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ABSTRACT Ubiquitous computing and the ever-rising need for energy efficiency pose challenges in terms
of the processing requirements and the corresponding machine complexity. Nonetheless, the nature of the
underlying applications, particularly dealing with real-world data, offers alternative paradigms toward the
efficient utilization of the available design resources. In this paper, approximate computing is addressed
as an accommodating technique that can benefit from the inherent resilience of the current applications
to build low-power and low-complexity architectures. This paper proposes an alternative way of attaining
approximation based on transistor dynamic variability. Furthermore, it presents a comprehensive study using
voltage scaling scheme, starting from the impact of variation on the circuit-level output and investigating
cascaded logic gates, storage elements, arithmetic building blocks, and on the application level, with an
image compression outcome using 2-point discrete Fourier transform as a proof of concept. This paper
addresses design analysis metrics and the efficiency of the proposed technique with respect to the technology
node, operating frequency, energy and delay, process corner, and temperature. The configurable designs are
shown to be possible with adaptive voltage scaling and energy-quality scalability. The proposed technique
offers compromises in terms of the circuit design metrics with savings of up to 90% on energy for image
compression application, in comparison with running at deterministic nominal value, while preserving the
relative quality and accuracy of the output.

INDEX TERMS Approximate computing, ultra-low power circuit design, stochastic electronics, thermal
noise, transistor variability.

I. INTRODUCTION
Applications such as speech analysis, image capturing and
compression, real-world data sensing, and multimedia pro-
cessing have relative and approximate accuracy quantifica-
tion. That is, where levels of error in the output are tolerated
without any tangible effect on the perceived quality depends
mainly on human perception. This mode of operation paves
the way for a wide and innovative design space for the hard-
ware implementations of the underlying applications [1]–[5].
Hence, this mode primarily benefits from the accuracy relax-
ation to achieve savings in alternative metrics such as energy.
Thereby, energy-quality scalable designs surface and capture
the essence of approximate computing approaches. In con-
trast to the relaxed hardware approaches [6], [7], where levels
of software and hardware support for fault recovery are added
to ensure correct operation, approximate computing tech-
niques tolerate the generated errors and relax the overhead
of error correcting schemes.

Different design levels can be investigated in the realm
of approximate computing. Application and algorithm
design- level techniques include skipping computations and
relaxing global synchronization and communication [8].
At the architectural level, specific accelerators and approx-
imate programmable processors are some of the techniques
used [9]. In terms of storage elements, particularly with
emerging technologies, approximate memories are tackled
from the perspective of associative memories and ternary
content addressable memories. These novel architectures are
used to accelerate the GPU based on resistive memories
and an online learning framework [10], [11]. An alterna-
tive approach in approximate memory design also builds
on dynamic management of the bit cell allocation for the
energy-quality trade-off. Additionally, when considering the
circuit level, intriguing insights are gained with respect to
the hardware implementations and the level of attained sav-
ings [12], [13]. In this regard, mainly two broad concepts
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are applied. The first includes the scaling of the driv-
ing voltage, thereby reducing the overall energy consump-
tion [14], [15]. The second approach builds on reducing the
number of transistor elements and redesigning the circuit
blocks accordingly [16].

These circuit design techniques are confined to a certain
limit for the transistor sizing, number of elements, and voltage
levels to sustain a deterministic operation of the underly-
ing components. Nonetheless, when dealing with 32nm and
smaller technology, the attributes of Moore’s law, which have
been steering the needs and requirements of chip and hard-
ware designs [17], [18], are not applicable due to the physical
limits affecting the scaling of the transistor devices [19].
The nanoscale dimensions of the transistors put forward the
sub-threshold leakage current and the atomic interactions,
thereby abating the reliability and usability of these compo-
nents [20]. As a result, aside from the static variation that
originates from the manufacturing process, the dynamic vari-
ability, with operational variations over time, is becoming an
increasing concern and a crucial issue for the corresponding
circuit operation. The internal mechanisms are affected by
stochastic ionic effects involving state variables and leading
to output variations [21], [22].

The variability of the transistor devices has been tradition-
ally regarded as a source of concern for hardware designs
where correcting schemes needed to be applied to ensure
accuracy [19], [23]. However, building on this intrinsic vari-
ability, and dealing with it as a source of performance shap-
ing instead of as an impediment to correct operation, is the
basis of the analysis presented in this paper. Furthermore,
this paper explores the right design space and improved
energy efficiency, in the presence of the variability of
transistors.

The variable device characteristics are modeled within a
SPICE environment, offering an easy form of temporal vari-
ability. Moreover, the stochastic transistor is used as the core
building block for approximate arithmetic applications. This
operational mode is highly useful for error-tolerant applica-
tions that constitute a major part of the internet of things (IoT)
operations. In particular, this mode targets the devices in
which real physical signals are involved, such as wireless
sensor nodes. Moreover, the integration of the transistor vari-
ability into the circuit-level simulator allows for the emu-
lation in which the circuits are subject to extensive scaling
endeavors. All in all, this study provides the design frame-
work and the voltage scaling limits for the energy-quality
scalability of resilient processing circuits. Thus, the proposed
technique offers an alternative approximation method for the
approximate computing circuits that build on unreliable ele-
ments. Thereby, four major contributions are presented in this
paper:

1) A dynamic time-dependent transistor model using
thermal noise to characterize stochastic behavior within the
transistor, this scheme can be easily adopted into larger cir-
cuit simulations along with extensions to various statistical
distributions;

FIGURE 1. (a) Stochastic transistor model with added variability to the
gate voltage. (b) The PDF of the threshold voltage variation for a Gaussian
distribution and σ = 30mV matched with [34]. (c) The transistor gate
voltage with the incorporated variability at VGS. The inset is a zoom into
the output at 0.5V showing the added variation of maximum ±90mV to
induce the threshold variability.

2) An approximate computing circuit design based on
stochastic components demonstrated through the analysis of
N-bit adders;

3) The efficiency of the proposed solution is addressed
with an analysis of the transistor size, operational frequency,
energy and delay, process corner and temperature; and

4) An image compression application with approximate
arithmetic blocks for energy-efficient operation with full
SPICE demonstration of the application.

The rest of the paper is organized as follows. Section II
discusses the physical attributions of the inherent time-
dependent variability of the transistor, along with the mod-
eling principles used for the circuit simulations. Next,
Section III elaborates the implications for the approximate
computing realm of study and explores the effect on the logic
operators. Section IV further investigates arithmetic blocks
with varying numbers of bits using simulations and explores
possible trade-offs involving accuracy, energy saving, tech-
nology node, delay, process corner, and temperature. Using
full SPICE verification, section V demonstrates image com-
pression with approximate adders and discusses the effects on
performance and analysis. Finally, the conclusion comprises
the summary and remarks on the presented principle.

II. STOCHASTIC TRANSISTOR MODEL
The miniaturization of transistor sizes will force the under-
lying physical characteristics to have a more prominent
effect on the output behavior. Static and dynamic forms of
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variability will suffice and affect the reliability and degrada-
tion of the corresponding devices [19].

With random dopant fluctuation (RDF) playing a crucial
role in the static variations, dynamic variability is mainly
dominated by the quantum-level effects imposed by tempera-
ture and voltage-operating conditions [24]. The direct impact
of this temporal variability is reflected in the stability of the
transistor’s threshold voltage (Vth). This section discusses
the details regarding the physical origins of stochasticity;
the modeling proposed to incorporate threshold variability
into the simulation environment, and the different modes of
stochasticity.

A. THRESHOLD VARIABILITY
The cumulative and singular effects of Bias Temperature
Instability (BTI) [25], [26], Hot Carrier Injection (HCI) [27]
and Random Telegraph Signal (RTS) [28] are a form of
dynamic stochasticity that is translated into temporal varia-
tions in the threshold voltage of the transistor [29]. With a
certain gate voltage, the switching event of the transistor is
considered probabilistic. The preset bounds of the transistor’s
regions of operation are no longer tight nor deterministic;
instead, they vary temporally depending on the threshold
voltage value at each instant in time [30].

To assess the effect of these variations on the performance
and energy efficiency of the circuits, a stochastic transistor
model that includes its stochastic behavior needs to be estab-
lished. Ideally, the physical equations governing the transistor
operation need to be altered to include the effects of the
noise and the non-idealities present in the device. A technique
is needed that closely captures the experimental behavior
but adds to the complexity of the model and the simulation
process. In [31], Monte Carlo, 3D scaling, and transient
noise simulations are used to conduct simulations within the
SPICE environment. However, these techniques require a
large amount of simulations and computation resources to
capture the dynamic effects of variability. This paper intro-
duces a model that incorporates the physical variability in a
statistical manner, mainly by adding a noise source at the gate
input to have the device behave probabilistically [32], [33].
The oversampling scheme allows the simulator to capture
most of the variations during a single period and provides
enough data points for the analysis. Hence, the paper presents
three major concepts for the induction of the variation into
the transistor models and for their easy integration within the
circuit simulation platforms:

1) The physical variation effects can be summed up into
the temporal threshold voltage variability;

2) The modeling of the variation is implemented by adding
a thermal noise to the gate voltage; and

3) The added temporal variability ensures enough data
points within a single transient simulation run.

Figure 1a shows the proposed stochastic transistor model
with the added noise source at the gate input. The ther-
mal noise is characterized by the standard deviation, and is

calculated as follows:

v2n = 4kBTRB (1)

where kB is the Boltzmann constant of 1.38 × 10−23 J/K,
T is the temperature in Kelvin, R and B are the resistor value
and the bandwidth of operation, to be specified at runtime
to regulate the standard deviation. The stochastic transis-
tor model is implemented by the SPICE netlist in Cadence
Spectre simulator. Figure 1b displays the histogram of the
variation based on Cadence Spectre simulations, indicating
the model accurately captures the intended variation with
the mean value of 0 and the standard deviation of 30mV,
matching with the experimental results reported in [34].

B. STOCHASTIC DISTRIBUTIONS
The natural phenomenon affecting the behavior of the tran-
sistor elements can be fit into different distributions. Several
studies have addressed this dynamic variability and provided
models for the underlying noise and instability effects. A sep-
arate analysis was conducted for each contributing compo-
nent, building on extracted experimental measurements. The
corresponding atomic/ionic scale stochastic processes are
mainly fit to the Lognormal distribution, as is the case for
Negative Bias Temperature Instability (NBTI) [26]. Alterna-
tively, with abrupt variations imposed by random telegraph
signals, Uniform, Exponential, and Poisson distributions [35]
are more generally used approximations. When taking into
consideration all of the affecting factors on the variation of the
threshold voltage, a general multivariate model was proposed
in [34]. Moreover, an approximation was provided for the
threshold voltage to follow a Normal distribution with a
standard deviation (σ ) holding an average value of 30mV and,
according to the experimental number reported in [34], reach-
ing up to 50mV in some extreme cases. Figure 1c shows the
variation of the gate voltage VGS over time with a max/min
of VDD ± 90mv achieved by tuning the noisy resistance
value and the noise frequency. The simulation results of the
model show a well alignment with the measurement results
in [34]. The Gaussian distribution of the thermal noise could
easily be transformed into other various distributions using a
probability transformation function. The SPICE code for the
general transformation is as follows.

III. APPROXIMATE COMPUTING
Conventionally, having the transistors behave in a non- deter-
ministic manner is considered a drawback to the circuit
performance. Costly error-correcting schemes are applied to
counter the induced deviations from the original operation.
On the other hand, increasing the supply voltage is also con-
sidered, to a certain extent, to overcome the noise effects and
ensure correct output. However, with aggressive scaling, vari-
ability is now an inevitable feature that needs to be addressed
in unconventional concepts [36]. Approximate computing
benefits from the probabilistic behavior of the underlying cir-
cuitry to shape the performance in error-tolerant applications.
Complete accuracy of the desired output is not considered

VOLUME 7, 2019 6375



R. Li et al.: Approximate Computing With Stochastic Transistors’ Voltage Over-Scaling

Algorithm Stochasticity Transformation to Alternative Prob-
ability Distributions
.Param Ka = 1.38e-23, T=300, Rg =resistance value,
Bg =bandwidth, pi= 3.14, lambda= 2
.Param var = 4∗K8∗T∗Rg∗Bg
∗∗∗∗Noisy Resistor
Rn n 0 Rg noiseon=yes
∗∗∗∗Normalizing the Gaussian distribution values
Enorm 10 value = ’V(n)/sqrt(var)’
∗∗∗∗Transforming to lognormal Distribution
Elognormal 2 0 value = ’exp(V(n))’
∗∗∗∗Transforming to Uniform Distribution
Euniform 3 0 value= ’1-sqrt(l-exp(-(2∗V(l)"2/pi)’
∗ ∗ ∗∗Transforming to Exponential Distribution
Eexponentia14 0 value = ’-(1/lambda)∗ln(l-V(3))’

a priority, but instead a complementary feature, depending
on the available resources [14], [37]. This section proposes
an alternative approach to approximate computing based
on the stochastic operation of the underlying transistors.
The conventional design structure of the logical operators is
kept intact, while the transistors act in a non-deterministic
manner. To verify the operation principles and the gains
achievable with these devices, a 20nm predictive technology
model (PTM) is used for circuit-level simulations [38] with
Cadence Spectre at an operation frequency of 500MHz and
a nominal voltage of 0.9V. The impact on Boolean operators
is discussed with emphasis on the inverter and the different
logic gates where each circuit output is kept as fan-out of 4 to
emulate its behavior in full circuits.

A. STOCHASTIC INVERTER
The inverter is composed of two vertically concatenated tran-
sistors, PMOS and NMOS. When applying nominal voltage
VDD on gate input, the expected output is the inverse of the
input. However, with the intrinsic stochasticity of the tran-
sistors, especially with the variation of the threshold voltage,
some glitches can be observed at the output. The effect of this
variability will be apparent at lower voltages, particularly at
levels closer to the original threshold voltage of the device.
This hypothesis is tested with the simulation of the stochastic
inverter at different VDD levels. The simulations cover the
range from 0.2V up to the nominal value of 0.9V. Fine step
sizes for simulation are taken up to 0.4V, as the variability has
a considerable impact on this level, whereas it is considered
to be minor at higher voltages. Figure 2 shows the output of
the inverter for different input voltages with respect to enough
amount of time to capture the full variation spectrum. Aside
from the sub-threshold leakage, the effect of the dynamic
variability is distinct mostly at lower input voltages, with deep
crossing into the opposite regions for the high and low bits
respectively.

The accuracy of the logic operation is specified as the
number of correct samples for a digital bit divided by the

FIGURE 2. The input and output signals of the stochastic inverter at
different input voltage levels.

FIGURE 3. The output accuracy of the inverter in terms of getting an
accurate ‘0’ and ‘1’ along with the average performance.

total number of samples (Accuracy = (N0Correct+N1Correct)
/ NTotal), where N0 and N1 correspond to the number of
samples of correct ‘0’ and ‘1’ respectively. To assess the
accuracy of this operation, 16,000 samples are considered for
each period. An output value is considered to be correct only
if it is within 10% of the ideal output value to keep with the
typical noise margin convention. Namely, 0 ∼ 0.1×VDD will
be considered as correct digital ‘0’ if the ideal value should be
0V, and 1 ∼ 0.9×VDD will be counted as correct digital ‘1’
if the output is supposed to be VDD. A conservative approach
is adopted for the setting of the undetermined values ‘x’,
guarantee the worst-case scenario by assigning the ‘‘x’’ value
to be the counterpart of the correct value, namely if the correct
value is ‘‘1’’, then if a value falls into ‘‘x’’ region, it would be
evaluated as ‘‘0’’ to create worst-case interpretation.

Digital Value =


0, if Vout < 0.1× VDD
1, if Vout > 0.9× VDD
x, if 0.1× VDD < Vout < 0.9× VDD

(2)

The sampling focus solely on the stabilized part of each
period while excluding the rising and falling transition time,
Figure 3 shows the accuracy of the inverter over different
levels of VDD. The accuracy of both bits ‘0’ and ‘1’ are
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TABLE 1. The variability effect of the underlying transistor elements on the logic operators. Output accuracy of the bits ‘0’ and ‘1’ and the average are
shown with respect to different levels of input voltage. With higher VDD, the variability will have a smaller impact and the gate will behave in a
deterministic manner.

considered along with the average overall accuracy of the
inverter or NOT gate. The average is set by taking the mean
of the accuracy values of the bits ‘0’ and ‘1’ accordingly.
Interestingly, the accuracy of the inverter reaches a minimum
of 84% at an operating voltage around the original threshold
of the transistor elements. Hence, a large space for energy
saving is possible while maintaining high levels of accuracy
as well.

B. LOGIC GATES
Extending the stochastic operation into the logic domain, the
stochastic transistor devices are used to build logic operators.
In this mode, the effect of added cascades is studied with
respect to the expected output accuracy in a similar fashion
to the inverter. Table I depicts the circuit structures for the
main Boolean operators.Moreover, the accuracy of the output
behavior is analyzed in terms of the percentage of having a
correct ‘0’, correct ‘1’, and overall expected correct output
for all the different combinations of the truth table.

In general, the output accuracy of the gates shows similar
performance to that of the inverter. However, a slight degra-
dation is encountered, where the minimum average accuracy
reached is around 80%. Hence, the added number of cascaded
blocks has only a minor effect on the output performance.
Alternatively, the logic operation does show an impact on
the output accuracy. For instance, the AND gate shows the
lowest accuracy for the bit ‘1’. This could be because the
gate is biased to have more zeros as it is clear from the truth

FIGURE 4. The structure of the latch circuit [39] composed of stochastic
transistor elements.

table entries for this operation. Similarly, the OR operator
shows the lowest performance accuracy for the bit ‘0’, as
it only appears once in its truth table. Thus, this interesting
feature needs to be further investigated with larger arithmetic
blocks, to determine whether the degradation is propagated
or suppressed by the particular structure.

C. STORAGE ELEMENTS
The transistor is the constituting component in storage ele-
ments such as SR latch [39], a level sensitive positive
latch. Hence, the stochasticity inherent within the transis-
tor operation and the scaling of the input voltage both
have a large impact on these non-static structures. The pri-
mary impact of the variation is reflected on the failure rate
and the delay for the correct data within the storage cells.
Figure 4 presents the internal structure of the latch and the
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FIGURE 5. The impact of the transistor variability on the operation of the
latch. Measures of delay and accuracy under different operating
frequencies are highlighted.

corresponding interconnections; Figure 5 depicts the sim-
ulation of the latch under different operating frequencies.
The accuracy of the output and the propagation delay are
the affected parameters with the scaling of the voltage and
frequency. However, the operation of the latch could achieve
almost 100% accuracy at a voltage as low as 0.4V, corre-
sponding to almost half the nominal value, with a propagation
delay of 10 ps and operating frequency of 1GHz.

Hence, the transistor variability allows for more efficient
operation of the storage element, in particular where complete
accuracy is not a paramount requirement, as in the case of
real-world signal processing applications.

IV. APPROXIMATE ADDER
Adders are the principal building blocks of arithmetic
operations, and their reliability and accuracy profoundly
affect simple computations and more complex process-
ing [40]. Several approaches for implementation of approxi-
mate adders, along with other arithmetic blocks are evaluated
and classified in [16] and [41]–[43]. In particular, compar-
isons on the error; characterizations on the circuit; and discus-
sions on image processing applications are reviewed across
various designs in [43]. In this work, however, our primary
purpose is to investigate the impact of device variations, so we
have selected the standard, optimized ripple carry structure
for the multi-bit adder. Furthermore, this section studies and
quantifies the performance of approximate adders. Starting
with a detailed analysis of a single-bit adder, the section
presents the accuracy of the sum and the carry generation
blocks. More reflective error quantifying metrics are used
to assess the behavior of N-bit adders up to 16 bits. Error
distance, mean error distance, relative error distance, and
mean relative error distance are calculated for the different
adders [44], [45].

A. FULL ADDER
The mirror adder circuitry is adopted for improved carry
generation [39]. Most importantly, the dimensions for the
carry block transistors are set to ensure a more optimized

operation for the output carry bit. Moreover, the number of
transistors used for generating the carry bit is much fewer than
the sum generation, as depicted in Figure 6. These features
make the carry bit more stable and less susceptible to errors.

FIGURE 6. The structure of the mirror adder circuit [39] composed of
stochastic transistor elements. Transistor sizes are configured to ensure
optimized carry generation.

The expected sum value for the 1-bit adder reaches up to 3.
Hence, any error within the generated sum or carry bit will be
reflected in a substantial change in the overall output value.
The performance analysis of the 1-bit adder can, therefore,
be portrayed using the accuracy of these bits. Figure 7 shows
the corresponding accuracy values for all input combinations
for the high and low bits, respectively. As expected, the added
stochasticity has amore significant impact on the sum bit than
on the carry bit, due to the nature of the used structure. How-
ever, the considerably reliable operation is attained even at
low voltage levels. The accuracy reaches a minimum of 70%
at voltages as low as 200mV.

FIGURE 7. The output accuracy for the sum and carry bits of the 1-bit full
adder. Better output characteristics of the carry bit is due to the nature of
the used structure to optimize the carry generation.

B. N-BIT ADDERS
N-bit operation is needed to perform computations and pro-
cess operations. Hence, investigating a higher number of bits
for the adder offers more insights into the applicability of
the approximate computing approach, particularly in the logic
domain. A ripple carry adder (RCA) is used for the analysis.
It is composed of cascaded blocks of 1-bit full adders with the
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carry propagating between consecutive blocks. This structure
is used for the analysis because it shows the effect of the
probabilistic behavior of the carry-in bit to the subsequent
full adder blocks, and consequently the overall output value.
Figure 8 shows the block diagram for the N-bit ripple carry
adder.

FIGURE 8. The block diagram of the N-bit adder with the propagation of
the carry among the individual 1-bit adders.

To quantify the effect of the transistor variability on the
adder’s output behavior, the 2-bit, 4-bit, 8-bit, and 16-bit
adders are simulated using Cadence Spectre. The accuracy
metric used throughout this paper can efficiently reflect
the accuracy of operations involving single-bit output, as it
assesses whether the bit is correct or not. However, with a
larger number of bits for the addition, the accuracy does not
provide enough information on the effect of the probabilistic
behavior. An error in any of the bits within the output sum val-
ues is considered to reduce the accuracy, wherein the binary
domain, different weights are given depending on the location
of the bits. The least significant bit has a lower impact on
the sum than the most significant bit. This divergence further
increases when a larger number of bits is used for calcula-
tion. Therefore, the metric such as the error distance (ED)
is considered to be more informative [42] and is calculated

as (ED(a,b) = |a-b| =

∣∣∣∣∣∑i a [i]× 2i −
∑
j
b[j]× 2i

∣∣∣∣∣) where
a and b are the expected and probabilistic sums, respec-
tively [42]. The ED quantifies how far the output sum value
is from the expected values. Figure 9 shows a 3D plot for
the error distance with respect to the operating voltage VDD
and the expected sum values for a 4-bit adder. The peak ED
is found at the middle addition value. This is because this
particular range has the highest probability of occurring out
of all the different addition values, and because of the conser-
vative setting of the undermined values ‘x’. The worst-case
error is assumed in the setting process of the ‘x’ values that
lie between the two analog values of ‘0’ and ‘1’. Moreover,
as expected, the maximum ED occurs for lower operating
voltages and steadily decreases to 0 for operating voltages
of 0.4V and higher, thus providing a highly reliable operation
with at least 80% energy savings.

FIGURE 9. 3D plot for the Error Distance of a 4-bit adder with respect to
the expected addition value and the operating voltage as well.

FIGURE 10. (a) The mean error distance for the adders at different
operating voltages. (b) Log-scale of the MED at an operating voltage of
0.25V showing very low error for the lower bit adders.

Further quantifying metrics are calculated to provide a
more elaborate view of the performance of the adders at
different operating voltages. The mean error distance (MED)
is calculated as (MED =

∑
i EDi ÷M ) where all instances

of the ED are summed up and divided by the total number of
samples M. Figure 10a shows the simulation results for the
MED over a range of operating voltages (VDD). As depicted,
the N-bit adders up to 16-bits have a similar performance
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FIGURE 11. (a) The Mean Relative Error Distance for the adders at
different operating voltages. (b) The log of the mean relative error
distance for different N-bit adders at an operating voltage of 0.25V.

with regard to achieving almost zero error at voltages higher
than 0.4V. Moreover, regarding the lower operating voltages,
as shown in the inset of Figure 10a, the adders up to 8-bit
have a very low MED, reaching up to 2% of the total sum.
A further quantifying example is shown in Figure 10b, where
the logarithmic (base10) scale is used to plot the absolute
MED values for different N-bit adders at an operating voltage
of 250mV.

Although the results show a high peak for the 16-bit adder,
this is due to the measure that the MED portrays: it shows the
absolute value of the error with no relation to the actual sum
value. Therefore, the mean relative error distance (MRED)
is calculated as well [42]. The relative error distance (RED)
takes the actual sum value (R) into account by dividing
each ED value by the corresponding expected sum (RED =
ED ÷ R) and the mean relative error distance (MRED) is
then calculated as (MRED =

∑
i REDi ÷M ). Figure 11a

shows the mean relative error distance for the different N-bit
adders across the range of operating voltage. As depicted,
the 1- and 2-bit adders show the worst characteristics at the
lowest voltage of 0.2V. This is because the sum values in these
adders are small and any deviation away from the expected
value results in a large MRED. However, the highly close
operation is shown for all of the other adders with MRED
values reaching as low as 0.15 or 15% of the actual sum.
A closer inspection of the error characteristics at a single

operating voltage of 0.25V reflects the small errors attained
for various N-bit adders in Figure 11b.

C. DISCUSSION
The efficiency of the proposed scheme under diverse process
variations is addressed for the different approximate adders.
The comparison is based solely on the current scheme; as
to the best of the authors’ knowledge, this technique serves
as the first proposition of circuit approximation based on
unreliable components and across the technology nodes. The
evaluation is conducted with respect to the operating fre-
quency, the technology node or transistor size, the energy and
delay, the process corner, and temperature.

1) OPERATING FREQUENCY
The accuracy of the adder output is directly affected by the
operational frequency. The higher the frequency, the larger
the chances are of obtaining erroneous results. Hence,
the adders are simulated under different frequencies, and the
MED andMRED are respectively measured. Figure 12 shows
the performance of a 4-bit adder, based on a 20nm PTM
model, at different frequencies of operation. As depicted,
to achieve full accuracy, the operating frequency should not
exceed 1 GHz in case the operating voltage is scaled down
to 0.4V, which corresponds to less than half the nominal
value. Larger operating frequencies are still feasible but at
smaller scaling levels. That is, with around 30% scaling of
the nominal voltage frequency, up to 2 GHz is attainable
with completely accurate results. Hence, as the IoT opera-
tion dictates, several operating points could be available for
the attainment of the performance metric required under the
resource constraints.

2) TECHNOLOGY NODE
The impact of the technology node is taken into considera-
tion with the simulation of the N-bit adders performed for
predictive technology models of 10nm and 20nm, and for
the actual device model of TSMC 65nm. Table II provides
an overall comparison between the different N-bit adders in
terms of the achieved MED and MRED for the scaling of
the nominal voltage for each technology node. The voltage
levels are shown to reflect the same percentage of scaling
for each technology node considering the differences in the
absolute nominal voltages. Moreover, as the log-scale is used
to represent the values, the dashes represent an achieved error
of 0. As depicted, with smaller transistor sizes, higher levels
of scaling of the nominal voltage are feasible, reaching down
to around 0.4V while maintaining the full accuracy of the
output results. However, once the technology size increases,
the variability starts to degrade the performance and limit the
scaling possibility. The minimum operating voltage applied
to start achieving full accuracy is set to 0.8V for the 65nm
technology node. Whereas configurable accuracy and energy
savings are possible by choosing the level of operating volt-
age. A compromise arises, with lower voltage levels achiev-
ing energy savings of up to 95% but having error levels
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FIGURE 12. (a) The mean error distance for the 4-bit adder at different frequencies. (b) The mean relative error distance of the 4-bit adder at
different frequencies.

TABLE 2. The overall comparison for the performance of the N-bit adders in terms of the MED and MRED for different technology nodes.

reaching around 30%. On the other hand, larger operating
voltages also offer an almost accurate level of outputs, with
savings reaching more than 60% at the 16-bit output at the
technology node of 20nm.

3) ENERGY AND DELAY
The energy and delay parameters are important but con-
tradictory design metrics. The lower the operating voltage,
the lower the energy consumption, but the larger the propaga-
tion delay. However, with the underlying stochasticity of the
transistor, several operating points are feasible depending on
the technology node and the available resources. For instance,
scaling the voltage down by 30% achieves energy savings of
around 50% and delay in the order of fewer than 50 ps for
technology nodes of 10nm and 20nm, and fewer than 150 ps
for 65nm. Figure 13 shows the simulation results for a 4-bit
approximate adder operating at 500MHz. The intersection
points between energy consumption and the delay plots rep-
resent the optimal points of operation for the different tech-
nology nodes. As depicted, the technology nodes of 10nm
and 20nm have their optimum operating point at 45% of
the nominal value, which provides an accurate output result,

FIGURE 13. The analysis of a 4-bit adder with respect to the delay and
energy consumption. The percentage scaling of the input voltage results
in the scaling of the delay and the energy consumption as well.

as shown in the performance table. Similarly, the optimum
operating point for the 65nm resides at 75% of the nominal
value, which also provides accurate output values.

4) PROCESS CORNER
The simulation of the process corners serves as a measure
of how the process and the environmental stimuli affect the
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FIGURE 14. The performance, in terms of the mean error distance, of the
approximate adder with different number of bits at an operating voltage
of 0.8V, corresponding to 70% of the nominal voltage for 65nm
technology.

FIGURE 15. The mean error distance with temperature variations of the
8-bit approximate adder at 0.8V operating voltage and different process
corners.

circuit in an extreme situation [39]. The impact on the perfor-
mance of the adder is measured in terms of the MED. In that
regard, Figure 14 shows the behavior of N-bit approximate
adders operating at 0.8V, which corresponds to 70% of the
nominal voltage of the 65nm technology node. An interesting
feature that is apparent in these results is the impact of the
NMOS. The Fast-Slow (FS) and Slow-Fast (SF) do not show
similar behaviors. The slow operation of the NMOS degrades
the performance and leads to more errors in the operations.
Moreover, as depicted in the figure, a completely accurate
performance is achieved for the Fast-Fast (FF) case up to
4 bits, with less than 1% error rate. Another interesting obser-
vation is that the simulation results of the Slow-Slow (SS)
corner show a relatively low error rate that is barely noticeable
when dealing with error-tolerant applications.

5) TEMPERATURE VARIATIONS
The temperature variations have a strong influence on the
transistor parameters, which correspondingly affects the cir-
cuit behavior. Figure 15 shows the impact of the temperature
on the 8-bit approximate adder for different process corners.

The operating voltage is kept at 0.8V, and the MED is mea-
sured and plotted. Since the threshold voltage decreases with
the temperature [46], the overdrive voltage and the on-state
current increase. This leads to a decreasing MED and higher
accuracy with temperature.

V. IMAGE COMPRESSION
With an elaborate investigation of the approximate adder
with stochastic components, characterization of performance
could be visually assessed through digital signal processing
applications. In this context, this paper presents image com-
pression using 2-point Discrete Fourier Transform (DFT).
The calculation requires addition and subtraction of pixel
values of the image to be compressed. With x[i] and x[i+1]
being two consecutive pixels, the DFT output is calculated
using the butterfly operations.{

y [i] = x [i]+ x[i+ 1]
y [i+ 1] = x [i]− x[i+ 1

(3)

The output values y[i] and y[i+ 1] are a direct function of
the input values. The subtraction is transformed into addition
by using the 2’s complement of the corresponding subtra-
hend.

A. SIMULATION SETUP
A 200×200 pixel JPEG image is used for the compression
application. Each pixel is transformed into an 8-bit binary
number, and the image is then mapped into two sets of 8-bit
input voltage samples that are fed in parallel to Cadence Spec-
tre. Circuit-level simulations for the corresponding additions
are performed using the 8-bit RCA with mirror full adders,
implemented with stochastic transistors in 20nm technology
with Gaussian distribution variability. The simulations are
all performed at the 500MHz frequency with a pre-layout
analysis framework. The DFT additions and subtractions
are performed for several operating voltages to assess the
output characteristics and energy savings for each voltage.
The circuit simulations cover the nominal value of 0.9V to
account for the original or deterministic addition operation.
The values of the addition operations for different operating
voltages, ranging from 0.2V to 0.9V, are then extracted from
the circuit simulator and fed into MATLAB to reconstruct the
images. This reconstruction is achieved using an error-free
2-point Inverse Discrete Fourier Transform (IDFT).

B. MULTIPART FIGURES
The quality of the compression is characterized using the
peak-signal-to-noise ratio (PSNR) and the structural similar-
ity index (SSIM) [47].

1) PEAK-SIGNAL-TO-NOISE-RATIO
PSNR stands for the peak value of the pixel; with 8 bits used
to represent the pixel, the peak value is considered to be 255.
MSE is the mean square error between the reference value of
the pixel in the original image and the value of the pixel after
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reconstruction. Hence, PSNR is calculated as follows

PSNR = 10 log10
PV 2

MSE
(4)

Figure 16 shows the original image and two reconstructed
versions of the image after the application of the DFT using
approximate 8-bit adders. As can be seen, scaling the voltage
down to 0.3V, which results in more than 90% energy sav-
ings, and allows for compression with a minor effect on the
quality with a PSNR value of 24.17. On the other hand, more
aggressive voltage scaling adversely affects the quality of the
compressed images. Hence a compromise lies between the
required level of quality and the energy savings based on the
application requirements and available design resources.

FIGURE 16. The output image with different level of arithmetic error in
the DFT operation. The Quality of the output is relative to peak signal to
noise ratio and the perception of the image. Compromises arise between
the energy savings and the level of quality sought for.

2) STRUCTURAL SIMILARITY INDEX
SSIM is an assessment of the perceived image quality based
on the quantification of the visibility of errors [47]. This
measure builds on the adaptability of the human visual system
in extracting structural information. Considering two image
signals x and y from the original and the reconstructed image
respectively, the SSIM (S(x,y)) comprises three components

S (x, y) = f (l (x, y) , c (x, y) , s(x, y))

S (x, y) =
(2µxµx + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(5)

where l(x,y) is the luminance comparison, c(x,y) is the con-
trast comparison, s(x,y) is the structural comparison, µ and σ
are the mean and the standard deviation, and C1 and C2 are
added constants to avoid instability. The SSIM is measured
for the reconstructed images over different operating volt-
ages. The higher the value of the SSIM index, the closer
the reconstructed image is to the original one until reach-
ing a value of 1 that corresponds to complete similarity.
As depicted in Figure 17 comprising theminimum,mean, and
maximum values of the index within the image, increasing
similarity is achieved with larger input voltage where values
larger than 0.3V provide identical structures and fully accu-
rate reconstruction. The accuracy of the approximation can be
defined during runtime with the input and the supply voltage
level as depicted before.

FIGURE 17. The structural similarity index for the reconstructed images at
different operating voltages.

C. DISCUSSION
When compared with the alternative deterministic devices
that operated at the nominal value, more than 90% on energy
saving was achieved while maintaining high PSNR values of
the compressed image. Voltage over-scaling schemes inves-
tigating timing path in the sequential circuits, bit error rate
in different operating conditions, and error in various math-
ematical functions are discussed in [48]–[50] respectively.
In this work, we used voltage over-scaling schemes to exam-
ine the accuracy and output characteristics of the logic and
arithmetic blocks by incorporating the inherent variability
of the transistors for performance shaping, in particular,
energy saving in the image compression application. Mul-
timedia and digital signal processing applications that build
on these configurable arithmetic units have shown improve-
ments in the output characteristics along with the utiliza-
tion of the resources [51]. The energy-quality scalability is
considered to be a control knob for the level of operation
required for error-resilient applications, such as wireless sen-
sor nodes that need to capture images, compress them, and
send or even stream them in the most efficient manner to the
source [52], [53]. A trade-off is apparent within the different
designmetrics, but it can, in fact, be sufficient and satisfactory
regarding the current system requirements.

VI. CONCLUSION
Error-resilient applications offer relaxation of the mapping of
design specifications regarding the corresponding hardware
implementation. In this study, the variability of the nanoscale
transistor devices was embraced and modeled in a statis-
tical manner. Thermal noise was used to induce variations
into the transistor elements, which allowed for the stochas-
tic setting of the threshold voltage. Adopting this inherent
stochasticity in the approximate computing concept showed
the attainable benefits of doing so in terms of performance
metrics savings. Analysis and simulations on simple and
large arithmetic computing blocks maintained a high level
of accuracy while offering savings on energy. A case study
of an image compression reflected the benefit of adopting
approximate adders on the application level. All in all, this
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approach to transistor stochasticity provides the right design
space and improved energy efficiency, in the presence of the
variability of transistors. It allows for the development of
configurable schemes that are adaptively controlled based on
the communication channel and environment, to increase or
decrease the corresponding accuracy,
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