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ABSTRACT This paper develops a novel adaptive trajectory tracking control strategy to enhance the
tracking performance for surface vessels with unmodeled dynamics and unknown time-varying disturbances.
A high robustness and precision trajectory tracking controller is presented by using trajectory linearization
control (TLC) technology, neural network, extended state observer (ESO), nonlinear tracking differentiator,
and auxiliary dynamic system. First, the greatest advantage of this paper is that the TLC technology
is first introduced into the field of surface vessels motion control, which provides a new direction for
TLC technology research. Then, to further enhance the control performance and robustness of the system,
the neural network with minimum learning parameter is used to replace the classical radial basis function
neural network to approximate unmodeled dynamics, which can reduce the burden of computing. A novel
reduced-order ESO is constructed to estimate unknown time-varying disturbances to achieve real-time
compensation. Meanwhile, nonlinear tracking differentiator is employed to realize the derivative of virtual
control command, as well as to provide command filtering. In addition, an auxiliary dynamic system is
designed to reduce the risk of actuator saturation. The stability of the closed-loop system is guaranteed
based on the Lyapunov criteria. Lastly, the comparison results demonstrate the superior performance of the
proposed approach.

INDEX TERMS Trajectory linearization control, surface vessels, neural network, auxiliary dynamic system,
extended state observer, nonlinear tracking differentiator.

I. INTRODUCTION
With the rapid development of ocean techniques, marine
vessels have been widely utilized in the sea for several major
tasks, such as marine transportation, the oil and gas explo-
ration, rescue operations [1]–[3]. In the practical engineering,
trajectory tracking control is not only the basis of all tasks but
also the key to ensure navigation safety. However, the track-
ing performance is significantly decreased due to the effects
of the environment. Therefore, enhancing the tracking control
of surface vessels, has been significant and attracted a lot of
attention from both industrial and academia.

Focusing on the surface ships motion control, many effec-
tive control algorithms have arose in the control system.

Initially, based onmodel-free control methods, a proportional
integral derivative (PID) controller is designed in [4], and
an intelligent control method based on the fuzzy logic is
developed in [5]. However, both methods have low precision
of tracking performance because model-free control methods
are easily affected by environmental factors. To improve
tracking performance, model-based control methods have
been developed. Some control methods such as backstep-
ping control [6] and model predictive control [7] have been
developed to design trajectory tracking controller. However,
these methods have large offset errors with the increase of
the model uncertainty and disturbance. To further improve
tracking performance, some of adaptive robust control
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algorithms have been developed in [8]–[11], which can sup-
press all random uncertainties in the drive and response
system. Combining the average dwell-time scheme and the
adaptive backstepping technology, the paper [12] proposes an
adaptive neural state-feedback controller for a class of non-
linear switched systems, in which radial basis function (RBF)
neural network is adopted to approximate uncertainty factors.
Based on the dynamic surface control method, an adaptive
neural-network control method is developed in [13], where
an appropriate state observer is designed to estimate the
unmeasured state. In [14], an adaptive robust coupling control
approach is presented for offshore crane system, which can
handle unknown disturbances and uncertain parameters. The
paper [15] develops a practical adaptive robust controller
based on extended state observer subject to the unstructured
and structured uncertainties, in which a feedforward can-
cellation technique is used to compensate for unmodeled
dynamics and external disturbances. The advantage of the
above work is that the adaptive control methods have good
control performance and robustness. In addition, trajectory
linearization control (TLC) technology is a nonlinear tracking
and decoupling control method, which consists of nonlinear
dynamic inversion and a linear time-varying (LTV) feedback
stabilization. Compared with the other methods, it has not
only a simple structure but also enough anti-interference and
robustness. Therefore, TLC technology has been successfully
applied to the controlling of missiles [16], X-33 flight [17],
helicopter [18] and aircraft [19]. However, TLC technology
can only achieve local exponential stability, and it has never
been applied in the field of surface ships motion control.

To cope with model uncertainty and disturbance, con-
siderable researches have been conducted to investigate
and address the above in [20]–[28]. The first methodology
for eliminating system uncertainties is robust control tech-
nique and learning technique. First, sliding mode control
(SMC) [20] is a well-known robust control technique, but
the chattering problem affects the control performance of the
control system. In [21], integral sliding mode control has
been developed, where the matched unmodeled dynamics
and unknown time-varying disturbances can be compensated
online, while the unmatched disturbances will not be ampli-
fied. Learning techniques based on neural network or fuzzy
logic have been widely used to handle uncertainties of sys-
tem [22], [23]. However, the fuzzy logic requires experi-
ence or prior knowledge to provide system design, for simple
fuzzy processing of information, which will lead to the reduc-
tion of control accuracy and dynamic quality deterioration
of the system. Therefore, in the actual controller design,
the application of neural network is more extensive than fuzzy
logic for solving unmodeled dynamics and unknown time-
varying disturbances. The second methodology is to estimate
and compensate the disturbances by using observers includ-
ing extended state observer (ESO) [24]–[26], sliding-mode
disturbance observer (SMDO) [27] and extended disturbance
observer (EDO) [28]. The main design idea is to estimate the
uncertainty of the unknown first. Then, the estimated system

uncertainty is fed back to the controller to compensate for the
uncertainty. In addition, to get closer to practical engineering,
input saturation [3], [29], [30] is considered in the design of
the controller, which is an unavoidable problem due to the
physical limitations of the propulsion system. In other words,
the commanded control inputs calculated by the trajectory
tracking controller may exceed the limitation of the maxi-
mum force and moment, which will lead to instability of the
system. The existence of input saturation not only affects the
performance of the controller but also relates to the security
of the trajectory tracking. Hence, it is very important to solve
the problem of input saturation for the design of trajectory
tracking controller.

In this paper, motivated by the existing results, taking
into account actuator saturation, unmodeled dynamics and
unknown time-varying disturbances, a novel robust adaptive
control controller is performed according to TLC technology,
neural network, reduced-order ESO and auxiliary dynamic
system, which makes surface vessels track a specific trajec-
tory accurately. The following summarizes the main contri-
butions of this paper:

(1) TLC technology has been proven to be an effective
control technique, which is further developed by introduc-
ing TLC into the field of ship motion control. Through the
author’s view, it is used for the first time in the design of
trajectory tracking controller for surface vessels.

(2) Taking full account of practical engineering, an aux-
iliary dynamic system is introduced into tracking controller
design to handle the risk of actuator saturation. In addition,
both unmodeled dynamics and unknown time-varying distur-
bances can be estimated by constructing neural network with
minimum learning parameter (MLP) and reduced-order ESO,
respectively. The main advantage is that neural network MLP
replaces RBF neural network to reduce the computational
burdens, leading to improved optimizing efficiency.

(3) A practical robust trajectory tracking control law in
forms of PI is proposed, and suggestions for adjusting control
parameters are given in this paper. In two cases, the simula-
tion results confirm the superior performance of the proposed
strategy.

The paper is organized as follows. In Section 2, sys-
tem model and preliminaries are introduced. In Section 3,
a novel trajectory tracking control scheme for surface
vessels is designed. Section 4 gives the stability of the
system. Simulation results and comparisons are considered
in Section 5. Section 6 concludes this article and introduces
future research.

II. SYSTEM MODEL AND PRELIMINARIES
A. MODELING OF SURFACE VEHICLE
In this section, the earth-fixed frame and the body-fixed
frame are employed to study the model of surface vessel.
In Fig. 1, O−X0Y0Z0 is the earth-fixed inertial frame {i} and
o − x0y0z0 is the body-fixed frame {b}. In actual navigation,
surface vessel consists of 6 DOFs: the surge velocity u, sway
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FIGURE 1. The earth-fixed inertial and the body-fixed frame.

velocity v, heave velocity w, yaw rate r , rolling rate p and
pitching angle q, respectively. However, only the horizontal
movement of surface vessel is considered in this paper. There-
fore, the heave velocity, rolling rate and pitching angle are
ignored. The position and orientation in {i} are expressed as
η = [x, y, ψ]T and surge speed, sway speed and yaw rate in
{b} are expressed as υ = [u, v, r]T .

From the above analysis, the nonlinear mathematical
model of 3DOFs ship motion can be expressed as [31]

η̇ = J (ψ) υ (1)

M υ̇ + C (υ) υ + Dυ = τ +4(υ)+ b (t) (2)

where

J (ψ) =

 cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1


is the rotation matrix from {b} to {i}. M = diag(m11,

m22,m33) is the inertial matrix including added mass,
C (υ) ∈ R3×3 is the Coriolis and Centripetal matrix that can
be derived from M ;

D =

 d11 0 0
0 d22 d23
0 d32 d33


is the hydrodynamic damping matrix; τ = [τ1, τ2, τ3]T

denotes the control forces and moment; 4(υ) ∈ R3 and
b (t) ∈ R3 are unmodeled dynamics and unknown time-
varying disturbances, respectively.

Control objective: Under the influence of the unmod-
eled dynamics and unknown time-varying disturbances,
the surface vessel can track the reference path (xd , yd , ψd )
accurately by the design of the controller τ .
Remark 1: In general, b (t) is much lower in frequency

than ship dynamics. In addition, due to nonlinear track-
ing differentiator, the high-frequency interference has been
removed before entering the kinematics and kinetic control
loop. Therefore, unknown disturbance b (t) can be regarded
as slow time-varying [32].

Assumption 1: The reference path or trajectory of the target
is regular and smooth enough, xd , ẋd , yd , ẏd , ψd and ψ̇d are
all bound.
Assumption 2: The unmodeled dynamics and external dis-

turbances accord with the following assumption: ‖4‖ ≤
4max, ‖b‖ ≤ bmax, where 4max and bmax are unknown
positive constants.

B. TLC TECHNOLOGY
In order to facilitate the design of TLC controller, the kinetic
equation (2) can be written as a form of nonlinear
feedback

υ̇ = F1 (υ)+ G1 (υ) τ + G3 (υ)4 (υ)+ G2 (υ) d (t) (3)

where F1 (υ) = −M−1 (C (υ) υ + Dυ), G1 (υ) = M−1,
G2 (υ) = G3 (υ) = diag (1, 1, 1), 4(υ) = θM−1F1 (υ),
θ = diag (θu, θv, θr ) is an unmodeled degree coefficient,
and d (t) = M−1b (t) represents unknown time-varying
disturbances. In addition, there exist three nonlinear matrixs
G0 (υ), G4 (υ) and G5 (υ), which satisfy

G1 (υ)G0 (υ) = G2 (υ)

G1 (υ)G4 (υ) = G3 (υ)

G2 (υ)G5 (υ) = G3 (υ) (4)

First, without consideration of d (t) and 4(υ), υ∗and τ̄
are the nominal state and nominal input, respectively. Then
the nominal trajectory satisfies

υ̇∗ = F1
(
υ∗
)
+ G1

(
υ∗
)
τ̄ (5)

Define the kinetic loop tracking error E2 = υ − υ∗,
without considering input saturation, the control law of TLC
technology is proposed as

τ0 = τ̄ + τ̃ (6)

where τ̃ represents the LTV feedback control law.

FIGURE 2. TLC scheme diagram.

Obviously, the original TLC controller consists of two
components, as shown in Fig. 2.

(1) A dynamic inverse controller that generates the nominal
control input τ̄ .

(2) The LTV feedback control law τ̃ is designed to handle
unknown model dynamics and time-varying disturbances,
which can stabilize the LTV system and have a certain
response characteristics.
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The differential of E2 can be written as

Ė2 = υ̇ − υ̇∗

= F1 (υ)+ G1 (υ) τ − F1
(
υ∗
)
− G1

(
υ∗
)
τ̄

= F1
(
υ∗ + E2

)
+ G1

(
υ∗ + E2

)
(τ̄ + τ̃ )

−F1
(
υ∗
)
− G1

(
υ∗
)
τ̄

= f2
(
υ∗, τ̄ ,E2, τ̃

)
(7)

where υ∗ and τ̄ can be regarded as two time-varying param-
eters, (7) can be rewritten as

f2
(
υ∗, τ̄ ,E2, τ̃

)
= f2 (t,E2) (8)

By linearizing (8) along (υ∗, τ̄ ), we have

Ė2 = A2 (t)E2 + B2 (t) τ̃ (9)

where A2 (t) =
(
∂F1
∂υ
+

∂G1
∂υ
τ
)
|υ∗,τ̄ , B2 (t) = G1|υ∗,τ̄ . The

system (8) and (9) satisfy the following Assumptions:
Assumption 3: Let E2 = 0 be an isolated equilibrium point

for (8), and F : [0,∞) × DE → Rn can be continuously
differentiable, among which DE = {E2 ∈ Rn ‖E2‖ < Re}.
The Jacobian matrix

[
∂F
/
∂E2

]
is a bounded and Lipschitz

on DE , uniformly in t [33]–[35].
Assumption 4: (A2 (t) ,B2 (t)) is uniformly completely

controllable for the system (9).
The LTV feedback control law can be designed by the

differential algebraic spectrum theory [36], [37], which can
be expressed as

τ̃ = K2 (t)E2 (10)

From [33], the system (8) maintains exponential stability
at E2 = 0. Hence, we have

Ac (t) = A2 (t)+ B2 (t)K2 (t) (11)

where Ac is Hurwitz, it makes the system (11) asymptotically
stable.

However, in the actual tracking process, d (t) and 4(υ)
always exist. Hence, when d (t) and 4(υ) are taken into
account in design controller, (8) can be redefined as

Ė2 = f2 (t,E2)+ G3 (υ)4 (υ)+ G2 (υ) d (t) (12)

From the above structure, the state error stabilization
for the system (12) has been transformed into the prob-
lem of unmodeled dynamics and external disturbance rejec-
tion. However, the original TLC technology can only
achieve local exponential stability, with the increase of
‖G3 (υ)4 (υ)+ G2 (υ) d (t)‖, the performance of TLC tech-
nology is reduced or invalid.

C. NEURAL NETWORK MINIMUM LEARNING
PARAMETER METHOD
Neural network has a powerful approximation ability, espe-
cially RBF neural network has been widely used to solve the
problems of unknown model dynamics [38]. In this paper,

neural network MLP replaces RBF neural network to com-
pensate for unmodeled dynamics, which can reduce the com-
plexity of the calculation.
RBF neural network is three-layer forward, consisting of

input layer, hidden layer, output layer. The output of RBF
neural network can be written as

F (Z ) = W T2(Z )+ ε (13)

where Z and F (Z ) are the input and output of the RBF neural
network, respectively. W ∈ Rn×l is the weight matrix of
the hidden nodes, and 2(Z ) is the Gaussian function of the
hidden nodes. ε ∈ Rn is an approximation error vector with
bound. From [39], ‖ε‖ ≤ ε̄, ε̄ is an unknown positive number.
However, from the parameter adaptation law of RBF neural

network in [40]–[42], all weight vectors require real-time
online learning, which undoubtedly increases the complexity
of the calculation. On the other hand, it is also not easy to
practice in ship control engineering. Therefore, in order to
reduce the computational complexity, RBF neural network is
replaced by neural network MLP to approximate unmodeled
dynamics [43]. The principle is that adaptive neural network
is employed, in which the weight’s updating law is simpli-
fied by using the Young’s inequality. More exactly, 8 =
‖W‖2, and 8̂ is the estimate of 8. The estimation error is
8̃ = 8̂−8.

D. IN SATURATION
Input saturation is a common and difficult problem in tra-
jectory tracking controller design, and its existence strongly
affects the control performance of the system. If the output
of the designed controller exceeds the maximum value of the
propulsion system, it may cause system instability or crash.
Therefore, in order to improve the design performance of the
controller, an auxiliary dynamic system is constructed to deal
with input saturation in this paper.
First, in practice, due to physical limitations of the propul-

sion system, the control force and moment are limited, which
is represented as

τi =


τimax, if τoi > τimax

τoi, if τimin < τoi < τimax

τimin, if τoi < τimin

(14)

where τimax and τimin (i = 1, 2, 3) are themaximum andmin-
imumoutput, τo = [τo1, τo2, τo3]T is the command calculated
by the tracking controller.
In order to handle input saturation (14), an auxiliary

dynamic system [44] is designed as

ζ̇ =

−Kζ ζ−
3∑
i=1
|µi1τi|+0.51τT1τ

‖ζ 2‖
·ζ+1τ, ‖ζ‖>σ

03×1, ‖ζ‖ < σ

(15)

where ζ = [ζ1, ζ2, ζ3]T is the state vector of the system,Kζ =
KT
ζ ∈ R

3×3 is a positive definite design matrix. µi is an error
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FIGURE 3. The structure of the proposed trajectory tracking control scheme for surface vessels.

variable, and 1τ = τ − τo. In addition, σ > 0 is a small
parameter, and ζ̇ = 03×1 can avoid the singularity problem
when ‖ζ‖ < σ .

III. CONTROL DESIGN
A. STRUCTURE OF THE PROPOSED CONTROL SCHEME
Fig. 3 demonstrates the structure of the proposed novel
trajectory tracking control scheme for surface vessels with
unmodeled dynamics and unknown time-varying distur-
bances. It mainly consists of two parts: the kinematic loop
and kinetic loop. The kinematic loop controller can track the
given command filtered by NTD. The kinetic loop controller
can track the virtual command produced by the pseudo dif-
ferentiator. The designed TLC controller consists of pseudo-
dynamic inverse controller (open-loop control) and a LTV
controller (close-loop control). In addition, the problem of the
input saturation is solved by designing an auxiliary dynamic
system. Meanwhile, to improve the robustness and control
performance of the system, the neural network MLP and
reduced-order are applied to achieve online estimation and
compensation for unmodeled dynamics and unknown time-
varying disturbances, respectively. Finally, in order to further
improve the tracking performance of the system, adaptive
robust control term is designed to overcome the influence of
approximation error of the system.

B. NONLINEAR COMPOSITE CONTROLLER DESIGN
1) KINEMATICS CONTROL LOOP
First, the main task of this section is to design a control law
to track the reference ηd . According to the structure of TLC,
the nominal input (without uncertainties) can be obtained by
inverting (1) as

ῡ = J
(
ψ∗d
)−1

η̇∗d (16)

where the symbol ῡ denotes nominal kinematics controller,
η̇∗d is obtained by the ηd through the second-order linear
differentiator (SOLD).

In the traditional TLC design, SOLD is used to produce η∗d
and η̇∗d by the nominal input ηd , which has been used in many

controller designs [17]–[19]. SOLD is expressed as follows
ż1 = z2
Tmż2 = − (z1 − ηd )− 2Tmz2
y = z2

(17)

where Tm is the time constant.
It is obvious that lim

Tm→0
z1 = ηd = η∗d , lim

Tm→0
z2 = η̇d = η̇∗d .

When the initial conditions of z1 (0) and ηd (0) have large
errors, due to the high gain influence of the differentiator,
the derivative of ηd (0)will produce a peak phenomenon near
the initial time. Even nominal differential signal η̇∗d and input
ῡ also have signal hopping, which will lead to the satura-
tion of the control input instantaneously. In the traditional
TLC technology, it can be seen that the peak phenomenon
is unavoidable. To solve the above problems, a nonlinear
tracking differentiator (NTD) is introduced into this paper to
replace SOLD. In [45], the specific form of NTD is expressed
as 

fh = fhan
(
η∗d (k)− ηd (k) , η̇

∗
d (k) , r1, h1

)
η∗d (k + 1) = η∗d (k)+ h1 · η

∗
d (k)

η̇∗d (k + 1) = η̇∗d (k)+ h1 · fh

(18)

where h1 and r1 denote the sampling period and acceleration
factor, respectively. In NTD, the peak of the differential signal
is regulated by acceleration factor r1. Therefore, it can avoid
the peak phenomenon in linear differentiator.

Define the kinematic loop tracking error E1 =[
x − x∗d y− y

∗
d ψ − ψ

∗
d

]T
=
[
ex ey eψ

]T , by linearizing
(1) along the nominal

(
η∗d , ῡ

)
, we have ėx

ėy
ėψ

 = A1 (t)

 ex
ey
eψ

+ B1 (t)
 ũṽ
r̃


︸ ︷︷ ︸
:=υ̃

(19)

where

A1 (t) =

 0 0 − sin
(
ψ∗d

)
ū− cos

(
ψ∗d

)
v̄

0 0 cos
(
ψ∗d

)
ū− sin

(
ψ∗d

)
v̄

0 0 0

,
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B1 (t) =

 cos
(
ψ∗d

)
− sin

(
ψ∗d

)
0

sin
(
ψ∗d

)
cos

(
ψ∗d

)
0

0 0 1

.
To increase the control quality of the kinematics loop,

a PI feedback control law is designed as ũṽ
r̃


︸ ︷︷ ︸
:=υ̃

= −KP1

 ex
ey
eψ

− KI1
 ∫ exdt∫

eydt∫
eψdt

 (20)

Define the augmented the kinematics loop error as

E�1 =
[ ∫

E1dt E1
]T

=
[ ∫

exdt
∫
eydt

∫
eψdt ex ey eψ

]T (21)

From (20) and (21), the tracking error can be rewritten as

Ė�1 = A1cE�1

=

[
03 I3

−B1KI1 A1 − B1KP1

]
E�1 (22)

where 03 and I3 represent 3 × 3 zero matrix and identity
matrix, respectively.

The desired tracking error dynamics can be constructed as

A1c =
[

03 I3
H11 (t) H12 (t)

]
(23)

where H11 (t) = diag (−a111,−a121,−a131), H12 (t) =
diag (−a112,−a122,−a132), in which a1j1 > 0, a1j2 > 0
(j = 1, 2, 3) can be gained from the second-order LTV dif-
ferential equation [17], [18]. If the PD-eigenvalues satisfy
ρ1 (t) = −

(
ξ1j ±

√
1− ξ21j

)
ω1j (t), which can be chosen as

a1j1 = ω2
1j (t)

a1j2 = ξ1jω1j (t)−
ω̇1j (t)
ω1j (t)

(24)

where ξ1j represents constant damping, ω1j (t) represents the
closed-loop bandwidth. At this point, we can obtain

KI1 = −B
−1
1 (t)H11 (t)

KP1 = B−11 (t) (A1 (t)− H12 (t)) (25)

Therefore, the control command of kinematic loop can be
expressed as

υ∗ = ῡ + υ̃ (26)

2) KINETIC CONTROL LOOP
In this subsection, the main task is to design a control law
to track the control command of kinematics loop. When
unmodeled dynamics and time-varying external disturbances
are not considered, the pseudo inverse of (5) can be written as

τ̄ = G1
(
υ∗
)−1 (

υ̇∗ − F1
(
υ∗
))

(27)

where τ̄ denotes nominal kinetic controller, υ̇∗ is obtained by
the υ∗ through pseudo-differentiator Gs (s) = 4s

s+4 .

For the kinetic loop tracking error E2 =
[
eu ev er

]T ,
from (9), we have ėuėv

ėr

 = A2 (t)

 euev
er

+ B2 (t)
 τ̃uτ̃v
τ̃r


︸ ︷︷ ︸
:=τ̃

(28)

where

A2 (t) =


−
d11
m11

m22r∗

m11

m22v∗

m11

−
m11r∗

m22
−
d22
m22

−
m11u∗ + d23

m22
m11 − m22

m33
v∗ α11 −

d33
m33

,

with α11 =
(m11u∗−m22u∗−d32)

m33
, B2 (t) = diag

(
1
m11
, 1
m22
, 1
m33

)
.

Similarly, the PI control law is designed as τ̃uτ̃v
τ̃r


︸ ︷︷ ︸
:=τ̃

= −KP2

 euev
er

− KI2
∫ eudt∫

evdt∫
erdt

 (29)

Define the augmented kinetic loop error as

E�2 =
[ ∫

E2dt E2
]T

=
[ ∫

eudt
∫
evdt

∫
erdt eu ev er

]T (30)

Combining (29) and (30), the differential of the kinetic
loop error can be summed up as

Ė�2 = A2cE�2

=

[
03 I3

−B2KI2 A2 − B2KP2

]
E�2 (31)

The desired A2c can be selected as

A1c =
[

03 I3
H21 (t) H22 (t)

]
(32)

where H21 (t) = diag (−a211,−a221,−a231), H22 (t) =
diag (−a212,−a222,−a232). Similarly, a2j1 and a2j2 (j = 1,

2, 3) still meet ρ2 (t) = −

(
ξ2j ±

√
1− ξ22j

)
ω2j (t),

we obtain

a2j1 = ω2
2j (t)

a2j2 = ξ2jω2j (t)−
ω̇2j (t)
ω2j (t)

(33)

Then we have

KI2 = −B
−1
2 (t)H21 (t)

KP2 = B−12 (t) (A2 (t)− H22 (t)) (34)

Hence, the time-varying linear feedback law τk of the
kinetic loop is

τk = τ̄ − KP2E2 − KI2

t∫
0

E2dι (35)
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3) ADAPTIVE COMPENSATION CONTROLLER
In this subsection, a reduced-order ESO is constructed to
estimate and compensate for unknown time-varying distur-
bances. From [24], the novel reduced-order ESO is pro-
posed as (36){

ρ̇1 = −β1ρ1 − β
2
1υ − β1φ

d̂ = ρ1 + β1υ
(36)

where φ = F1 (υ) + G1 (υ) τ + G3 (υ)4 (υ), d̂ denotes
the estimate of d , and its estimation error is d̃ = d − d̂ .
In addition, ρ1 and β1 > 0 are the observe aux-
iliary state and the observer gain, respectively. Define
νd = d̂ , then the output of disturbance compensation is
u0 = G0 (υ) νd .

Due to the augmented kinetic loop error, (3) can be written
as follows

Ẋ2 = F11 (X2)+ G11 (X2) τ

+G33 (X2)4 (υ)+ G22 (X2) d (t) (37)

where X2 =
[ ∫
υdt υ

]T , F11 (X2) = [
υ F1 (υ)

]T ,
G11 (X2) =

[
03 G1 (υ)

]T , G22 (X2) =
[
03 G2 (υ)

]T ,
G33 (X2) =

[
03 G3 (υ)

]T . From (4), nonlinear matrix
G0 (υ), G4 (υ) and G5 (υ) also meet the following condi-
tions: G11 (υ)G0 (υ) = G22 (υ), G11 (υ)G4 (υ) = G33 (υ),
G22 (υ)G5 (υ) = G33 (υ).
To improve the stability of the system, neural network

MLP is hired to eliminate the effect of unmodeled dynam-
ics. Define 91 = ET

�2
P2 (t), 92 = ET

�2
P2 (t)G22 (X2),

93 = ET
�2
P2 (t)G33 (X2), where P2 (t) is a positive sym-

metric matrix. The compensation controller un is selected as
follows

un = G4 (υ) νn (38)

where νn = 1
29

T
3 8̂2

T2, in order to avoid parameter drift,
the adaptive law with ‘‘κ-correction’’ is designed as

˙̂
8 =

01

2
939

T
3 2

T2− κ018̂ (39)

where 01 and κ are two design parameters.
Meanwhile, to further improve the performance of the

control system, the adaptive robust control term is designed
to eliminate the estimation errors of neural network and
reduced-order ESO.

Then robust control term controller ur is selected as

ur = G0 (υ) νr (40)

where νr = ω̂ sgn (92), in which the adaptive law is
proposed as

˙̂ω = 029
T
2 − 02γ ω̂ (41)

where 02 and γ are two design parameters.

From the section D, an auxiliary system is constructed to
solve input saturation, which is rewritten as

ζ̇ =


−Kζ ζ −

3∑
i=1
|E�2i1τi| + 0.51τT1τ∥∥ζ 2∥∥ · ζ

+1τ, ‖ζ‖ > σ

03×1, ‖ζ‖ < σ

(42)

The control law τo can be modified by

τo = τk + us − un − u0 − ur (43)

where us = Ksζ , Ks = KT
s ∈ R3×3 is a positive design

matrix, and we define 94 = P2 (t)G11 (X2)Ks.
Hence, the total control law is designed as

τ =


τmax, if τo > τmax

τo, if τmin < τo < τmax

τmin, if τo < τmin

(44)

IV. STABILITY ANALYSIS
By the above control law, the differential of E�1 and E�2 can
be rewritten as

Ė�1 = f11 (t,E�1)

= A1c (t)E�1 + o1 (•)

Ė�2 = f22 (t,E�2)+ G33 (X2) (θF1 (υ)− νn)

+G22 (X2) (d − νd − νr )+ G11 (X2)Ksζ

= A2c (t)E�2 + o2 (•)+ G33 (X2) (θF1 (υ)− νn)

+G22 (X2) (d − νd − νr )+ G11 (X2)Ks (45)

where o1 (•) and o2 (•) denote the high order term of
the Taylor expansion, From [23], o1 (•) and o2 (•) satisfy
‖o1 (•)‖ ≤ `1‖E�1‖2,∀ ‖E�1‖ < α1 and ‖o2 (•)‖ ≤
`2‖E�2‖2,∀ ‖E�2‖ < α2, respectively. `1 and `2 are normal
numbers.
Theorem 1 [33]: Amc (m = 1, 2) satisfies the following

Lyapunov function candidate

ATmc (t)Pm (t)+ Pm (t)Amc (t)+ Ṗm (t)+ Qm (t) = 0 (46)

where Pm (t) is a positive symmetric matrix, Qm (t) is a
continuous, bounded, positive definite, symmetric matrix.
Pm (t) and Qm (t) satisfy the following property: 0 < c1mI ≤
Pm (t) ≤ c2mI , ∀t > t0, c1m > 0 and c2m > 0; 0 < c3mI ≤
Qm (t) ≤ c4mI , ∀t > t0, c3m > 0 and c4m > 0.
Theorem 2: Consider kinematics and kinetic dynamics

equation presented as (1) and (2) under the control law (44),
together with the reduced-order ESO (36), the adaptive laws
(39) and (41). If the selected parameters satisfy the following
conditions: 1) when ‖ζ‖ > σ , we choose c22 > 1, c31 >
2`1α1c21, c32 > 2`2α2c22 + 1; 2) when ‖ζ‖ < σ , c31 >
2`1α1c21, c32 > 2`2α2c22+1. The error signals of the whole
system are uniformly ultimately bounded (UUB), and the
tracking errors can be driven into a small neighborhood of
origin.
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Proof of Theorem 2: The Lyapunov function is constructed
as following

V =
1
2

(
ET�1P1 (t)E�1

)
+

1
2

(
ET�2P2 (t)E�2

)
+

1
2
0−11 8̃2

+
1
2
0−12 ω̃T ω̃ +

1
2
d̃T d̃ +

1
2
ζ T ζ (47)

Differentiating (47) and substituting (45) into (47) yields

V̇ =
1
2
ET�1

(
AT1c (t)P1 (t)+ Ṗ1 (t)+ P1 (t)A1c (t)

)
E�1

+
1
2
ET�2

(
AT2c (t)P2 (t)+ Ṗ2 (t)+ P2 (t)A2c (t)

)
E�2

+93

(
W T2+ ε −

1
2
9T

3 8̂2
T2

)
+ ET�1P1 (t) o1 (•)

+91 (o2 (•)+1τ)+ ET�294ζ +92 (d − νd − νr )

+0−11 8̃
˙̂
8+ 0−12 ω̃T ˙̂ω + d̃T ˙̃d + ζ T ζ̇ (48)

With the Theorem 1, V̇ yields

V̇ = −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2

+93

(
W T2−

1
2
9T

3 8̂2
T2

)
+ ET�1P1 (t) o1 (•)

+91 (o2 (•)+1τ)+ ET�294ζ

+92

(
G5 (υ) ε + d̃ − ω̂ sgn (92)

)
+0−11 8̃

˙̃
8+ 0−12 ω̃ ˙̂ω + d̃T ˙̃d + ζ T ζ̇

≤ −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2

+ 8̃

(
−
1
2
939

T
3 2

T2+ 0−12
˙̂
8

)
+

1
2

+ET�1P1 (t) o1 (•)+91 (o2 (•)+1τ)+ ET�294ζ

+92

(
G5 (υ) ε + d̃ − ω̂ sgn (92)

)
+0−12 ω̃T ˙̂ω + d̃T ˙̃d + ζ T ζ̇ (49)

If
∥∥∥G5 (υ) ε + d̃

∥∥∥ ≤ ω, we have
V̇ ≤ −

1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2

+ 8̃

(
−
1
2
939

T
3 2

T2+ 0−12
˙̂
8

)
+

1
2

+ET�1P1 (t) o1 (•)+91 (o2 (•)+1τ)+ ET�294ζ

− ‖92‖ ω̃ + 0
−1
2 ω̃T ˙̂ω + d̃T ˙̃d + ζ T ζ̇ (50)

Submitting the adaptive laws (39) and (41), reduced-order
ESO (36), we obtain

V̇ ≤ −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2 − κ8̃8̂

+
1
2
+ ET�1P1 (t) o1 (•)+91 (o2 (•)+1τ)

+ET�294ζ − γ ω̃
T ω̂ −

β1

2

∥∥∥d̃∥∥∥2 + ζ T ζ̇ (51)

From Young’s inequality, we have 8̃8̂ > 1
2

(
8̃2
−82

)
and ω̃T ω̂ > 1

2

(
‖ω̃‖2 − ‖ω‖2

)
. According to the above

analysis, (51) can be written as

V̇ ≤ −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2 −

κ

2
8̃2

−
γ

2
‖ω̃‖2 −

β1

2

∥∥∥d̃∥∥∥2 + ET�1P1 (t) o1 (•)
+91 (o2 (•)+1τ)+

1
2

∥∥∥ET�2∥∥∥2 + 1
2
ζ T9T

4 94ζ

+
κ

2
82
+
γ

2
‖ω‖2 +

1
2
+ ζ T ζ̇ (52)

(1) when ‖ζ‖ > σ , from (43) and Young’s inequality,
we have

ζ T ζ̇ = −ζ TKζ ζ −
3∑
i=1

|E2i1τi|

−
1
2
1τT1τ + ζ T1τ

≤ −ζ TKζ ζ −
3∑
i=1

|E2i1τi| +
1
2
ζ T ζ (53)

Substituting (53) into (52) yields

V̇ ≤ −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2 −

κ

2
8̃2

−
γ

2
‖ω̃‖2 −

β1

2

∥∥∥d̃∥∥∥2 + ET�1P1 (t) o1 (•)
+91 (o2 (•)+1τ)+

1
2

∥∥∥ET�2∥∥∥2 + 1
2
ζ T9T

4 94ζ +
κ

2
82

+
γ

2
‖ω‖2 +

1
2
− ζ TKζ ζ −

3∑
i=1

|E2i1τi| +
1
2
ζ T ζ

≤ −
1
2
(c31 − 2`1α1c21) ‖E�1‖2

−
1
2
(c32 − 2`2α2c22 − 1) ‖E�2‖2 −

κ

2
8̃2
−
γ

2
‖ω̃‖2

−
β1

2

∥∥∥d̃∥∥∥2 − [χmin

(
Kζ −

1
2
9T

4 94

)
−

1
2

]
ζ T ζ

+ (c22 − 1)
3∑
i=1

|E2i1τi| +
κ

2
82
+
γ

2
‖ω‖2 +

1
2

(54)

Set λ1 =
1
2 (c31 − 2`1α1c21) > 0, λ2 =

1
2 (c32 − 2`2α2c22 − 1), λ3 =

κ
2 , λ4 =

γ
2 , λ5 =

β1
2 , λ6 = χmin

(
Kζ − 1

29
T
4 94

)
−

1
2 > 0, 31 =

(c22 − 1)
3∑
i=1
|E2i1τi| + κ

28
2
+

γ
2 ‖ω‖

2
+

1
2 , (54) becomes

V̇ ≤ −λ1‖E�1‖2 − λ2‖E�2‖2 − λ38̃2
− λ4‖ω̃‖

2

− λ5

∥∥∥d̃∥∥∥2 − λ6ζ T ζ +31 (55)

Define λ11 = min {λ1, λ2, λ3, λ4, λ5, λ6}, then it follows
form (55) that

V̇ ≤ −2λ11V +31 (56)
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Solving inequality (56) gives

V̇ ≤
(
V (0)−

31

2λ11

)
e−2λ11t +

31

2λ11

≤ V (0) e−2λ11t +
31

2λ11
,∀t > 0 (57)

(2) when ‖ζ‖ < σ , from (43) and Young’s inequality,
we have

ζ T ζ̇ = 0 (58)
1
2
ζ T9T

4 94ζ = −
1
2
ζ T9T

4 94ζ + ζ
T9T

4 94ζ

≤ −
1
2
ζ T9T

4 94ζ + σ
2
∥∥∥9T

4 94

∥∥∥ (59)

911τ ≤
1
2
919

T
1 +

1
2
‖1τ‖2 (60)

Substituting (58), (59) and (60) into (52) yields

V̇ ≤ −
1
2
ET�1Q1 (t)E�1 −

1
2
ET�2Q2 (t)E�2 −

κ

2
8̃2

−
γ

2
‖ω̃‖2 −

β1

2

∥∥∥d̃∥∥∥2 + ET�1P1 (t) o1 (•)+91o2 (•)

+
1
2

∥∥∥ET�2∥∥∥2 − 1
2
ζ T9T

4 94ζ + σ
2
∥∥∥9T

4 94

∥∥∥
+

1
2
919

T
1 +

1
2
‖1τ‖2 +

κ

2
82
+
γ

2
‖ω‖2 +

1
2

≤ −
1
2
(c31 − 2`1α1c21) ‖E�1‖2

−
1
2
(c32 − 2`2α2c22 − 1) ‖E�2‖2 −

κ

2
8̃2

−
γ

2
‖ω̃‖2 −

β1

2

∥∥∥d̃∥∥∥2 − 1
2
χmin

(
9T

4 94

)
ζ T ζ

+
1
2

∥∥∥919
T
1

∥∥∥+ 1
2
‖1τ‖2 + σ 2

∥∥∥9T
4 94

∥∥∥
+
κ

2
82
+
γ

2
‖ω‖2 +

1
2

(61)

Set λ7 = 1
2χmin

(
9T

4 94
)
, 32 =

1
2

∥∥919
T
1

∥∥ + 1
2‖1τ‖

2
+

σ 2
∥∥9T

4 94
∥∥+ κ

28
2
+

γ
2 ‖ω‖

2
+

1
2 , (61) becomes

V̇ ≤ −λ1‖E�1‖2 − λ2‖E�2‖2 − λ38̃2
− λ4‖ω̃‖

2

− λ5

∥∥∥d̃∥∥∥2 − λ7ζ T ζ +32 (62)

Define λ22 = min {λ1, λ2, λ3, λ4, λ5, λ7}, then it follows
form (62) that

V̇ ≤ −2λ22V +32 (63)

Solving inequality (63) gives

V̇ ≤
(
V (0)−

32

2λ22

)
e−2λ22t +

32

2λ22

≤ V (0) e−2λ22t +
32

2λ22
, ∀t > 0 (64)

Through the above inference, it can be seen that V is
eventually bounded by 31

2λ11
or 32

2λ22
. Therefore, 31

2λ11
or 32

2λ22

can be made arbitrarily small with the appropriately chosen
parameters, and the whole error signals are UUB.

V. NUMERICAL SIMULATIONS
A. CONTROL PARAMETERS ADJUSTMENT SUGGESTIONS
In order to adjust the trajectory tracking control parameters
faster and more accurately, many adjustment strategies are
given for control parameters: ξ1j , ω1j, ξ2j , ω2j, Kζ , Ks, h1,
r1, 01, κ , β1, 02, γ . The purpose of properly adjusting the
parameters is to improve the control performance of the sys-
tem by reducing tracking error or reasonable tracking speed.
However, it is difficult to reduce tracking error or reasonable
tracking speed at the same time. Therefore, all parameters
need to be considered as a whole to enhance the control
performance of the system.

(1) For TLC control parameters, first, the feedback gains
ξ1j and ξ2j should satisfy condition of the eigenvalue. Then the
closed-loop bandwidth ω1j and ω2j should satisfy the surface
vessels tracking requirement, and the kinetic loop bandwidth
should be at least three times higher than the kinematic loop
to satisfy the singular perturbation assumption. In addition,
the closed-loop bandwidth should be as low as possible. This
is because the lower bandwidth can reduce power consump-
tion and noise in the control process.

(2) h1 and r1 are the control parameters of NTD. The size of
acceleration factor r1 determines the tracking speed of NTD.
As r1 becomes larger, the tracking speed is faster. The small
sampling period h1 can reduce noise. Therefore, the proper
adjustment h1 and r1 can accurately track a given signal.
(3) Large values of adaptive gain 01 and 02 can improve

the learning speed of neural network MLP and the ability of
robust term to compensate error, respectively. Here, κ and
γ of the selection are too small, which makes the value of
31 and 32 smaller. However, the value of 31 and 32 will
directly affect the robustness of (39) and (41).

(4) β1, Kζ and Ks need to be adjusted within a range. If all
are too large or too small, which will affect the performance
of reduced-order ESO and auxiliary design system. There-
fore, in the process of adjusting parameters, it needs to be
optimized and adjusted together with ξ1j , ω1j, ξ2j , ω2j, h1, r1,
01, κ , 02, γ .

B. SIMULATION RESULTS AND COMPARISON
In order to demonstrate the effectiveness of the proposed
scheme, we compare it with three control methods: backstep-
ping with integrator control strategy [46], adaptive dynamic
surface SMC [47] and PID control strategy. For this purpose,
CyberShip II [48], [49] is taken as the control object. Relevant
parameters of the dynamics for CyberShip II are described in
the Table 1. In addition, the tuned controller parameters and
initial parameters are listed in the Table 2.

In the simulation, the reference path:

ηd =

 xd
yd
ψd

 =
 2.5 sin (0.02t)
2.5 (1− cos(0.02t))

0.02t

.
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TABLE 1. Parameters of the model ship.

TABLE 2. Initial conditions and controller parameters.

Finally, in order to show the results of comparison more
clearly, ITAE index is hired to quantify the tracking
error [50].

ITAE =

t∫
0

t |ηd − η| dt (65)

In order to demonstrate the effectiveness and robustness of
the proposed scheme, without changing any control param-
eters, we consider the system in two cases. The first case
is that a small uncertainty and disturbance are employed.
The second case is that a large uncertainty and disturbance
are considered.
Case 1: The unmodeled degree coefficient θ = diag

(0.6, 0.6, 0.6), according to [6], the multiple disturbances are

FIGURE 4. Tracking trajectory performance under case 1.

FIGURE 5. Tracking trajectory results under case 1.

given as

d (t) =

 0.5+ 0.1 sin (0.2t)+ 0.3 cos(0.1t)N
0.5+ 0.2 sin (0.2t)+ 0.2 cos(0.4t)N
0.5+ 0.1 sin (0.1t)+ 0.1 cos(0.2t)Nm

 (66)

The circular path simulation results are shown in Figs. 4-8.
In addition, the ITAE index of the tracking error is reported
in Table 3.

Fig. 4 demonstrates the comparison performance of track-
ing trajectory under a small unmodeled dynamics and
unknown time-varying disturbances. From Fig. 4, it is obvi-
ously observed that all the four controllers provide very good
tracking performance for the system. However, as the results
shown in Fig. 4, the proposed scheme converges faster than
that of backstepping with integrator, adaptive SMC and PID.
In addition, the tracking trajectory results of the controllers
are further shown in Fig. 5. We can see that the tracking
results of the proposed scheme is the the best in the four
control methods. Fig. 6 shows the control efforts of these
four control strategies. It can be clearly observed that the
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FIGURE 6. Control efforts of the controllers under case 1.

FIGURE 7. Disturbance estimation error under case 1.

FIGURE 8. Unmodeled dynamics estimation error under case 1.

control inputs of backstepping with integrator controller and
PID controller exceed the maximum value of the propul-
sion system. But only τ2 of the proposed scheme has input
saturation. This is because NTD and pseudo-differentiators
are used in the proposed scheme, input saturation phe-
nomenon is directly avoided within a certain range, and much

TABLE 3. ITAE index under case 1.

FIGURE 9. Tracking trajectory performance under case 2.

smaller forces are generated. Fig. 7 and 8 clearly demonstrate
that disturbance estimation errors and unmodeled dynam-
ics estimation errors are almost zero. From the ITAE value
in Table 3, we can see that the error values of the four con-
trollers are [2.991, 2.643, 0.102]T , [44.77, 53.32, 2.427]T ,
[44.6, 76.49, 4.369]T and [59.92, 81.02, 3.574]T , respec-
tively. The responses of the proposed scheme is better than
the backstepping with integrator, adaptive SMC and PID,
and it is only [6.68% , 4.96% , 4.2% ]T of backstepping with
integrator, [6.7% , 3.46% , 2.33% ]T of adaptive SMC and
[4.99% , 3.26% , 2.85% ]T of PID. Through the above anal-
ysis, we can conclude that the proposed scheme is the best
among controllers in faster convergence speed, tracking per-
formance and lower tracking error.
Case 2: The unmodeled degree coefficient θ = diag

(6, 6, 6), the multiple disturbances are given as

d (t)=

 10 (0.5+ 0.1 sin (0.2t)+ 0.3 cos(0.1t))N
10 (0.5+ 0.2 sin (0.2t)+ 0.2 cos(0.4t))N
10 (0.5+ 0.1 sin (0.1t)+ 0.1 cos(0.2t))Nm

 (67)

Simulation results are demonstrated in Figs. 9-13.
Similarly, the ITAE index of the tracking error is reported
in Table 4.
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FIGURE 10. Tracking trajectory results under case 2.

FIGURE 11. Control efforts of the controllers under case 2.

FIGURE 12. Disturbance estimation error under case 2.

The tracking performance and results of four control
methods are demonstrated in Figs. 9-10. From Figs. 9-10,
we can see that the backstepping with integrator, adaptive

FIGURE 13. Unmodeled dynamics estimation error under case 2.

TABLE 4. ITAE Index under case 2.

SMC and PID provide worst tracking response and precision
in a large uncertainty and disturbance. On the other hand,
as shown in Fig. 9, the proposed scheme converges faster
and provides better tracking performance than the backstep-
ping with integrator, adaptive SMC and PID. Fig. 11 depicts
control efforts of four control methods. From Fig. 11, it is
clearly noticed that the controllers have reached saturation
at the beginning. Due to a large disturbance and control
gain, the controllers produce initial values greater than the
actuator output capability. Hence, it is necessary to take
into account input saturation. Fig. 12 and 13 show that
disturbance estimation errors and unmodeled dynamics esti-
mation errors can still converge to zero quickly, and eventu-
ally maintains stable near zero. In addition, Table 4 shows
the greatest advantage of the proposed scheme. From the
ITAE value in Table 4, we can see that the error value
of the proposed scheme is [3.428, 7.493, 1.141]T , and it is
only [0.76% , 1.40% , 4.63% ]T of backstepping with inte-
grator, [3.88% , 4.63% , 6.76% ]T of adaptive SMC and
[0.57% , 0.92% , 3.27% ]T of PID. Despite a large uncer-
tainty and disturbance, the value of ITAE increased from
[2.991, 2.643, 0.102]T to [3.428, 7.493, 1.141]T , increasing
by only [0.437, 4.850, 1.039]T . Obviously, in terms of track-
ing error, the proposed scheme provides much lower tracking
error and stronger robustness compared to the backstepping

5068 VOLUME 7, 2019



B. Qiu et al.: Robust Adaptive TLC for Tracking Control of Surface Vessels

with integrator, adaptive SMC and PID. Therefore, based on
the above analysis and results, when considering the perfor-
mance of the controllers in all aspects of a control system such
as tracking precision, convergence speed, control efforts and
the robustness, the proposed scheme is the best among the
compared four control strategies.

VI. CONCLUSION
In this paper, on the basis of considering the saturation of
the actuator, a novel robust compound control scheme has
been developed for tracking control of fully actuated surface
vessels with unmodeled dynamics and unknown time-varying
disturbances. The key to this article is that TLC technology is
first applied to the design of trajectory tracking controller for
surface vessel. Combining TLC technology, neural network,
reduced-order ESO, NTD and auxiliary dynamic system,
an adaptive trajectory tracking controller is design, which not
only can eliminate the influence of the system uncertainties
but also can improve tracking accuracy. More importantly,
in contrast to traditional control algorithm, the proposed
scheme has a strong robustness. All signals in the the whole
system are guaranteed by Lyapunov stability theory. The
proposed scheme has been tested in the simulated surface
vessel and compared with other control methods. The results
demonstrated the superior performance of the developed con-
trol strategy.

Many effective techniques including TLC, MLP and ESO,
aims to handle a series of problems in trajectory tracking
control rather than a specific unmodeled dynamics and time-
varying external disturbances problems. Therefore, further
work will also include problems of underactuated nonlinear
uncertain system, the finite time trajectory tracking and their
relationship.
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