths, S might give a small
sum of disjoint path lengths. Our heuristic algorithm exploits
this intuition. Consequently, we obtain the top k switches
that have the least total sum of shortest path lengths from
themselves to all the other switches. We just consider the
discovered k switches as the gate switches. Then, we com-
pute the k-partially edge-disjoint paths from the switches to
the chosen k gate switches. Since the top k switches can
be thought of the centroids of the network, we name the
heuristic algorithm Centroid First. The detailed description
of the Centroid First algorithm is presented in Algo. 4.

Algorithm 4 Centroid First
1: Input: G, k
2: Output: Ŝ
3: for each v in V do
4: pl(v)← 0 // set path length pl of node v to 0
5: for each w ∈ V do
6: pl(v) ← pl(v) + spl(v,w) // update path length of

node v by adding spl between v and w
7:

8: Return Ŝ = {v: v ∈ V which have k smallest pl(v) }

As for the illustration of our proposed algorithm, if we
employ the Centroid First to the topology in Fig. 1,
the selected switches would be b and d for k = 2 case because
the two nodes have the smallest total sum of path lengths.
As can be observed in this example, the gate switches by the
Centroid First algorithm are destined to be in the center of
the networks. Those switches are likely to have a small sum
of path lengths.

IV. PERFORMANCE EVALUATION
In this section, we investigate the performance of our pro-
posed, Centroid First algorithm, along the with the two
baseline algorithms: the Random search and the Exhaustive
search. For the evaluation, we generate random topologies
by using BRITE topology generator [28]. The node sizes
of the random topologies are 100, 200, 300, and 400. The
average degrees of the topologies are 4 and 6. For each
node size and degree pair, we randomly generate 10 different
topologies. Thus, the total number of randomly generated
topologies is 80. The three algorithms are implemented with
C++ language and executed on Ubuntu virtual machine run-
ning on VirtualBox environment. We adopt two performance
evaluation metrics: average disjoint path length and average
computation time (s). It should be noted that the evaluation

results are the averages from the 10 random topologies of
each size and degree.

FIGURE 4. Percentage of natural k-partially disjoint paths over various
topologies, k = 5,10.

Before we examine the performance ofCentroid First algo-
rithm, we analyze the natural disjointness of the topologies.
Fig. 4 indicates the percentage for 8 different topology types
with k = 5, 10 as the gate switch set, selected by the Centroid
First algorithm. There are around 40% of natural k-partially
disjoint paths for k = 5 and around 50% for k = 10.
Moreover, the trends are similar for both k values for different
topologies. So if we have large k , then regardless of the
number of nodes, there is a high possibility to have natural
disjoint paths.

FIGURE 5. Average disjoint path length for 400 node degree 4 topologies
over k , 1000 iterations for Random Search.

Since the average disjoint path lengths of the Random
search and the Centroid First vary for the different k , we
now vary the value of k from 1 to 10 and examine the
variation of average disjoint path lengths. We compare the
results for the Centroid First and Random search. We are
not able to produce the results of Exhaustive search since it
is tremendously slow to complete. However, we concentrate
here to deeply investigate the performance of Random Search
when k varies. Fig. 5 exhibits the average disjoint path lengths
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over k for 400 node degree 4 topologies. As can be seen
in Fig. 5, the Centroid First algorithm shows the smaller
average disjoint path lengths than Random Search except for
k = 1 and 2. It means that when k is small, the number of
all possible sets of k gate switches is also small, i.e., |P(k)|
is small. Thus, 1000 samples may contain good gate switch
sets. However, when k is large, 1000 samples may not be
enough. The difference between the average disjoint path
lengths of the Centroid First and Random search becomes
larger when the value of k becomes larger. We observe the
same trend for other types of topologies. This result is quite
intuitive because when the sample space set or population set
is large, the Random search usually does not perform well.

FIGURE 6. Average disjoint path length over the number of iterations for
200 node degree 4 topologies, k = 2,3,4,5.

We investigate the performance of Random search fur-
ther to check whether the number of iterations influences
the results much. We vary the number of iterations from
10 to 1000 with various k values for the 200 node degree
4 topologies. Fig. 6 represents the average disjoint path
lengths over the number of iterations altering from 10 to 1000.
The average disjoint path lengths become constant when the
number of iterations increases, especially over 500 iteration
value. Fig. 6 also indicates the minimum and maximum aver-
age disjoint path lengths. The ranges also become stable when
the number of iterations approaches to 1000. Especially for
k = 5, the difference of the average disjoint path length is
small for the different number of iterations. This shows that
expanding the number of iterations does not improve the aver-
age disjoint path lengths a lot unless the number of iterations
becomes comparable to the population size. We experience
the similar trend for other types of topologies with different
number of nodes and degrees.

Now, we investigate the average disjoint path lengths of
the three algorithms for 8 different types of topologies, with
‘‘k = 2 and 3’’ as the gate switch set sizes. For the Ran-
dom approach, we adopt 1000 iterations, i.e., the number
of randomly selected gate switch sets is 1000. We run each
algorithm and compute the average disjoint path lengths.

FIGURE 7. Average disjoint paths length for various topologies, k = 2.

Fig. 7 presents the average disjoint path lengths when k = 2.
Fig. 8 shows the results when k = 3 as the number of gate
switches. The labels in the x-axis represent the number of
nodes and the average degree of the nodes. For example,
100-deg4 indicates a topology of 100 nodes with the average
degree of 4.

FIGURE 8. Average disjoint paths length for various topologies, k = 3.

As can be seen in Fig. 7 and Fig. 8, all the three algorithms
present similar average disjoint path lengths. However, when
the topology size increases, the Centroid First performs better
than the Random Search. It should be noted that the com-
putation time of Exhaustive search is very large for larger
topologies and large value of k , so we have missing results
of the Exhaustive search for k = 3.

So far, we have investigated the performance in terms of
the average disjoint path lengths. The performances of the
three algorithms are actually comparable except that the Ran-
dom performs the worse when the topology size increases.
Now, we investigate the computation time of the three algo-
rithms. Fig. 9 represents the computation time in seconds
over various k values for the 200 node degree 4 topologies.
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FIGURE 9. Computation time over k , 200 node degree 4 topologies.

The computation time is the average of 10 computation times
to complete the simulation for the 10 different topologies of
same size and degree. We just display the result of one type
of topologies because the results of other types of topologies
are quite similar. As it can be observed in the Fig. 9, the
computation times of Random search and Exhaustive search
are extremely high. Especially, that of the Exhaustive search
is very high so that the simulations for large k values cannot
be finished. One interesting thing is that the computation
time of Random search declines when k increases. This is
because when k is large it requires less time to determine
the k-partially disjoint paths from the switches to the selected
gate switches by exploiting the optimization of Pre-Checking
presented in the previous section. In other words, the shortest
paths are likely to be k-partially disjoint paths when k is high.
The computation time of the Centroid First is quite small so
it is difficult to be observed in the figure.

FIGURE 10. Computation time (s) for various topologies, k = 2.

To further investigate the computation time, we vary
the types of topologies for k = 2 case. Fig. 10 repre-
sents the computation time in seconds of the three algo-
rithms in case of 100, 200, 300 and 400 nodes with degree

4 and 6 topologies with k = 2. The computation time of
Random search increases as the number of nodes increases.
This is actually expected because the k - partially disjoint path
computation time rises when the number of nodes increases.
One obvious fact is that the Exhaustive search takes con-
siderably high computation time because the number of all
possible subset of k nodes, |P(k)|, increases. Moreover, the
Centroid First algorithm experiences very less computation
time, which are displayed by small ticks for larger sizes
topologies in Fig. 10.

In summary, the Centroid First algorithm exhibits smaller
Average disjoint path lengths than Random Search method
for various type of topologies and even for the higher values
of k and also presents comparable Average disjoint path
lengths to the Exhaustive Search. Furthermore,Centroid First
experiences very small computation time unlike the other
two algorithms: Random Search and Exhaustive Search. The
extensive simulation results clearly indicate that Centroid
First is a viable option for selecting the k gate switches for
the in-band controlling in SDN.

V. CONCLUSION
MPTCP based In-band controlling in SDN uses data paths
for the control connection. Thus, it requires to select good
gate switches for the connection to be robust. In this paper,
we address the gate switch selection problem, where a set of
k gate switches is selected in such a way that the average
disjoint path lengths become small. To ensure the better
availability and reliability of MPTCP based in-band control
channel between the switches with the controller, we pro-
pose Centroid First algorithm, which selects a set of k gate
switches by exploiting the intuition that the set of switches
that provide smaller shortest path lengths from other switches
may provide small disjoint path lengths.

Through extensive simulations, we evaluate whether the
proposed Centroid First performs well, thus confirms our
intuition. We compare the performance of Centroid First
with two baseline algorithms: the Random Search and the
Exhaustive Search. The ‘‘Centroid First’’ algorithm performs
the best with even for the higher values of k than the Random
Search method and additionally, it has very low computation
time as compare to that of both the Random Search and
the Exhaustive Search methods. In the future, we plan to
implement MPTCP based in-band controlling mechanism to
analyze the performance in the real SDN environment. Fur-
thermore, the detailed procedure of constructing the in-band
control connectionswill be discussed in the futurework. If the
in-band control connections are constructed in a plug-and-
play way, it will ease the work of the network operators.
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