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ABSTRACT The flow pattern is one of the most significant parameters in modeling the oil–water two-phase
system. How to extract efficient and objective features to precisely identify the oil–water two-phase flow
patterns is still a significant issue. Inspired by the deep learning hierarchically feature extraction way, we,
in this paper, employ convolutional neural networks (CNNs) to identify oil–water two-phase flow patterns.
First, we carry out oil–water two-phase flow experiment and collect different oil–water flow pattern images.
Then, we propose an image segment algorithm based on the minimum gray level to obtain the interest
region that reflects the flow pattern characteristics. Finally, we employ three frequently used CNNs, LeNet-
5, AlexNet, and VGG-16 net, to extract the image features and identify typical oil–water two-phase flow
patterns. The results show that networks with more deep structures preserve relatively high flow pattern
recognition accuracy. This paper provides a novel application of the deep learning method for the oil–water
two-phase flow identification.

INDEX TERMS Fluid flow, image classification, machine learning, neural networks.

I. INTRODUCTION
Oil-water two-phase flowwidely exists in petroleum industry
such as crude oil production and transportation. As a key
parameter, the flow pattern plays a very significant role in
modeling oil-water two-phase flow system. Correctly recog-
nition of flow patterns is of great importance to the oil-water
two-phase control system design and monitoring. Moreover,
the pressure drop prediction of pipe system is quite related
the flow pattern evolutional phenomena. Therefore, correctly
recognize the complex oil-water two-phase flow patterns
became a challenge problem of significant importance. Early
studies of oil-water two-phase flow patterns identifications
mainly focus on experimental observations [1]. Mini-probe
detection [2] is the most commonly usedmethod for oil-water
flow pattern identification. Other methods such as process
tomography [3] high-speed camera observation [4] and PIV
technology [5] also have been adopted for flow pattern inves-
tigation.

Recently, much researchers focus on indirect methods
to identify oil-water two-phase flow patterns. These meth-
ods extract and fusion flow pattern dynamic features from

experimental fluctuation signals and identify different flow
patterns. The fluctuation signals used for identification are
time series that collected to reflect the conductance or pres-
sure fluctuations of the mixed fluid. Note that different flow
pattern features represent different aspects of fluid phys-
ical dynamics. For example, time-frequency features [6]
reveal motion behaviors of flow pattern, wavelet [7] and
Hilbert-Huang transform [8] features mainly reflect the flow
pattern multi-scale dynamics character, nonlinear features [9]
is advanced characterizing flow pattern evolution dynamics.
It is worth noticing that complex network features [10], [11]
have recently been proved to be effective criteria for flow
pattern identification. Generally speaking, the flow pattern
identification methods based on fluctuation features are less
affected by flow conditions such as pipe direction and diam-
eter. In this regard, this method provides an effective solution
for flow pattern identification.

Another powerful tool used for flow pattern identifica-
tion that attracts many researchers is the machine learning
technique. Useful information or characters are extracted to
train a network which represents the relationship between the

VOLUME 7, 2019
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6219

https://orcid.org/0000-0002-4661-9592


M. Du et al.: Oil-in-Water Two-Phase Flow Pattern Identification From Experimental Snapshots

measured data and the patterns to be identified. The most
common used machine learning method to recognize flow
patterns is the artificial neural network (ANN). To obtain
effective recognition and prediction results, researchers try to
employ different kind topology such as Feed Forward Neural
Networks [12] self-organizing neural network [13], Multiple
Layer Perceptron [14], et. al. to construct the recognition
network. In addition, support vector machine (SVM) which is
proposed by Cortes and Vapnik [15] in 1995 is also frequently
used to solve the two-phase flow parameter prediction [16]
and pattern identification [17] problems. Since it is inde-
pendent of any specific model and does not have the local
minimization problem, the SVMmodel shows excellent flow
pattern identification results. The machine learning methods
can be considered as effective tool for flow pattern modeling
and identification. However, these methods are quite related
to the collected data or the extracted features. In this regard,
elaborately designing the training data set is the key factor to
improve the flow pattern identification accuracy.

How to get effective features that represent the flow
pattern characteristic is the key point for two-phase flow
pattern identification. Features that extracted from experi-
mental fluctuation signals can only represent one side of
flow character. It often needs to fusion several features to
finish the identification task. While the machine learning
features that used for model training are often designed
subjectively and quite rely on the data set. Hence, devel-
oping a reliable and objective feature extraction method
for two-phase flow pattern identification became necessary.
Quite recently, the deep learning theory [18] provides a new
view for the feature representation. With a considerable deep
structure network and hierarchically feature abstraction strat-
egy, the high-level features can be considered as objective
and reliable representations. Now the deep learning theory
has been successfully applied in the field of image recog-
nition [19], face recognition [20], speech recognition [21],
denoising [22], biological data mining [23], estimating and
prediction problem [24], [25], time-series modeling and clas-
sification [26] et al. It is worth noticing that some researchers
attempted to employ deep learning method to investigate
fluid flow problems. Ma et al. [27] use long-short-term
memory (LSTM) networks to exploit the hidden patterns
in fluid acoustic time series to predict the RMS acoustic
power which is related to the density changes in the fluid
flow. They found that LSTM is a more efficient predictor
than neural network. Han et al. [28] train hierarchical recur-
rent network to characterize the response of micro-fluid soft
sensor. The results show that both the nonlinear responses
and contact locations can be estimate with this proposed
network. Ling et al. [29] employ DNN model established an
improved representation of Reynolds stress anisotropy tensor
with simulated data. Chang and Dinh [30] adopt deep learn-
ing strategy to construct five machine learning frameworks
for thermal fluid simulation. Lore et al. [31] employ deep
learning strategy to learn the complex flow patterns in micro-
channels and study the inverse problems in fluid mechanics.

Ezzatabadipour et al. [32] employmultilayer perceptronwith
many hidden layers to predict the two-phase flow patterns.
The experimental results show that flow condition such as
pipe characteristics, fluid properties and superficial velocities
can be used to predict the flow patterns. Poletaev et al. [33]
studied a number of different neural network structures and
choose convolutional neural networks to identify the bubble
images and the proposed network is able to determine over-
lapping, blurred, and non-spherical bubble images.

Although much progress have been achieved in the field
of flow pattern modeling and identification, it is still need to
explore new flow pattern feature representations which could
be improve the flow pattern identify accuracy. Inspired by the
hierarchically feature abstraction strategy, we in this paper
use deep learning theory to objectively extract the flow pat-
tern features. As we know, the recently posted deep learning
based flow pattern researches are all focus on gas-liquid sys-
tem, there is no similar reports that associated with oil-water
two-phase system. We in this paper carried out oil-water two-
phase flow pattern test in a vertical 20mm inner-diameter
pipe, and collected different flow pattern images that contain
rich flow pattern evolution dynamic characteristics. Con-
sidering the excellent performance of convolutional neural
network (CNN) in image recognition, we employ three fre-
quently used CNN structures to identify the oil-water two-
phase flow patterns. The remainder of this paper is organized
as follows. In Section 2, we introduce the oil-water two-
phase flow experiment and the collected images. A minimum
gray-level based method is proposed to segment the original
collected images and obtain the region of interest (ROI)
which is used for the flow pattern recognition network train-
ing. In Section 3, we discuss several different CNN topologies
which could be applied to identify the flow pattern images.
In Section 4, we compare and discuss the recognition results
of the proposed network. And finally we conclude this study
in Section 5.

II. EXPERIMENTS AND ROI EXTRACTION
A. EXPERIMENTAL FACILITY AND PROCEDURE
We carried out oil-in-water two-phase flow experiment in
a vertical 20mm inner diameter Plexiglas pipe to collect
different flow pattern images. As shown in Fig.1 the flow loop
experiment facility consist of two peristaltic metering pumps,
a water tank, an oil tank, a mix tank and testing pipes. During
the experiment, oil and water are pumped out from oil and
water tanks respectively and mixed with a T-junction. Then
the mixed fluid flow into an 1800mm length horizontal pipe.
The vertical testing pipe and the horizontal pipe are connected
with a 20mm inner diameter elbow. In order to fully develop
the oil-water two-phase flow patterns, the vertical pipe is set
as 1500mm long. The high speed camera and LED backlight
are fixed at top of the testing pipe. After the flow pattern
images are collected by the camera, the mixed fluid is drained
into the mix tank to separate. The experiment mediums we
used here are tap water and industry white oil which is
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FIGURE 1. Schematic of oil-water flow loop facility.

dyed red. Peristaltic metering pumps are calibrated to ensure
the accuracy of the inlet flow rate.

The image capture system contains a high speed camera,
a LED backlights and computer. The resolution of the camera
is set as 960×720. The LED backlight provides enough light-
ing to guarantee clearly images. The experimental schedule
is as follows: we first fix the value of water phase fraction
and then gradually increase the total velocity of mixed fluid.
At the certain preset total flow rate, we collected the oil-water
two-phase flow pattern images and store these images into
computer. In the experiment, the water phase fraction is in
the range of 70%-100%, while the mixture total flow rate was
set at 0.01842 m/s, 0.03684 m/s, 0.07368 m/s, 0.11052 m/s,
0.14737 m/s, 0.18421 m/s, and 0.22105 m/s, respectively.

During the experiment, we observed three typical oil-in-
water two-phase flow patterns, that is oil slug flow, oil bubble
flow, and the very fine dispersed oil bubble flow (VFD bubble
flow). As shown in Fig.2 (a), oil slug flow occurs in very
lowmixture velocity. In such flow condition, the dispersed oil
droplets coalesce into slugs which intermittently pass though
the vertical testing pipe. With increasing the mixture velocity,
the flow pattern changes to oil bubble flow. Fig.2 (b) exhibit
typical pattern of oil bubbles, which is distributed in the
continuous water phase in the form of discrete droplets. With
even more increasing of the total mixture velocity, as shown
in Fig.2 (c) the discrete oil bubbles change to very small oil
droplets that are uniformly distributed in the continuous water
phase which is known as VFD bubble flow.

FIGURE 2. Images of three typical flow patterns. (a) Oil-slug flow. (b) Oil
bubble flow. (c) VFD oil bubble flow.

B. FLOW PATTERN ROI EXTRACTION
As shown in Fig.2 the flow pattern images collected contain
large redundant information, so we need to extract the region
of interest (ROI) that can precisely reflect the flow pattern

FIGURE 3. Pipe borders location of the original flow pattern image.

characters. As shown in Fig.3 (a) the original flow pattern
image consist of background, the Plexiglas pipe and the
oil-water mixture in the pipe.When training the identification
model, we only concern about the mixed fluid in the pipe.
In this regard, we need to segment the flow pattern target in
the testing pipe.

Considering that lines are typical characteristics of the pipe
in the original collected images.We employ Hough transform
method [34] to make a segmentation to obtain the oil-water
mixture images in the pipe. As shown in Fig.3 (b) after
the Hough transformation, the border of the pipe has been
detected. Sowe can locate the oil-water two phase flow image
in the pipe.

It is worth to note that oil-slug flow exhibit intermittent
character. Under this flow condition, oil slugs sparsely pass
through the pipe and most part of the pipe is filled with water.
So we need to make further segmentation that only keeping
the oil slug part. Here we propose a segmentation method
based on minimum gray level. We define a rectangle with
the same width as the segmented pipe borders and the length
of the rectangle is set as 30mm. According to experiment
observation, oil slug in 20mm inner diameter pipes is no
longer than 30mm. So, a complete oil slug can be included
in this rectangle. Then we change the entire pipe images
to grayscale and search the pipe with the preset rectangle
from top to the bottom. As shown in Fig.4, we calculate the
summation of the gray scale value in the rectangle, and then
we can locate the oil slug with the minimum gray scale value.
The size of testing pipe image is 720×200 pixels, and we
set the searching step as 1 pixel. Because the pixels are the
basic elements of the collected images, 1 pixel is the highest
precision we can achieve. In this regard, we have chosen
1 pixel as the searching step. Note that oil bubble flow and
very fine dispersed oil bubble flow are typical homogeneous
flow pattern, small oil droplet uniformly distributed in the
continuous water phase. So we segment the pipe images
use the same size of rectangle, which can include all the
information of oil bubble flow and VFD bubble flow.

III. METHODS
Traditional flow pattern identification methods are based
on extracted fluctuation features which could characterize
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FIGURE 4. The gray-level summation in the rectangle along with the pipe
axial direction.

the system dynamics. These methods are reflective and less
affected by flow conditions. However, the extracted features
can only reflect one side of the flow pattern characters and it
often need to elaborately designed. Sometimes it often leads
to misidentification when the flow pattern transition occurs
even with fusion several features. However, under the deep
learning strategy, features are hierarchically extracted by the
deep network that the deep learning features can be regard
as more objectively representations. So, we in this paper
employ the deep learning strategy to recognize the oil-water
two-phase flow patterns.

Among different deep learning structures, the convolu-
tional neural network (CNN) has achieved vast success in the
image identification [35]–[38]. We in this paper choose three
frequently usedCNNwhich are LeNet-5, AlexNet, andVGG-
16 net to train the oil-water flow pattern identification net-
work. These three CNN structures have difference network
depth and filter size. With this research we try to find out
the impact of the network parameters such as depth and filter
size on the flow pattern recognition accuracy. In section IV
where recognition results are discussed and the recognition
accuracy for all flow patterns have reached a relatively high
level with using VGG-16 net. So, other CNN structures with
very deep structures such as GoogLeNet are not considered
in this paper.

A. LeNet-5
LeNet-5 [39] is a typical convolutional Neural Network that
initially used to identify handwriting pictures. As shown
in Fig.5 it contains 3 convolution layers, of which the first
two convolution layers are followed by pooling layer. The
first convolution layer employs 6 filters of the size 5×5 to
extract featuremap and the following pooling layer reduce the
feature map to the size of 14×14×6. The second convolution
layer use 16 filters with the size 5×5, and the followed
pooling layer reduce the feature map to the size of 5×5×16.
The 3rd convolution layer connected to a fully-connected
layer with 120 nodes and the last layer of LeNet-5 is soft-
max layer with 10 outputs. Considering that there are only

FIGURE 5. The architecture of LeNet (LeCun et al. [39]).

three oil-water flow patterns to be identified, we modify the
softmax output to 3.

B. AlexNet
As a special designed convolutional neural network,
the AlexNet proposed by Krizhevsky et al. [40] in
2012 exhibit quite excellent image recognition results
and won the Large-Scale Visual Recognition Chal-
lenge (ILSCRC) in 2012 with an error rate of approximately
16.4%. As shown in Fig.6, the AlexNet consists of 5 con-
volution layers, 3 max pooling layers and 3 fully connected
layers. In the first convolution layer, 48 filters with the size
of 11×11 are applied to the original input images to extract
features. Totally 48 feature maps are extracted and then
followed by max polling layer. In max pooling layer the
convolution features are reduced by keeping the maximum
value of the extracted feature map to improve the feature
representation. The second convolution layer uses the same
structure as the first convolution layer but with different filter
size and number. There is no max-pooling operation in the
3rd and 4th convolution layer. And the last convolution layer
employs 128 filters with dimension 3×3 to obtain the feature
map and also be applied with the max-pooling operation. The
6th and 7th layers are fully-connected network which contain
2048 neurons respectively and the last layers of AlexNet is
the softmaxwith 1000 output. In the AlexNet model Rectified
Linear Unit (ReLU) function is used as the activation function
that applied to all the convolution layers and fully-connected
layers. Also, we modify the softmax output from 1000 to 3 to
meet the need of flow pattern identification task.

FIGURE 6. The architecture of AlexNet (Krizhevsky et al. [40]).

C. VGG-16 NET
In this paper, we also adopt the VGG-16 net [41] to recognize
the oil-water two-phase flow patterns. Compared to the archi-
tecture of AlexNet, it has more convolution and max-pooling
layers and the filter used in this network are smaller than
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FIGURE 7. The architecture of VGG-16 net (Simonyan et al. [41]).

that used in AlexNet. As shown in Fig.7, the VGG-16 net
contains 13 convolution layers and 5 max-pooling layers.
The dimension of convolutional filter used in this network is
3×3which is smaller than that of AlexNet. Small convolution
filters will extract more local features of the input images
and reduce the network parameters. Similar to the AlexNet,
the last three layer of VGG-16 net are fully-connected layer
and the softmax layer. Also, in order to meet the need of flow
pattern number, the softmax output is redefined to 3.

IV. RESULTS AND DISCUSSION
By applying the flow pattern segment arithmetic that is pro-
posed in section 2 to the experimental collected oil-water flow
pattern images, we select totally 23900 flow pattern images to
train and test the flow pattern recognition network. The train-
ing set consist 23000 images in which there are 2000 oil-slug
flow images, 13000 oil-bubble flow image, and 8000 VFD
oil-bubble flow images. The rest of the images are used as
test data set, which contain 300 slug flow images, 300 oil-
bubble flow images and 300 VFD oil-bubble flow images.
Fig.8 shows the typical segmented flow pattern images.

FIGURE 8. Segmented flow pattern representations of each flow pattern.
(a) oil-slug flow, (b) oil-bubble flow (c) VFD oil-bubble flow.

LeNet-5, AlexNet and VGG-16 net have been trained to
construct the oil-water two-phase flow identifier. When train-
ing these networks, we use the same input image size, Batch
size and Learning rate where the input size is set as 130×200,
the Batch size is set as 100 and the Learning rate is set as
0.00001. The dropout rate for AlexNet and VGG-16 net is
set as 0.5, and there is no dropout operation when training
the LeNet-5.

Fig.9 shows the loss value and the training accuracy of
the three flow pattern identifier. We find that with increasing
the iteration number the loss values of the three networks

FIGURE 9. The training process of oil-water flow pattern identification
networks. (a) LeNet-5. (b) AlexNet. (c) VGG-16 net.

gradually decrease to nearly zero which proves that these net-
works have converged. Also, we obtain the network training
accuracy every 50 iterations, and the accuracy reaches nearly
about 100% with increasing the iterations showing that the
networks have been well trained.

After the three typical flow pattern identification networks
have been well trained. We use the test data to evaluate the
proposed three network structure. As shown in Fig.10 we
compared the flow pattern identification results of the three
CNN. Oil-slug flow images contain obvious morphology and
interface features, which can be easily extracted by the con-
volution filter, hence the oil-slug flow recognition accuracy
show relatively high value for all the three networks. The
oil-bubble flow images exhibit small oil-drops uniformly dis-
persed in the water phase and the bubble interface morphol-
ogy is the main character of this flow pattern. The LeNet-5
with less filters and layers which is insufficient in extracting
the oil bubble local interface features. In this regard, the oil-
bubble flow identification accuracy of LeNet-5 (88.0%) is
lower than that of AlexNet (99.3%) andVGG-16 net (98.3%).
VFD oil-bubble flow occurred at relatively high mix veloc-
ity and the oil-phase is breaking into very small and fine
dispersed oil droplets. From the images of VFD oil bubble

FIGURE 10. The flow pattern identification results of LeNet-5, AlexNet
and VGG-16 net.
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flow, no obvious interface character can be found. Deeper
networks with smaller filters such as VGG-16 net can pre-
cisely extract the VFD bubble flow local features which can
reflect the flow pattern character, hence the VGG-16 net
preserve a relatively high identify accuracy (99.3%) for VFD
oil-bubble flow. Compared to VGG-16 net, the AlexNet with
larger filters and fewer layers may more sensitive to the flow
pattern global features. So the VFD oil-bubble recognition
accuracy of AlexNet (73.3%) is lower than that of VGG-16
net. Compared to the other two networks, the LeNet-5 which
has fewest layers may only sensitive to flow pattern global
interface characters, resulting low identification accuracy
(57.7%) for VFD oil-bubble flow. Generally speaking, all
the three networks can effectively recognize flow patterns
that rich in obvious global morphology features, i.e., oil-
slug flow. While for VFD bubble flow which has no obvious
morphology character, it needs to employ networkswithmore
layers.

Oil-water two-phase flow pattern is related the flow condi-
tions such as flow rate, phase volume fraction, pipe diameter,
inclination, etc. In other words, when the flow condition is
fixed the flow pattern will not change. In the industrial appli-
cations, flow pattern identification task is often conducted
under certain fixed flow condition. A series of flow images or
signals is collected which only reflect the flow pattern under
this flow condition. The proposed CNN based flow pattern
identification network already has relatively high accuracy.
Take VGG-16 net as example. The flow pattern recognition
accuracy is 99.4%, 98.3% and 99.3% for oil-slug flow, oil-
bubble flow and VFD oil-bubble flow, respectively. So, for
the collected images series under certain flow condition,
few misrecognition images will not impact the flow pattern
recognition results.

V. CONCLUSIONS
Extracting effective and objective flow pattern features is
a challenge problem in the fields of oil-water two-phase
flow pattern identification. We in this paper employ deep
learning method to extract oil-water two-phase flow image
features and train the flow pattern identification networks.
First we construct oil-water two-phase flow loop and employ
high-speed camera to collect oil-water two-phase flow
images. Three typical flow patterns which are oil-slug flow,
oil-bubble flow and VFD oil-bubble flow have been detected
in this experiment. In order to eliminate redundant informa-
tion contained in the flow pattern images, we use Hough
transform method to segment the original images to obtain
boarders of test pipe. Then we propose a minimum gray-level
searching method to locate the region of interest which can
effectively reflect the flow pattern dynamic characters. In this
study, we obtain totally 23000 image segmentations to train
the flow pattern recognition networks. Three frequently used
convolutional neural networks which are LeNet-5, AlexNet
and VGG-16 net have been employed as the oil-water flow
pattern identifiers. The results show that all the three recog-
nition models have quite high identification accuracy for

oil-slug flow. And the VGG-16 net with deep layer and small
filters is more sensitive to VFD dispersed flow pattern than
the other two networks. Employing more deep structure can
extract precisely flow pattern features which is benefit for the
oil-water two-phase flow pattern modeling and recognition.
Our research not only provides a novel application of CNN
in the oil-water two-phase flow pattern identification but also
proves that deep learning theory could be a powerful tool for
modeling two-phase flow system.
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