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ABSTRACT Polar codes (PCs) have attracted significant attention in the last decade, especially after
their adoption in the forthcoming 5G wireless networks. However, previous studies focused on coherent
polar codes, which always rely on the strong assumption of available perfect channel state information.
Instead, in this paper, we investigate the use of PCs in noncoherent systems. First, a binary differential
phase shift keying (BDPSK) demodulator is concatenated with a polar decoder to form the noncoher-
ent detector, where successive cancellation (SC) is applied. The simulation results demonstrate that the
SC-based PCs for noncoherent detection have approximately a discrepancy of only 3 dB compared with
the coherent counterpart in noncoherent channels. Furthermore, in order to further decrease this discrepancy,
we replace the BDPSK demodulator with a soft-input soft-output (SISO) multiple symbol differential sphere
decoding demodulator. Similarly, the SC-based PC decoder is replaced by the SISO belief propagation-
based PC decoder, and by using this novel architecture, an iterative noncoherent detector is constructed.
Benefiting from further invoking extrinsic information transfer chart tool and the dynamic window-size
detection scheme, the performance of the proposed iterative noncoherent detector becomes competitive with
its coherent one in practical applications, since the performance degradation is reduced to 1 dB.

INDEX TERMS Polar codes, noncoherent detection, SISO-MSDSD, iterative detection, EXIT chart.

I. INTRODUCTION
Polar codes (PCs), proposed by Arıkan [1], have attracted
tremendous attention, due to the provable capacity-achieving
capability as well as to low encoding and decoding complex-
ity. Performance of polar codes employing various decod-
ing algorithms, e.g. successive cancellation (SC), successive
cancellation list (SCL) and stack decoding, were systemat-
ically investigated in the literature [1]–[4]. However, most
of these works rely on coherent detection and hence, they
assume available perfect channel state information (CSI).
But, in many cases it may be an extreme challenge to
obtain sufficiently accurate CSI, as for example in massive
Multi-InputMulti-Output (mMIMO) systems over fast fading
channels, where coherent detection becomes even inferior to
noncoherent one [5]. Therefore, extending the application of
polar codes to noncoherent systems is a great challenge for
research.

The performance of coded noncoherent systems, for
example, concatenating binary differential phase shift key-
ing (BDPSK) with turbo [6] or with low-density parity-
check (LDPC) codes [7] have been reported in [8]–[10].

Specifically, in [8] it was demonstrated that by using turbo
codes the bit error rate (BER) discrepancy between nonco-
herent and coherent detection is around 3.5 dB over addi-
tive white Gaussian noise (AWGN) channels. In [9], this
discrepancy becomes 2∼3 dB, after replacing turbo with
LDPC codes. Finally, in [10], a further improvement of
LDPC aided noncoherent detection is achieved by incor-
porating the proposed ‘‘3-symbol-observations-interval-ID’’
scheme. Following the same concept, the raised questions are:
how much is this discrepancy if we consider polar codes?
Is there any advanced system design, that could efficiently
mitigate the performance loss of the polar coded nonco-
herent detection with respect to the coherent one? To the
best of our knowledge, these important issues are still open
problems.

The contributions of this paper can be summarized as
follow:

1) For first time in the literature, we present the concept
of polar coded noncoherent detection and demonstrate its
practical performance. In the noncoherent detection architec-
ture, we employ the SC based polar decoder, which presents
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a discrepancy of only 3 dB, compared to the coherent one.
Simulation results confirm this performance.

2) In order to improve the performance of the basic
polar coded noncoherent detection, we propose a soft-in
soft-output multiple symbol differential sphere decoding
(SISO-MSDSD) algorithm [11] to replace the conventional
BDPSK demodulation, and a BP-based polar decoder as the
outer code in the iterative detection architecture. An improved
performance is also confirmed through simulations.

3) A dynamic window-size scheme is invoked into
SISO-MSDSD part to achieve a better balance between com-
plexity and performance gain. During this process, the con-
figurations of window-size are refined, based on the EXIT
chart analysis.

The rest of this paper is organized as follows: In Section II,
some fundamental techniques are introduced, including polar
codes and the SISO-MSDSD algorithm. The proposed polar
coded noncoherent detection architecture is presented in
Section III, while the dynamic window-size scheme and the
associated EXIT chart analysis are presented in Section IV.
Numerical results and simulations are demonstrated in
Section V, and the computational complexity of the proposed
noncoherent detection schemes is evaluated in Section VI.
Finally, we conclude this paper in Section VII.

II. PRELIMINARIES
A. NOTATIONS
Throughout this paper we use lower case bold letters to denote
a row vector and a lower case letter with a subscript to
represent the element of a vector. If x ji denote a row vector
of (xi, xi+1, . . . , xj), then x∗ is the conjugate of x . We use an
upper case letter X to denote a matrix and a low case letter
with a pair of subscript xij to represent an element of X at
ith row and jth column. Additionally, the notation ⊗ is the
Kronecker product and ‖·‖ denotes the cardinality of a set.

B. POLAR CODES AND ITS BASIC
DECODING ALGORITHMS
Polar codes are feasible for binary-input discrete memoryless
channels (B-DMC)W : X → Y with transition probabilities
W (y|x), x ∈ X , y ∈ Y , where X is the input alphabet
and Y the output alphabet. Through channel polarization, N
binary-input coordinate channels W (i)

N : X → YN
× X i−1,

1 ≤ i ≤ N , can be composed from N independent copies of
B-DMC channel W , with transition probability given by

W (i)
N (yN1 , u

i−1
1 |ui) ,

∑
uNi+1∈XN−i

1
2N−1

WN (yN1 |u
N
1 ), (1)

where WN (yN1 |u
N
1 ) refers to the combined channel between

original bit sequence uN1 and received signal yN1 [1], and ui,
(yN1 , u

i−1
1 ) are the input and output of the coordinate channel

W (i)
N , respectively.
The key principle of polar coding is always to select ‘‘rich’’

coordinate channels to transmit information bits. The rest
‘‘poor’’ coordinate channels carry only fixed bits, whose
value is already known by the receiver. Since polar codes

belong to linear block codes (LBC), it can be simply specified
by its generator N × N matrix, GN = BNF⊗n. In more
detail, for any n ∈ N, let N = 2n denote the code length
and K < N the information bits length. Then, BN is a
bit-reversal permutation matrix that turns the n bits binary
representation of an integer i, from bn−1, bn−2, . . . , b0 into
b0, b1, . . . , bn−1. The F⊗n = F ⊗ F⊗n−1 is the nth order
Kronecker power, whereF is the kernel matrix of

(
1 0
1 1

)
. Thus,

the polar encoding process can be described as

xN1 = uN1 GN = uN1 BNF⊗n, (2)

where xN1 and uN1 are the encoded and the original bit
sequences, respectively. The original bit sequence uN1 consists
of two parts: the information bits, namely uA, and the frozen
bits, which have constant value of zero, namely uAC . In more
detail, A ⊂ {1, 2, . . . ,N }, ‖A‖ = K denotes the index
set of information bits, and similarly, AC,

∥∥AC∥∥ = N − K
denotes the index set of frozen bits. Note that holdsA∪AC

=

{1, 2, . . . ,N }.
SC and BP decoding algorithms are the two basic decoding

methods for polar codes. SC decoding refers to a serial bit-
by-bit hard decision algorithm and its latency is relative high.
In contrast, BP decoding can be performed in parallel and
hence satisfies high computational requirements, while, it is
capable of providing soft output. Specifically, the factor graph
used in BP decoding can be created from either the generator
matrix or the parity-check matrix of the polar codes. Corre-
spondingly, BP decoding can be categorized into generator
matrix based, called as G-based BP, and parity-check matrix-
based, called as H-based BP. All the aforementioned algo-
rithms can be applied to noncoherent detection. We suggest
the works [12]– [15] for more details about the above polar
code decoding algorithms.

FIGURE 1. Noncoherent system with SISO-MSDSD detection.

C. SISO-MSDSD ALGORITHM
Next, we introduce the SISO-MSDSD algorithm proposed
in [11]. First, we define the following column vectors

v = (vk−(D−2), vk−(D−3), . . . , vk )T

s = (sk−(D−1), sk−(D−2), . . . , sk )T

h = (hk−(D−1), hk−(D−2), . . . , hk )T

n = (nk−(D−1), nk−(D−2), . . . , nk )T

r = (rk−(D−1), rk−(D−2), . . . , rk )T , (3)

which include D − 1 information symbols, D differentially
modulated symbols, D channel coefficients, D AWGN sam-
ples and D received symbols, respectively. The value of D is
determined by the number of jointly detected symbols in the
SISO-MSDSD algorithm, which is also termed as detection
‘‘window-size’’. As shown in Fig. 1 the codeword bits cµ is
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mapped to M-ary PSK symbols vk . Hence, it holds that

vk ∈ {ej2πm/M |m = 0, 1, . . . ,M − 1}. (4)

Then, the symbols are differentially modulated as

sk = vksk−1, s0 = 1. (5)

Compared with coherent detection, the conventional non-
coherent detection scheme only incurs a 3 dB performance
loss in AWGN channels. However, this performance loss will
become significantly higher in fading channels. In order to
recover this severe performance loss a SISO-MSDSD algo-
rithm is proposed. Next, we mainly focus on Rayleigh fading
channels. According to Clarke model [16], the autocorrela-
tion function of hk can be formulated as

ϕκ = E{hk+κh∗κ} = J0(2πBf Tκ ), (6)

where J0(·) denotes the zero-order first-kind Bessel function
and Bf Tκ (Bf is the maximum Doppler frequency shift) is the
maximum normalized fading bandwidth. The received signal
can be written as

rk = hksk + nk , (7)

where nk ∼ CN (0, σ 2
n ) and its two-side power spectral

density is N0 (watts/Hz).
SISO-MSDSD algorithm is a modified version of

MAP-MSDSD algorithm. The decision rule of MAP-
MSDSD algorithm is based on searching the candidate vec-
tors v and finding that which minimizes the metric

v̂MAP = argmin
v
{− log(Pr{v|r})}. (8)

Applying the Bayes’ rule,

− log(Pr{v|r}) ∝ − log(Pr{r|v})− log(Pr{v})

∝ ‖Ua‖2 − log(Pr{v}), (9)

where U is a D × D upper triangular matrix, which can be
derived from channel autocorrelation matrix1 and received
symbol sequence. Then, a , [a1, a2, . . . , aD]T is the accu-
mulative product of information symbols that obeys to

ai =


D−1∏
l=i

v∗l , 1 ≤ i ≤ D− 1

1, i = D.

(10)

Apparently, we can always achieve ‖Ua‖ ≤ R2m, where Rm
is normally regarded as the initial sphere radius of MAP-
MSDSD. Finally, log(Pr{v}) is an a priori information, which
may be provided by outer code in the same iterative detection
architecture.

Assuming that the elements of v are independent to each
other, we can rewrite (9) as

‖Ua‖2 − log(Pr{v})

=

D−1∑
i=1

∣∣∣∣∣
D∑
κ=i

uiκaκ

∣∣∣∣∣
2

− log(Pr{vi})


1The channel autocorrelation matrix can be obtained from (6). The

detailed derivation and evaluation of U can be found in [21].

≤ R2m − |uDD|
2 , R2, (11)

where uiκ is the element of U in ith row and κ th column.
From (11), MAP-MSDSD algorithm is equivalent to find a
candidate vector vMAP which results in the minimum sphere
radius of R2. In order to adapt (11) to formal sphere detection
programming, it could be further represented as a recursive
accumulation process as

d2i , 12
i + d

2
i+1

=

∣∣∣∣∣∣uiiai+1v∗i +
D∑

κ=i+1

uiκaκ

∣∣∣∣∣∣
2

− log(Pr{vi})︸ ︷︷ ︸
12
i

+

D−1∑
τ=i+1

∣∣∣∣∣
D∑
κ=τ

uτκaκ

∣∣∣∣∣
2

− log(Pr{vτ })


︸ ︷︷ ︸

d2i+1

≤ R2, (12)

where d2D = 0. The equivalence between (11) and (12) is
revealed by the fact that d21 = ‖Ua‖

2
− log(Pr{v}).

Based on (12), MAP-MSDSD can be executed as follows:
firstly, index i takes value of D − 1 and the first potential
information symbol v̂D−1, which satisfies 12

D−1 = d2D−1 ≤
R2, can be found. Then, i decreases by one step and the second
signal point v̂D−2, which satisfies d2D−2 = 1

2
D−2+d

2
D−1 ≤ R

2

is found. we can generate a temporary hypothesis of the
original information vector, which is represented by v̂ =
(v̂1, v̂2, . . . , v̂D−1)T . Meanwhile, the sphere radius can be
updated by R2 = d21 . Next, the above entire process is
executed again by adjusting the initial value of i to D−2. If a
valid vector can be found in this second round, i.e. i decreases
from D − 2 to 1 and d2i ≤ R2 is always satisfied, then
the sphere radius R2 could be further reduced. Repeat above
process until R2 reaches its minimum value. The resultant last
valid vector v̂ is the final decision made by MAP-MSDSD
algorithm. This sphere detection process is also summarized
by a pseudo code in [11].

SISO-MSDSD algorithm is obtained by simply substitut-
ing the decision metric of MAP-MSDSD algorithm shown
in (12) to the log likelihood ratio calculation of an information
bit. Consequently, in SISO-MSDSD algorithm, the a posteri-
ori logarithm likelihood ratio (LLR) of an information bit cµ
can be expressed as

lcµ = log
(
Pr{cµ = b|r}
Pr{cµ = b̄|r}

)
≈ log

(
maxv:cu=b{exp(−‖Ua‖

2
+ log(Pr{v}))}

maxv:cu=b̄{exp(−‖Ua‖
2 + log(Pr{v}))}

)
= −‖UâbMAP‖

2
+ log(Pr{v̂bMAP})

+‖Uâb̄MAP‖
2
− log(Pr{v̂b̄MAP}), (13)

where b and b̄ are binary 0 and 1, respectively, v :cµ = b
indicates the set of all the information vectors, whoseµth ele-
ment is 0. Correspondingly, v̂bMAP is the optimum information
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vector selected from the set v :cµ = b, which maximizes the
numerator in (13).

Moreover, the a priori LLR of bit cµ is defined as

εcµ = log
(
Pr{cµ = b}

Pr{cµ = b̄}

)
. (14)

Apparently, the extrinsic LLR of bit cµ can be obtained as

ecµ = lcµ − εcµ . (15)

Hence, SISO-MSDSD algorithm is capable of operating the
a priori LLR input by another component in iterative detec-
tion architecture and then feeding back the extrinsic LLR.

III. SYSTEM MODEL
In order to appropriately extend the application of polar codes
to noncoherent scenarios, we conceive two distinct detection
architectures. The first employs a serial detection architec-
ture, where the conventional differential demodulator is con-
catenated with the SC decoding algorithm, which is based on
a polar decoder. This detection architecture is also termed
as the ‘‘basic noncoherent detection’’. In order to further
improve its BER performance, we transform the architecture
of this basic noncoherent detection to an iterative manner,
which constitutes the ‘‘iterative noncoherent detection’’.

A. BASIC NONCOHERENT DETECTION ARCHITECTURE
In order to adapt polar coding to noncoherent scenarios,
where the channel state information is not available, we dif-
ferentially modulate the encoded bits, c = (c1, c2, . . . , cN ),
at the transmitter. At the receiver, the received signals r =
(r1, r2, . . . , rN+1) first are processed by a differential demod-
ulator. Then, a polar decoder is concatenated with this pre-
ceding differential demodulator for further tackle with its
output data stream, namely y = (y1, y2, . . . , yN ). Finally,
the polar decoder makes a decision and a hypothesis of the
original information bits, namely û = (û1, û2, . . . , ûK ) is
produced. This basic noncoherent detection architecture is
depicted in Fig. 2.

FIGURE 2. Basic noncoherent detection architecture.

Normally, the conventional demodulator will generate hard
decisions. However, the decoding procedure of polar code
relies on the initial likelihoods of its encoded bits c =
(c1, c2, . . . , cN ). Hence, in order to successfully support the
basic noncoherent detection, the differential demodulator

shown in Fig. 2 has to appropriately evaluate the likeli-
hoods of each encoded bits and sends these soft-outputs to
concatenated polar decoder. This critical challenge involved
in basic noncoherent detection can be solved as follows.
Firstly, the signals received from channel are directly input to
differential demodulator. Then, the differential demodulator
multiplies the conjugate of (k − 1)th signal of rk−1 by the
consecutive k th signal of rk , and calculates the real part of
this product. The associated result is given by

yk = <{r∗k−1r
∗
k }, (16)

where r∗k−1 represents the conjugate of rk−1,<{·} denotes the
real part of a complex number, and yk in (16) constitutes the
initial soft-output of the differential demodulator. However,
as stated above, the likelihood of each encoded bit ck is
provided to polar decoder. Hence we should correctly con-
vert this initial soft-output of differential demodulator to the
likelihood of ck . Since the channel is assumed to be a nonco-
herent one, i.e. an AWGN channel, on which a random phase
distortion is further imposed, according to [8], the probability
density function (pdf) of yk while ck is given approximately
obeys to a Gaussian distribution. Hence, P(yk |ck = i) ∼
N (µi, σ 2

0 ), where i ∈ {0, 1}, µi = 1 − 2i, and σ 2
0 =

N0 + (N0/2)2. Therefore, the initial LLR of an encoded bit
ck can be evaluated as

L(ck ) = ln
P(yk |ck=0)
P(yk |ck=1)

= ln

1√
2πσ 20

e
−

(yk−u0)
2

2σ20

1√
2πσ 20

e
−

(yk−u1)
2

2σ20

= 2 ∗ yk/σ 2
0 .

(17)

The LLR values of L(ck ) obtained from (17) are acting as
the soft-input required by the polar code. Hence the early
mentioned challenge can be resolved.

Furthermore, it has been reported in [17] and [18] that in
non-iterative detection architecture, the SC decoding algo-
rithm outperforms BP decoding algorithm. Hence, in the
basic noncoherent detection architecture of Fig. 2, we opt for
SC decoding algorithm for the polar decoder.

In order to evaluate the efficiency of the basic nonco-
herent iterative detection, the associated BER performance
is demonstrated in Fig. 3. In more detail, according to the
same construction method proposed in [1], three kinds of
polar codes are constructed. They are only different in code-
word length and termed as C1(256, 128), C2(512, 256) and
C3(1024, 512), respectively. Then, a transceiver consisting
of polar encoder, BPSK modulation, BPSK demodulation,
as well as SC decoding algorithm based polar decoder is
regarded as our coherent counterpart. In this coherent system,
perfect CSI is assumed.

It can be observed from Fig. 3 that the basic noncoherent
detection requires only an Eb/N0 less than 7 dB to achieve a
very low BER level of 10−4. But in contrast to its coherent
counterpart, there is always about 3 dB performance loss,
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FIGURE 3. BER performance comparison between the basic noncoherent
detection and its coherent counterpart. Different polar codes of C1, C2
and C3 are considered in this comparison.

regardless of the length of polar code employed. In order
to combat with this performance discrepancy, we further
improve the noncoherent detection in Section III-B.

B. ITERATIVE NONCOHERENT DETECTION ARCHITECTURE
In order to improve the performance of the basic noncoherent
detection architecture shown in Fig. 2, we further invoke the
powerful iterative detection strategy. Normally, an iterative
detector consists of two components, namely inner decoder
and outer decoder [19]. Both of them shall be capable of
accepting soft-inputs and generating soft-output, and then
they exchange their information. Apparently, the differential
demodulator shown in Fig. 2 has only a single input stream,
which is the signals received from the channel. Hence, it can-
not additionally allow the SC polar decoder to input feedback
information. Meanwhile, the SC polar decoder neither has the
ability of feeding back information to preceding demodula-
tor. According to the above analysis, the basic noncoherent
detection architecture shown in Fig. 2 cannot realize the
information exchange between two detection components.
Hence it does not support iterative detection manner.

Accordingly, we replace the differential demodulator
shown in Fig. 2 by its more powerful counterpart SISO-
MSDSD algorithm based demodulator. Because, as explained
by the sentences under eq.(15) in Section II-C, SISO-MSDSD
algorithm is capable of generating extrinsic information
based on input a priori information. Hence it can support
iterative detection and we could utilize it as the inner decoder.
Furthermore, we also replace the SC polar decoder by the
BP decoding algorithm based polar decoder. Because, only
the BP polar decoder is capable of feeding back information
to the preceding detection component. The BP polar decoder
will act as the outer decoder in the iterative detection archi-
tecture. Finally, at the transmitter, an interleaver is deployed
between the polar encoder and the differential modulator.

FIGURE 4. Iterative noncoherent detection architecture.

This interleaver is invoked for omitting the time-correlation
of the channel. Symmetrically, at the receiver, a deinterleaver
and an interleaver are deployed between the SISO-MSDSD
and the BP polar decoder. After above-mentioned develop-
ments, we construct the basic architecture of our iterative
noncoherent detection, which is depicted in Fig. 4.

As it is observed from Fig. 4, in one iteration procedure,
SISO-MSDSD first generates its soft-output according to
eq. (13). Apparently, this procedure will rely on the signal
sequence r received from the channel and on the a priori
LLRs Lpriinner obtained from the BP polar decoder in the
last iteration. Accurately, this soft-output is the a posteriori
LLRs Lposinner of the encoded and then interleaved codeword c

′.
By subtracting Lpriinner from Lposinner , we obtain the extrinsic
LLRs Lextinner . Then, after deinterleave operation, Lextinner is
converted to the a priori LLRs of the BP polar decoder. Based
on this a priori information, BP polar decoder is capable
of updating its a posteriori LLRs Lposouter . Similarly, after
subtracting the a priori LLRs Lpriouter from Lposouter , we obtain
the updated extrinsic LLRs Lextouter . The interleaved version of
Lextouter will act as the a priori information for SISO-MSDSD
in the next iteration. The above-mentioned data-stream oper-
ation procedure will be repeated until the estimated bit-
sequence is a legitimate polar encoded codeword or the max-
imum iteration number is exhausted.

The iterative noncoherent detection architecture shown
in Fig. 4 can be further improved by appropriately selecting
the BP polar decoding algorithm. This issue will be discussed
in Section IV. Then, as mentioned early in this sub-section,
iterative noncoherent detection is capable of outperforming
the basic noncoherent detection. This fact will be verified
through our abundant numerical simulations in Section V.

IV. EXIT CHART ANALYSIS
As reported in [5], [11], [20], and [21], the performance of
SISO-MSDSD is dominated by the detection window-size.
A significant performance gain can be obtained by increasing
its window-size, but at the cost of computational complexity.
Hence a dynamic window-size scheme is employed into the
iterative noncoherent detection system for achieving a good
tradeoff between performance and complexity. On the other
hand, EXIT chart [22] is a low-complexity high-accuracy

6366 VOLUME 7, 2019



C. Chen et al.: Noncoherent Detection With PCs

FIGURE 5. EXIT chart analysis of the iterative noncoherent detection
scheme using G-based BP polar decoder at Eb/N0 of 4 dB.

analysis tool to reveal the characteristics of an iterative detec-
tion. Hence we employ it to guide our dynamic window-size
design.

Without loss of generality, we use a window-size candidate
pool of {2, 4, 6, 10} and a (256, 128) polar code to illustrate
the EXIT chart assisted dynamic window-size design pro-
cedure. For example, an EXIT chart of the iterative nonco-
herent detection over noncoherent AWGN channel [11] with
SNR per bit of Eb/N0 = 4.0 dB is illustrated in Fig. 5.
In this figure the blue curves represent the extrinsic informa-
tion increasing trace of the SISO-MSDSD component while
increasing its input a priori information, which are also called
the inner curves. The red curve depicts the extrinsic informa-
tion increasing trace of the polar code component, which is
also called the outer curve.

The principle of EXIT chart [23] points out that the more
the intersection between inner curve and outer curve get close
to (1, 1) point of EXIT chart, the better the BER performance
will be. According to this principle and observe at Fig. 5
again that when window-size is 2, the blue curve labeled by
circles and the red curve will intersect at (0.2, 0.52) point,
which is still far away from (1, 1) point and implies a poor
BER performance. When the window-size increases from
4 to 6 and further to 10, the open tunnel between inner and
outer curves occurs. Meanwhile, their intersection point get
more and more close to perfect (1, 1) point, which implies an
improved BER performance.

The above-mentioned EXIT chart performances inspire us
to adopt a short window-size during early iterations. Then,
along with the increase of iterations, the inner curve trend
to intersect the outer curve. However, if we appropriately
increase the window-size in the forthcoming iterations, this
intersection can be avoided. As a benefit, we achieve the
sameBER performance as that uses a fixed largewindow-size
in every iteration, but significantly reduce the computational
complexity. This strategy constructs our EXIT chart assisted
dynamic window-size design.

Consequently, according to the guidance of EXIT
chart curves in Fig. 5, the dynamic window-sizes during

10 iterations are consecutively set to be [2, 4, 6, 6, 6, 6, 6,
6, 10, 10]. The detection trajectory represented by a black
curve in Fig. 5 is generated by Monte Carlo simulations,
which indicates the practical detection results. In Fig. 5,
the detection trajectory indeed moves towards (1, 1) point
but still cannot approach. It implies that the entire system
will occur an error floor at the current power budget of
Eb/N0 = 4.0. Hence, in Fig. 6∼7, we gradually increase
the signal power and find that the Eb/N0 threshold should be
5 dB for enabling the trajectory to finally arrive at the perfect
(1, 1) point in EXIT chart.

FIGURE 6. EXIT chart analysis of the iterative noncoherent detection
scheme using G-based BP polar decoder at Eb/N0 of 4.5 dB.

FIGURE 7. EXIT chart analysis of the iterative noncoherent detection
scheme using G-based BP polar decoder at Eb/N0 of 5 dB.

The above-mentioned dynamic window-size design aims
at improving the iterative noncoherent detection by adjust-
ing the inner curve in EXIT chart. Alternatively, we could
also improve the iterative noncoherent detection by adjust-
ing the outer curve, i.e. we could replace the G-based BP
decoder employed in Fig. 5∼7 by the H-based version. The
resultant EXIT charts are as shown in Fig. 8∼10. It can be
seen from these figures that the outer curve corresponding
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FIGURE 8. EXIT chart analysis of our iterative noncoherent detection
using H-based BP polar decoder at Eb/N0 of 4 dB.

FIGURE 9. EXIT chart analysis of our iterative noncoherent detection
using H-based BP polar decoder at Eb/N0 of 4.5 dB.

FIGURE 10. EXIT chart analysis of our iterative noncoherent detection
using H-based BP polar decoder at Eb/N0 of 5 dB.

to H-based BP decoder achieves a higher slope than its
counterpart in Fig. 5∼7, especially for the top-right part.
This phenomenon implies that the intersection between

inner and outer curves in Fig. 8∼10 will get more close
to (1, 1) point. We will verify this conclusion in the next
section.

V. NUMERICAL RESULTS AND SIMULATIONS
The Monte Carlo based simulation results of basic noncoher-
ent detection presented in Section III-A, and that of iterative
noncoherent detection in Section III-B, as well as that of
coherent detection counterpart are demonstrated and com-
pared in this section. The parameters used in our simulations
are summarized in Table 1.

TABLE 1. Simulation parameters.

Firstly, the polar decoder in our iterative noncoherent
detection architecture can either rely on the G-based BP
algorithm or on the H-based BP algorithm. The compar-
ison between their EXIT charts has been portrayed in
Section IV, which reasonably anticipates that employing
H-based BP algorithm will achieve a better performance,
especially for moderate and large SISO-MSDSD window-
size. Correspondingly, the comparison between their prac-
tical BER performance is illustrated in Fig. 11. Observe at
Fig. 11 that employing H-based BP polar decoder in iterative
noncoherent detection architecture constantly outperforms
employing G-based BP polar decoder while window-size is
fixed to 4, 6. An around 0.5 dB performance gain is achieved
at the target BER of 10−5. These practical BER performances
coincide with our previous EXIT chart analyses. Hence,
in our ensuing simulations, the polar decoding algorithm
employed in iterative noncoherent detection and in coherent
detection will be fixed to H-based BP.

Then, it is demonstrated in Fig. 12 that with the aid
of SC polar decoder, our basic noncoherent detection is
capable of reducing the performance loss to 3 dB com-
pared to the coherent detection counterpart. Furthermore,
in order to enhance the performance of noncoherent detec-
tion, we further invoked the iterative detection architec-
ture in Section III-B. Its efficiency is confirmed in Fig. 12
that the resultant iterative noncoherent detection further
reduces the above-mentioned performance loss to 2 dB by

6368 VOLUME 7, 2019



C. Chen et al.: Noncoherent Detection With PCs

FIGURE 11. BER performance comparison between employing G-based
BP and employing H-based BP in iterative noncoherent detection
architecture. Polar code configuration of C3 is used.

FIGURE 12. BER performance comparison. Polar code configuration of C1
is employed.

gradually enlarging the SISO-MSDSD detection window-
size from 2 to 10.

Similar phenomenon is observed in Fig. 13 and Fig. 14
again, where the polar code configuration of C1 is replaced
by C2 and C3, respectively. Particularly, in these cases, where
longer polar codewords are used, we can reduce the per-
formance loss of noncoherent detection with respect to its
coherent counterpart as small as around 1 dB at the target
BER of 10−6.
On the other hand, while focusing on the performance

of iterative noncoherent detection shown in Fig. 12∼14,
it is clear that the performance gain achieved by increas-
ing the window-size becomes more and more marginal.
Meanwhile, the system computational complexity is
sensitive to the window-size employed in SISO-MSDSD.

FIGURE 13. BER performance comparison. Polar code configuration of C2
is employed.

FIGURE 14. BER performance comparison. Polar code configuration of C3
is employed.

Hence, a dynamic SISO-MSDSD window-size scheme is
proposed for our iterative noncoherent detection architecture
in previous Section IV. Herein, with the dynamic window-
size sequence of [2,4,6,6,6,6,6,6,10,10], its BER performance
is compared with that of the fixed window-size schemes
in Fig. 15. Observe at Fig. 15 that the dynamic window-size
scheme almost achieves the same performance as that of fixed
window-size scheme having a large window-size of 10 upon
SNR > 5.5 dB. But, bear in mind that, dynamic window-size
scheme imposes relatively less computational complexity
owing to using small and moderate SISO-MSDSD window-
sizes in early iterations.

Hence, according to the complexity performance, which
will be discussed later in Section VI, we may propose to
employ the dynamic window-size scheme based iterative
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FIGURE 15. BER performance comparison between dynamic window-size
detection and fixed window-size detection. Polar code configuration of
C1 is employed.

noncoherent detection for achieving a good trade-off between
BER performance and system computational complexity.

VI. COMPLEXITY ANALYSIS
Beside the BER performance, the required computational
complexity is another critical metric for assessing a detec-
tion scheme. In this section, we analyze and evaluate the
imposed complexity of the proposed detection schemes: the
basic noncoherent and the iterative noncoherent detection.
Furthermore, similar to [11], the average number of real-
valued multiplicative operations (RMO) required to produce
one soft-output value (or one hard decision) is used as the
complexity metric.

Next, we consider our basic noncoherent detection. Appar-
ently its complexity consists of two parts. One part is imposed
by the conventional differential detection. As indicated in
Section III-A, the differential detection could be considered
as an <{·} operation, which requires two RMOs in average
to make a decision. Hence, according to the definition of
complexity metric, the complexity of this part is 2. The other
part is imposed by the SC based polar decoding. According
to [1], in order to evaluate the likelihood ratios of N input bits
of a polar code, the number of required RMOs isO(N logN ).
Therefore, the entire complexity of the basic noncoherent
detection scheme can be approximated as

Cbasic ' 2+O(logN ), (18)

where N is the length of a polar codeword.
Then, we attempt to quantify the complexity of the iterative

noncoherent detection, which also consists of two parts.
The first part is imposed by the SISO-MSDSD detector.
According to [11], its complexity is dominated by the cal-
culation of eq. (12) in Section II-C. In order to evaluate 12

i
in eq. (12) once, a number of 4(D− i)+ 6 RMOs is required.

In more detail, the calculation of
∑D
κ=i+1 uiκaκ requires

4(D− i) RMOs and that of
∣∣uiiai+1v∗i + p∣∣2 requires 6 RMOs.

Then, during the SISO-MSDSD detection procedure, d2i in
eq. (12) has to be frequently updated. However, the number
of repeated implementations of eq. (12) is not a constant, and
is affected by the window-sizeD and the a priori information
IMSDSDA input to SISO-MSDSD. Hence, instead of formulat-
ing the complexity measurement metric of the SISO-MSDSD
part, we provide its practical simulation results in Fig. 16,
where different configurations of the detection window-
size D and a priori information amounts of IMSDSDA =

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 1.0]
are tested. It can be observed from Fig. 16 that the complexity
of SISO-MSDSD is dramatically increased by extending
the window-size, which is the major reason that we invoke
the dynamic window-size scheme in Section IV, as well as
in Fig. 15. Meanwhile, the complexity could be mitigated by
having high a priori information, which is actually associated
with a high Eb/N0 configuration.

FIGURE 16. Complexity of the SISO-MSDSD scheme.

The second part is imposed by theH-based BP polar decod-
ing. Since it belongs to BP algorithm, its complexity is related
to the average number of inner iterations Iinner and outer
iterations Iouter required for detecting one codeword. Its com-
plexity is also related to the average degree of check nodes d̄c.
According to [25], approximate O(Iouter IinnerN (N − K )
(d̄c − 2)) RMOs are required for the BP decoder to detect
a single codeword, where N , K are the codeword length
and number of information bits, respectively. In more detail,
the average number of Iinner and Iouter required for decoding a
polar codeword is affected by the practical Eb/N0 condition
and SISO-MSDSD window-size. Hence, we illustrate some
practical values of Iinner and Iouter in Table 2, where the
polar code configuration of C1 is employed. From this table
it is evident that along with an increase of the signal power,
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TABLE 2. Practical test of Iinner and Iouter during H-based BP polar
decoder.

the iterations required by BP decoding will be significantly
reduced.

Therefore, the entire complexity of the proposed iterative
noncoherent scheme can be approximated as

Citerative = O
(
Iouter Iinner (N − K )(d̄c − 2)

)
+ IouterCMSDSD. (19)

According to above, the iterative noncoherent detection
may result in amuch higher complexity compared to the basic
noncoherent detection, even dynamic window-size scheme is
exploited in the last one. However, the BP polar decoding
employed in iterative noncoherent detection can be imple-
mented in a fully parallel mode. In contrast, the SC polar
decoding employed in basic noncoherent detection has to be
executed in a serial mode. Hence, the proposed iterative non-
coherent detection is proper for applications with demands
both high performance and low processing latency, while
being tolerant of a high computational complexity.

VII. CONCLUSION
In this paper, we have extended the use of polar codes in cases
where accurate channel estimation is unfeasible, by propos-
ing noncoherent detection. We have first designed the basic
noncoherent detection scheme, where polar decoding is using
according to the SC algorithm. Then, in order to further
improve the performance of noncoherent detection, we have
applied iterative noncoherent detection, where the BP decod-
ing algorithm is employed. Furthermore, EXIT chart tool
has been invoked, which reveals that H-based BP decoding
outperforms G-based BP decoding in our scenarios. The
associated BER simulations confirm the efficiency of the
proposed noncoherent detection schemes. Complexity issues
have been investigated and a dynamic window-size detection
scheme has been proposed to reduce the system complexity.
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