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ABSTRACT Technologies fusing WiFi-based indoor positioning and pedestrian dead reckoning for indoor
target localization have already been proposed for a variety of occasions. Among them, the methods of
multisource fusion with particle filter performwell in a random noise environment. However, the positioning
accuracy can be significantly affected by the personnel density of the interest area. In this paper, we propose
a novel indoor collaborative positioning system which performs dynamic user pairing and adaptive particle-
pair filtering with the help of the Chirp acoustic signal distance measurement. The proposed scheme mainly
includes two parts in each time slot: first, the users are clustered into cells for dynamic user-pairing, and then
the adaptive particle-pair filter iterates the comprehensive weight to obtain the final positioning result. The
experiment results show that the proposed scheme can effectively solve the problem of the error increase
caused by the intensive personnel, and remarkably improve the indoor positioning accuracy in the crowded
public.

INDEX TERMS Indoor positioning, dynamic user pairing, acoustic distance measurement, adaptive
particle-pair filter.

I. INTRODUCTION
In recent years, with the continuous increase in the number
of giant buildings and underground malls, location based
service (LBS) in indoor condition has been receiving wide
attention among the society and academia. At present,
the existing indoor localization technologies aremainly based
on iBeacon, WiFi, Radio Frequency Identification (RFID),
visible light communications (VLC), ZigBee and UltraWide-
band (UWB) [1]–[5]. Detailed comparisons can be referred
in [1].

With the rapid advancement of intelligent terminals,
the existence of wireless Local Area Network (WLAN) has
become the infrastructure of large-scale buildings. Indoor
positioning technology based on WLAN is one of the
hotspots due to its relatively low cost and wide coverage
[6], [7], [8], and WiFi-based indoor positioning method is
typically complemented with other technologies such as
PDR, Kalman filter, or particle filter, etc. References [9]–[11]

proposed schemes that fusing WiFi location and other
positioning technologies by extended Kalman filter.
Reference [12] provided a study on the improvement of
particle filter for indoor positioning. The particle filter also
can be applied in various scenarios, such as in [13] that mobile
target tracking with particle filter can be realized underwater
by autonomous vehicle. Reference [14] introduced a map
matching technology using variations in the ambient mag-
netic field for indoor navigation. Reference [15] implemented
particle filter in road crack identification. Seeing the fusion
capability of the particle filter, we chose it to perform the
collaborative filtering in our system. To obtain a robust posi-
tioning performance, [16] introduced a system fusing UWB
sensor-based positioning solution with inertial measurement
unit (IMU) via an Extended Kalman Filter (EKF).

On some occasions reported in previous studies [17], [18],
however, the accuracy can not satisfy requirements of high
accuracy because of the low stability of the WiFi positioning.
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Especially under the personnel intensive condition, the block
of random moving dense personnel can cause loss, reflection
and other interference on the propagation of WiFi signal,
leading to extreme instability in accurate localization.

In this paper, we propose a novel system that transforms
the disadvantage of the dense personnel into the key to
eliminate the decrease of accuracy caused by the crowd,
where the particle-pair filter is introduced here to achieve the
purpose. First, positioning participants (users for short) are
selected and combined into user-pairs as many as possible
with inexistence of co-channel interference guaranteed. Then
the multisource information including PDR data,WiFi coarse
positioning result and the real-time distance measurement are
added into the improved system based on the conventional
particle filter algorithm. Under the condition of personnel
intensive, the system enhances the correction effect on inac-
curate WiFi positioning results and obtains more accurate
positioning results.

The rest of this paper is organized as follows: In section 2,
the system is constructed and the main infrastructures applied
in the system are introduced. Section 3 explains the dynamic
user pairing (DUP) algorithm and the adaptive particle-pair
filter respectively. In section 4, the experiments are built to
demonstrate the performance of the proposed system and
comparison are made between the proposed approach and
several relatedmethods. Section 5 depicts the implementation
and testing of the system. Finally, section 6 concludes the
paper.

II. SYSTEM OVERVIEW
In this section, first the system architecture of the proposed
scheme is stated. Then the infrastructures applied in the sys-
tem are respectively described in part B including: WiFi posi-
tioning module, trajectory forecasting module and distance
measurement module.

A. SYSTEM ARCHITECTURE
We implemented our proposed scheme in a system archi-
tecture that includes a server, N WiFi access hot spots
{AP1...APN } and U independent users noted as m ∈

{1, 2...,U}moving randomly in an indoor interest regionwith
an area of S. Each user is equipped with a intelligent terminal
utilized to complete two tasks: 1.collecting the received signal
strength indication (RSSI) and the IMU data, 2.transmitting
& receiving the Chirp signals for distance measurement. The
IMU data measured by the inertial measurement unit (IMU)
embedded in intelligent terminals, the RSS data and the
acoustic distance measurement are uploaded into the server
via APs which act as relays between the server and the users.
The server acts as the central processor completing the data
reception, the DUP, the adaptive particle-pair filtering and the
results provision.

Depicted in Fig.1, the DUP algorithm can be described
as the following process: At time slot T1, suppose that the
user A, B, and C are in the same cell, userB and userC are
selected as a user-pair and the distance SBCT1 between them are

FIGURE 1. The scene model of the indoor collaborative positioning
system.

measured by Chirp ranging. Their precise positioning results
are collaboratively obtained by adaptive particle-pair filter,
while the other users in the cell, like userA, are positioning
independently at this time slot. Then at time slot T2, the previ-
ous partnership will be dissolved and another user-pair such
as userA and userB is selected based on the real-time distance
between them. Processing by the adaptive particle-pair filter,
the outputs of the server are sent to terminals for display.

B. INFRASTRUCTURES APPLIED IN THE SYSTEM
1) WiFi POSITIONING MODULE
In the server, coarse positioning is completed by the
RSSI fingerprint based localization method pioneered by
Jian and Hao [19]. The process of coarse positioning includes
two phases [20]; the first phase is the offline stage whose
main task is to establish a WiFi fingerprinting database that
contains the RSSI on each reference spot collecting from the
WiFi access points (APs) existing nearby; the second phase
is the online phase. In this phase, coarse positioning results
will be acquired through the k-Nearest Neighbor (kNN) algo-
rithm. At time slot k , the WiFi positioning result of the user
m is noted as Yk (m)(m = 1...U ).

2) TRAJECTORY FORECASTING MODULE
Trajectory forecasting is achieved by PDR [21], [22]. Since
current intelligent mobile terminals are usually equipped with
the inertial measurement unit (IMU), i.e. accelerometer, gyro-
scope, PDR can be employed to infer the real-time trajectory
of human by the help of the IMU.

PDR automates the position prediction based on the pre-
vious known position, the distance traveled and direction of
travel. PDR position calculation formula can be expressed as
follows. (

xk+1
yk+1

)
=

(
xk
yk

)
+

(
1l × cosϕ
1l × sinϕ

)
(1)

where
(
xk
yk

)
is the coordinates of last location and 1l is

the step length and ϕ is the angle of walking direction.
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However, PDR can only offer the relative displacement and
rotation direction from the last state, as (1) shows. In order to
get the absolute trajectory of user, the intelligent terminal is
required to indicate a start or end point in floor plan. In addi-
tion, the main disadvantage of PDR is the accumulation of
drift error along with time, which makes the single PDR
algorithm not suitable for accurate indoor localization.

3) DISTANCE MEASUREMENT AND PROCESS MODULE
Once the server selects two adjacent users as a user-pair,
the distance measurement module is triggered to measure
the distance between the two users [23]. The Chirp signal is
utilized here to accomplish distance measurement owing to
its good frequency band utilization, strong anti-interference
and high accuracy which has been proven in [24]–[26]. The
theoretical ranging error of Chirp acoustic distance measure-
ment is only de = v/Fs ≈ 0.07m, so we consider the ranging
result Sk equivalent to the actual distance. The process of the
Chirp acoustic distance measurement between deviceA and
deviceB is shown in Fig. 2.

FIGURE 2. The principle of Chirp acoustic distance measurement.

The time that the acoustic wave spreads between two ter-
minals are measured and used to calculate the distance.

SABk = v ∗
(T4 − T1)− (T3 − T2)

2
(2)

where SABk stands for the distance between deviceA and
deviceB, T1 and T4 are the local time of deviceA, and T2 and
T3 are the local time of deviceB, and v is the speed of acoustic
wave spreading in the air which is around 340m/s.

III. ADAPTIVE PARTICLE-PAIR FILTERING BASED ON DUP
The whole system consists of five modules with unique algo-
rithms including three pre-existing algorithms and two novel
algorithms that we proposed. In the following paragraphs,
the novel algorithms will be expatiated respectively.

The algorithms are implemented in their belonging
modules on the server side.These Algorithms include:

1) WiFi positioning based on RSSI fingerprint database,
2) Dynamic user pairing,
3) Chirp acoustic distance measurement,
4) trajectory forecasting based on PDR method,
5) adaptive particle-pair filtering.
As depicted in Fig.3, first, based on the IMUmeasurement

data, the trajectory prediction of the user is generated through
the PDR algorithm and the coarse position is obtained by the
WiFi positioning scheme. Then user-pairs are selected and

FIGURE 3. The interior architecture of the indoor collaborative
positioning system.

allocated with distinguished channels of Chirp signal through
the DUP algorithm. Finally the distance measurement is
sent to the adaptive particle-pair filter along with the coarse
position and the predicted position, and the final positioning
results will be generated here.

A. DUP ALGORITHM
In each time slot, the algorithm can be boiled down into the
following two parts: user pairing and channel allocation for
cells. The FDMA of Chirp signal and the concept of user-pair
distance are introduced as follows:

1) FDMA OF CHIRP SIGNAL
The advantages of using Chirp signal for distance measure-
ment include high multipath resolution, strong noise immu-
nity and low transmitting power. Besides, Chirp signal also
has the superiorities of low cost, long transmission distance,
small volume and high speed for daily use.

The high-frequency section of the audible frequencies is
usually chosen for acoustic ranging, in which 6.5-18.5 kHz
is audible to human ears [27] while less noticeable. In order
to enable multiple user-pairs to perform acoustic ranging
meanwhile in a personnel intensive area, this algorithm takes
advantage of the bandwidth of Chirp signal in the frequency
domain, and segments the complete band into 5 subbands,
with 0.5kHz between each subband as a protection interval.
Therefore, 5 kinds of Chirp signal that can be distinguished by
handheld intelligent terminals are obtained. To avoid serious
error caused by co-channel interference, these 5 signals are
allocated to different user-pairs in the region in each timeslot.
The specific channel segmentation is shown in Table 1.

2) DEFINITION AND CALCULATION OF USER-PAIR DISTANCE
Enlightened by the advanced solution to resource allocation
using cellular networks [28], we propose the DUP algorithm
to realize cell clustering and optimal channel allocation of
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TABLE 1. Channel segmentation.

Chirp signals according to the user-pair distances. Therefore,
we first define the rule of user-pair distance.

For two user-pairs PM and PN ; PM is represented as
PM = {pa, pb}, where pa and pb represent the two
users; and PN is represented as PN = {pc, pd }, where
pc and pd represent the two users. The Euclidean distance
dmn (m, n ∈ {pa, pb, pc, pd },m 6= n) between any two users
among pa, pb, pc, pd is

dmn =
∣∣∣Yk (m) − Yk (n)∣∣∣ (m, n ∈ {pa, pb, pc, pd },m 6= n)

(3)

Therefore, the user-pair distance of PM and PN can be
defined as

DMN = min{dmn} (m, n ∈ {pa, pb, pc, pd },m 6= n) (4)

Since the system uses adaptive particle-pair filtering as
a significant method to improve the positioning accuracy,
the nearest two users are preferred to combine as a user-pair
in DUP. Many public indoor areas have the characteristic of
dense and uneven distribution of personnel, thus in order to
quickly select user-pairs as many as possible to performfilter-
ing collaboratively, Affinity Propagation (AP) [29], algorithm
is chosen to implement the initial clustering. Compared with
the classical clustering algorithms including K-means algo-
rithm, K-centers algorithm, CLARANS algorithm and so on,
AP algorithm has the following advantages:

1) AP algorithm does not need to establish the number of
final clustering families;

2) Compared with the classical K-means algorithm,
the existing data points are used as the final clustering
center instead of creating a new cluster center which
may not exist. It is suitable for the following pairing
methods: select the closest user to the cluster head and
complete the pairing;

3) The AP algorithm model is insensitive to the initial
value of the data;

4) The AP algorithm has no requirement for the symmetry
of the initial similarity matrix data;

5) Compared with the K-centers clustering method,
the squared error of the result is smaller. So this paper
uses AP clustering algorithm.

TheAP algorithm can be expressed by the following formulas
and the Euclidean distance is chosen to evaluate the similarity
in the AP algorithm.

1) Similarity matrix S:

s(m, n) = −||Y (m)
k − Y

(n)
k ||

2, ∀m, n ∈ {1, 2, ...,U},m 6= n

(5)

2) Calculation of the initial preference p1:

p1 = γ · median{s(m, n), ∀m, n ∈ {1, 2, ...,U},m 6= n}

(6)

where γ is a coefficient that needs to be adjusted according
to the actual situation and its value determines the number
of clusters. The optimal preference popt will be obtained by
iteration based on the correlation between the preference pi
and the number of user-pairs.
3) Responsibility Matrix R :

r(m, n) = s(m, n)−max
n′ 6=n
{a(m, n′)+s(m, n′)}, m 6=n (7)

r(n, n) = s(n, n)−max
n′ 6=n
{a(n, n′)+ s(n, n′)}, m = n (8)

4) Availability Matrix A :

a(m, n) = min
{
0, r(n, n)(o) +

∑
m′ 6=m,n

max{0, r(m′, n)(o)},

m 6= n (9)

a(n, n)(o) =
∑
m′ 6=n

max{0, r(m′, n)}, m = n (10)

Cluster centers generated through iterations are
Ovk (v = 1...V ), where V represents the number of clusters
based on the preference pi.

It is obvious that the number of clusters is negatively
related to the number of users in each cluster. Therefore,
we can control the result of clustering by iterating the prefer-
ence pi. Based on the principle of Voronoi diagram, the mid-
normals of the lines connecting adjacent cluster centers are
interconnected as shown in Fig.4(a), so the interest area can
be divided into V successive cells and each cell contains a
complete cluster, as depicted in Fig.4(b). In the later pro-
cess, we consider a cell as the minimum unit of user set to
complete the Chirp channel allocation and the performance
optimization.

FIGURE 4. (a) Cell division strategy based on the Voronoi diagram.
(b) Correlation between cells and clusters.
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Two users who have the shortest distance between them
are paired in each cell for the accuracy of acoustic distance
measurement. The adaptive particle-pair filter must be imple-
mented on users in the same cluster, besides the positioning
accuracy will be significantly improved with the increase of
filtering times according to the theory of particle filter. So we
select two users whose possibility to leave the correspond-
ing cluster in a time slot are lowest, that is, the user-pair
is constructed by each cluster center with its closest user.
We assumed that the clusterM contains I users, and the clus-
ter center OMk is stationary. In this cluster, we select the user
ε (ε ∈ 1...I ) who has the shortest distance dεM from OMk ,
and combine ε with OMk to build a user-pair PM which
performs the Chirp acoustic distance measurement and the
collaborative filtering in the current time slot. The distance
DMN between user-pairs PM and PN is calculated according
to (3) and (4), and DMN is used to determine whether the co-
channel interference exists between them. According to the
chromatic number algorithm proposed by [30], the channel
allocation method based on user-pair distance is proposed.

When the distance DMN between user-pairs PM and PN

is shorter than the co-channel distance l, the relationship
between PM and PN is marked as connected; otherwise,
disconnected. All user-pairs form a vertex set and all user
connection relations form a connection set, so a connected
graph G = (V ,E) is constructed, where V represents the
vertex set and E represents the connection set. Referred to
the chromatic number algorithm, the vertex set V is divided
into j same-color-blocks noted as S1, S2, ..., Sj which can be
colored respectively by colors 1#, 2#, ..., j#. That is, the vertex
chromatic number x(G) = j. x (G) represents the minimum
of Chirp channels that enable all user-pairs in the region to
perform distance measurement simultaneously. The criteria
for calculating the optimal preference is:

1) The initial p1 is the average of the similarity matrix
s(m, n);

2) x(G) is obtained through the chromatic number
algorithm;

3) It is known from the DUP algorithm that the number
of user-pairs has a positive correlation with the number
of Chirp channels required to guarantee no co-channel
interference in the region. Based on the correlation
between the number of chirp signals and the prefer-
ence |pi|, the optimal preference popt is iterated through
the following formula:

|pi+1| = α
[
x (G)− x(G)max

]
+ |pi| i=1...n (11)

where i represents the number of iterations; it is known
from the last paragraph that the initial preference p1
is the average of s(m, n), and the number of Chirp
channels x(G)max = 5. The coefficient of iteration
α ≈ 0.1. The algorithm terminates when x (G) =
x(G)max, and pi = pi+1 which derives the optimal
preference popt = pi. Finally, popt is used for cluster-
ing. After clustering, those 5 Chirp signals are utilized

for the channel allocation according to the chromatic
number algorithm.

B. ADAPTIVE PARTICLE-PAIR FILTER
Based on Bayesian theory, particle filter was first introduced
in [31] as an attempt to solve estimation tasks in the context
of state-space modeling for more general nonlinear and non-
Gaussian scenarios. Because precise positioning results can
not be obtained by any of the following methods alone,
we proposed adaptive particle-pair filter to fuse PDR data,
WiFi coarse positioning result and the real-time distance
measurement by conducting joint filtering for a pair of users
simultaneously.

1) BAYESIAN THEORY APPLIED TO MOTION TRACKING
In Bayesian filter method, the motion model of a user can be
established as the following form:

xk = fk (xk−1, ηk ) (12)
yk = hk (xk , vk ) (13)

where fk (·) and hk (·) are nonlinear functions. The random
vector xk is the state vector and yk corresponds to the obser-
vations. The dimensions of xk and yk can be different. ηk and
vk represent two independent noise sequences: state noise and
process noise.

In Bayesian theory point of view, the solution to the state
estimation is to recursively calculate the credibility of the
current state based on the previous series of existing data y1:k .
The credibility is the probability density p(xk |y1:k ), which
requires recursive calculations by two stages: forecast stage
and update stage.By the nature of Bayesian network and the
assumption of the first-order Markov process of the model,in
advance we can write

p(yk |xk , y1:k−1) = p(yk |xk ) (14)

and

p(xk |xk−1, y1:k−1) = p(xk |xk−1 ) (15)

• Stage 1: forecast stage p(xk |y1:k−1 ) can be obtained
from the probability density of the last time slot
p(xk−1 |y1:k−1 ) :

p(xk |y1:k−1 )

=

∫
p(xk , xk−1 |y1:k−1 )dxk−1

=

∫
p(xk |xk−1, y1:k−1)p(xk−1 |y1:k−1 )dxk−1

=

∫
p(xk |xk−1 )p(xk−1 |y1:k−1 )dxk−1 (16)

• Stage 2: update stage During this stage, the posterior
probability p(xk |y1:k ) will be obtained through the fol-
lowing equations by p(xk |y1:k−1 ) which indicates the
forecast of the state xk . With the measurement value in
the time slot k added, p(xk |y1:k ) serves as the modifica-
tion of the forecast, and later it will be substituted into
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the next forecast stage to form another recursion.

p(xk |y1:k ) =
p(yk |xk , y1:k−1)p(xk |y1:k−1 )

p(yk |y1:k−1 )

=
p(yk |xk )p(xk |y1:k−1 )

p(yk |y1:k−1 )
(17)

where the normalization constant is

p(yk |y1:k−1 ) =
∫
p(yk |xk )p(xk |y1:k−1 )dxk

= Zk (18)

We have used (14) in the deduction of (17) because accord-
ing to the measurement equation, the vector yk is only related
to the vector xk .
Indeed, the previous recursions can be compactly

expressed as

p(xk |y1:k )

=
p(yk |xk )

Zk︸ ︷︷ ︸
corrector

∫
p(xk |xk−1 )p(xk−1 |y1:k−1 )dxk−1︸ ︷︷ ︸

predictor

(19)

2) THE PRINCIPLE OF ADAPTIVE PARTICLE-PAIR FILTERING
We hypothesized that two users pa and pb walk independently
in the location region and they are selected as a user-pair
PM = {pa, pb} at the time slot k . Their motion models are
as follows:{

Xk = fk (Xk−1, ηk )
Yk = hk (Xk , vk )

motion model of pa (20){
X ′k = gk (X ′k−1, ηk )
Y ′k = zk (X ′k , vk )

motion model of pb (21)

where fk (·), hk (·), gk (·), and zk (·) are nonlinear functions. The
random vector Xk and X ′k are the state vectors corresponding
to the forecasted positions of pa and pb; Yk and Y ′k stand
for the observations i.e. the WiFi positioning results. The
dimensions of Xk and Yk can be different. Since the motion
model of pa and pb are of the same form, the following
description of Xk also applies to X ′k , similarly to Yk and Y ′k .
ηk and vk respectively represent state noise and process noise
which are two independent noise sequences.

For user pa of the user-pair PM = {pa, pb}, f (Xk ) is the
function to indicate the position coordinates of the state Xk ,
and p(Xk |Y1:k ) is the posterior probability density which
represents the credibility of the state Xk . Let X

(i)
k i ∈ (1 : N )

denote the state of the particle i, W (i)
k its weight, and N

the number of particles. The positioning result of pa can be
expressed as

E [f (Xk )] =
∫
f (Xk )p(Xk |Y1:k )dXk

=

∫
f (Xk )

p(Xk |Y1:k )
q(Xk |Y1:k )

q(Xk |Y1:k )dXk

=

∫
f (Xk )wk (Xk )q(Xk |Y1:k )dXk (22)

among the above equations

w(Xk ) =
p(Xk |Y1:k )
q(Xk |Y1:k )

(23)

Initially, the particles are equal-weighted samples from the
initial prior q(x0). At each time instant, the weight is recur-
sively calculated by the following procedure:

q(X1:k |Y1:k ) = q(X1:k−1 |Y1:k−1 )q(Xk |X1:k−1,Y1:k ) (24)

The recursive form of the posterior probability density func-
tion can be expressed as

p(X1:k |Y1:k ) =
p(Yk |X1:k ,Y1:k−1 )p(X1:k |Y1:k−1 )

p(Yk |Y1:k−1 )

=
p(Yk |Xk )p(Xk |Xk−1 )p(X1:k−1 |Y1:k−1 )

p(Yk |Y1:k−1 )
(25)

The recursive form of the weight of the particle can be
expressed as

w(i)
k = w(i)

k−1

p(Yk
∣∣∣X (i)

k )p(X (i)
k

∣∣∣X (i)
k−1 )

q(X (i)
k

∣∣∣X (i)
1:k−1,Y1:k )

= w(i)
k−1p(Yk

∣∣∣X (i)
k ) (26)

where the proposal distribution

q(Xk |X1:k−1,Y1:k ) = q(Xk |X1:k−1,Yk )

= p(Xk |X1:k−1 ) (27)

The integral calculation of (22) can be solved by the Monte
Carlo method, so that

E [f (Xk )] '
1
N

∑N

i=1
w(X (i)

k )f (X (i)
k )

=

∑N
i=1 w(X

(i)
k )f (X (i)

k )∑N
i=1 w(X

(i)
k )

(28)

The single-user weight of pa, w(X
(i)
k ) can be obtained by

recursion as (26):

w(i)
k = w(i)

k−1p(Yk
∣∣∣X (i)

k ) =
1
N

k∏
n=2

p(Yn
∣∣∣X (i)

n ) (29)

Equally, the corresponding notations X ′k , X ′
(j)
k , W ′(j)k , and N

are declared for user pb and the single-user weight of user pb
can be obtained.

For the user-pair consisting of pa and pb, the initial particle
distributions of them are set as independent Gaussian distri-
butions with different variances and means, which are

X (i)
1 ∼ N (µ1, σ1)

X ′(j)1 ∼ N (µ′1, σ
′
1) (30)

We assign the current WiFi positioning results Yk and Y ′k
of pa and pb to µk , µ′k respectively. According to (30),
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we can get the particle distributions of pa and pb at the time
slot k as

X (i)
k ∼ N (µk , σk )

X ′(j)k ∼ N (µ′k , σ
′
k ) (31)

where

µk = Xk + ζk
µ′k = X ′k + δk

and ζk denotes the error vector between the PDR forecasted
position of pa and its WiFi positioning result, similarly to δk
of pb.

Each particle of pa can form a particle pair with each parti-
cle of pb, that is, a total of N 2 particle pairs will be generated
in a model of two existing users. Due to the independence
between pa and pb, the probability density of the distance
between the particle i of pa and the particle j of pb can be
expressed as

p(d (ij)k ) = p(
∣∣∣X (i)

k − X
′(j)
k

∣∣∣) (32)

Then, according to ‘‘the difference between two inde-
pendent Gaussian distributions still obeys Gaussian distribu-
tion’’, so the distribution of d (ij)k can be obtained:

d (ij)k =

∣∣∣X (i)
k − X

′(j)
k

∣∣∣
∼ N (

∣∣µk − µ′k ∣∣ , σk + σ ′k ) (d (ij)k ≥ 0) (33)

As shown in the Fig.5, at the time slot k , the distance
between users pa and pb is noted as Sabk which is measured by
the Chirp acoustic ranging technology; i, j, and j+1 represent
different particles of pa and pb; d

(ij)
k stands for the distance

between particle i and j. According to the principle of distance
measurement with Chirp acoustic signal, the maximum value
of Sabk is the maximum distance that the acoustic signal
can reach (about 10m). Focusing on the particle of pa, let i
combines with every particle j (j = 1...N ) of pb so a set of
N particle-pairs, which is noted as χ (i)

k , will be obtained, and
the weight of χ (i)

k is ϕ(i)k . Note that the posterior probability
density of χ (i)

k equals the mean posterior probability density
of each d (ij)k (j = 1...N ) based on the distance Sabk and the

FIGURE 5. The schematic diagram of the particle pairing.

coarse position of pa that is Yk . The particle-pair weight ϕ
(i)
k

can be expressed as

ϕ
(i)
k = p(χ (i)

k

∣∣∣Sab1:k ,Y1:k )
=

1
N

N∑
j=1

p(d (ij)k

∣∣∣Sabk ,Yk )
=

1
N

N∑
j=1

p(
∣∣∣X (i)

k − X
′(j)
k

∣∣∣ ∣∣∣Sabk ,Yk )
= p(

∑N
j=1

∣∣∣X (i)
k − X

′(j)
k

∣∣∣
N

∣∣∣Sabk ,Yk )
= ϕ

(i)
k−1 · p(S

ab
k

∣∣∣χ (i)
k ,Yk ) (34)

We define p(Sabk

∣∣∣χ (i)
k ,Yk ) as

p(Sabk
∣∣∣χ (i)
k ,Yk )=

1
√
2πσ

exp

− 1
2σ 2 · (

1
N

N∑
j=1

d (ij)k − µ)
2


(35)

where

µ = Sk

Furthermore, the sharper the distribution of pa, the greater
the distinction among the particle pair cloud. That is, the vari-
ance of (35) affects the degree of discrimination of particle-
pair weights. In order to make the novel PF effects better,
we tend to adopt the following strategies: decreasing σ to
increase the confidence of particles with high similarity and
to reduce the confidence of particles with low similarity. After
repeated experiments, we choose σ = 0.05.Then the particle-
pair weight ϕ(i)k is iterated by

ϕ
(i)
k = ϕ

(i)
k−1p(Sk

∣∣∣χ (i)
k ,Yk )

= ϕ
(i)
k−1 ·

1
√
2πσ

exp

− 1
2σ 2 ·(

1
N

N∑
j=1

d (ij)k − Sk )
2

 (36)

When a user pc moves distantly from the user community,
the clustering procedure may assign it alone into a cell, which
causes pc unable to combine with other users as user-pairs.
Aimed at this case, pc is considered as a user-pair Pcck itself.
For the user-pair Pcck , d

(ii)
k is considered to be a constant value

close to infinitesimal on any particle im of pc. That is

Scck = 0 ≈ d (i)k (37)

Therefore, ϕ(im)k is a constant value at a specific time slot k

ϕ
(i)
k = ϕ

(i)
k−1 �

1
√
2πσ

exp(−
(d (ii)k − S

cc
k )

2

2σ 2 )

= ϕ
(i)
1

(
1

√
2πσ

)k−1
=

1

N
[√

2πσ
]k−1 (38)
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According to the collaborative filtering pattern we pro-
posed, the comprehensive weight υ(i)k of particle i is the prod-
uct of the single-user weight w(i)

k and the user-pair weight ϕ(i)k
as

υ
(i)
k = w(i)

k · ϕ
(i)
k (39)

known by(26)and(36),

w(i)
k = w(i)

k−1p(Yk
∣∣∣X (i)

k )

ϕ
(i)
k = ϕ

(i)
k−1p(Sk

∣∣∣χ (i)
k ,Yk ) (40)

So the comprehensive weight is expressed as

υ
(i)
k = w(i)

k · ϕ
(i)
k

= w(i)
k−1p(Yk

∣∣∣X (i)
k ) · ϕ(i)k−1p(Sk

∣∣∣χ (i)
k ,Yk )

= υ
(i)
k−1 ·

p(X (i)
k ,Yk )

p(X (i)
k )

·
p(X (i)

k ,X
′
k ,Yk , Sk )

p(X (i)
k ,X

′
k ,Yk )

= υ
(i)
k−1 ·

p(X (i)
k ,X

′
k ,Yk , Sk )

p(X (i)
k )p(X ′k )

= υ
(i)
k−1p(Sk ,Yk

∣∣∣χ (i)
k ) (41)

Then υ(i)k is normalized as

ϑ
(i)
k =

υ
(i)
k

N∑
i=1
υ
(i)
k

(42)

The final filtering result output by the adaptive particle-pair
filter is

E [f (Xk )] =
N∑
i=1

ϑ(X (i)
k )f (X (i)

k ) (43)

For the user-pair pcck ,

υ
(i)
k = w(i)

k · ϕ
(i)
k

=
w(i)
k

N
[√

2πσ
]k−1 (44)

After normalization,

ϑ
(i)
k =

υ
((i)
k

N∑
i=1
υ
(i)
k

=
w(i)
k

N∑
i=1

w(i)
k

= W (X (i)
k ) (45)

The filtering result of pa, that is, the final positioning result
will be

E [f (Xk )] =
N∑
i=1

W (X (i)
k )f (X (i)

k ) (46)

where W (X (i)
k ) is the normalized weight of w(i)

k .

Then the resampling is performed on particle set
{
i, υ(i)k

}
once a positioning process is completed, and the new particle
set
{
i′, 1/N

}
is obtained for the next positioning process.

IV. IMPLEMENTATION AND EVALUATION
A. SYSTEM IMPLEMENTATION
We design the indoor collaborative positioning system based
on the proposed algorithm. In this system, RSSI of mobile
terminals are transmitted to the server, Media Access Control
(MAC) Address of them are collected by AP groups, and
acceleration and deflection information of users are detected
by the IMU of their intelligent terminals. Chirp acoustic
distance measurement is realized between two terminals that
belong to the same user-pair, and fingerprint matching of
the coarse positioning, dynamic user pairing and particle-
pair filter are all realized in the server. The indoor collabo-
rative positioning system is mainly composed of three parts,
as shown in Fig.6.

FIGURE 6. Systematic architecture diagram of the indoor collaborative
positioning system.

1) Mobile terminal: As the client-side, mobile terminals
usually carry Android or iOS system which have IMU
for PDR including acceleration sensors and geomag-
netic sensors. During the positioning process, the termi-
nals need to complete the following tasks: continuously
collecting the information from the sensor and trans-
mitting it to the server in real time; booting the WiFi
positioningmodule to enable theAP group to obtain the
RSSI of the terminals; receiving the positioning coordi-
nates from the server feedback and displaying them on
the terminals; and when the collaborative positioning
process is turned on, the terminals perform the distance
measurement between users according to instructions
from the server.

2) Access Point (AP) group: AP represents the router that
connects multiple users’ terminals. The mobile termi-
nal receives the electromagnetic wave transmitted by
the AP group and detects the RSSI matrix as the loca-
tion fingerprint information for the WiFi coarse posi-
tioning. In this paper, the routing development board
MT7620A which is equipped with OpenWrt system is
utilized to analyse the performance of the WiFi coarse
positioning, and it is called a intelligent AP. The main

5802 VOLUME 7, 2019



X. Lu et al.: Indoor Collaborative Positioning With Adaptive Particle-Pair Filtering Based on Dynamic User Pairing

work of the AP group in the positioning system is to
transmit information.

3) Server: At the server-side, the information obtained by
AP group and intelligent terminals are used to carry out
calculation, and the adaptive particle-pair filter and the
dynamic user pairing method are completed. If a intel-
ligent terminal is not connected to the WiFi network,
the data transmission can still be completed through the
mobile network.

As shown in Fig.7, before the positioning operation,
the client-side has been realized in the Android system of
intelligent terminals, the server-side has been realized in the
Windows system on computer and AP group is already set on.
After the server obtains the WiFi positioning coordinates of
the users, users are clustered according to the dynamic user-
pairing algorithm. After the user-pairs are formed, the two
users in each user-pair are coordinated by the server for Chirp
acoustic ranging. The server obtains acoustic ranging results
and PDR information of all users, then runs particle-pair
filtering algorithm proposed in this paper. Finally, the cooper-
ative location results are sent to each client-side, and the final
location results are displayed on the map stored in advance on
the client-side. TCP protocol is used for transmit information
between the client-side and the server-side.

FIGURE 7. Two mobile terminals simulate two users, MT7620A is used as
an AP and the computer is the server.

B. EVALUATION METHODOLOGY
The experiments are conducted in the certain indoor region of
50× 50m2in the main building of Xidian University. Fig.8 is
the map of the experiment region with the distribution of the
intelligent Access Points (AP) and the reference points (RP)

shown in. The uniformly distributed red points represent
different reference points, and 52 APs are located in the
edges of the region. In advance, an Android smartphone is
placed in each RP in sequence to collect RSSI of the AP
group and a fingerprint database is established and saved in
the server-side. It is known that many objects are placed in
the laboratories and the corridors outside the laboratories are
filled with passerby who walk frequently, which conforms to
the complex indoor environment of the proposed algorithm.

FIGURE 8. Distribution of AP and reference points in laboratory.

200 experiment participants each carries anAndroid smart-
phone are walking randomly at the speed of 1 m/s in the
experiment region. Fig.9 shows the distribution of the exper-
iment participants at a moment.

FIGURE 9. 200 users random distribution diagram.

In the process of experiments, a target user performs uni-
form motion along a specific test route shown in Fig.10 while
other users are moving randomly. The motion model of the
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FIGURE 10. The test route of the target user.

target users is

Xk |Xk−1 ∼ N (Xk−1 +1l, ε)

where 1l is the footstep length of the average person, and
ε means the state noise of PDR equation. The details of the
experiment parameters are shown in Table 2.

TABLE 2. Experiment parameters.

In order to comprehensively analyze the performance of
the indoor collaborative positioning system, two types of
positioning error are presented. When a user requests to
obtain his current location information at a certain location in
the experimental area, the system automatically calculates the
location of the user for 24 times and output the average value
of these positioning results obtained from the 24 times as
the user’s final positioning results. Therefore, the definition
of the ‘‘average positioning error’’ is: the average of the
distance difference between the 24 positioning results and
the actual position. ‘‘overall positioning error’’ is noted as
the evaluation of the overall performance of a positioning
algorithm. The definition of the overall positioning error is
the average of the positioning errors of the users involved
in the experiment. Fig.11 shows that the average positioning
error decreases with the increase of the size of the particle
set applied in the filter in general, which coincides with the
Monte Carlo theory. However, as the number of particles
increases, it has less influence on the performance of the sys-
tem, besides particle redundancy will make the localization
process complicated and time-consuming. Here we consider
the relationship between the average positioning error and the

FIGURE 11. The overall positioning error of the proposed scheme vs. the
number of particles applied in the adaptive particle-pair filter.

number of particles, thus select the size of the particle set to
be 40.

C. EXPERIMENTAL RESULTS AND COMPARISON WITH
RELATED TECHNOLOGIES
Fig.12(a)-(c) depict the process of dynamic user-pairing in a
time slot. As shown in Fig.12(a), the participants are divided
into several clusters through the clustering approach. Then
the user-pairs each consisted of a cluster center represented
by red star and its nearest user represented by black star is
generated as Fig.12(b). As shown in Fig.12(c), the cells are
allocated with 5 colors standing for different channels.

Fig.13 depicts the trace tracks of the target user when using
different positioning methods. Obviously, the performance
of PDR is the worst since its positioning accuracy decreases
rapidly over time, whereas the track of the target user group
using the proposed scheme is remarkably close to the real
trajectory shown in Fig.10.

The CDF diagrams of average positioning errors of six
different technologies are generated, so the comparison of the
average positioning error between different technologies can
be obtained from Fig.14. It can be observed that more than
78% average positioning error is less than 0.5m. Besides,
compared with the traditional KNN+ PDR+ particle filter
positioning scheme, the probability of the average positioning
error less than 0.5m is increased by 24%, and the probability
of error less than 0.8m is increased by 13%.

The performances which are evaluated by the overall posi-
tioning error of the proposed system and some related meth-
ods can be sketched as Table 3.

Fig.15 shows the fluctuations of performance of our pro-
posed system and the single user particle filter based posi-
tioning scheme at different density of personnel existing in
the interest area. From the figure we can see that under the
low density of personnel environment, the overall positioning
errors of these two schemes are roughly similar. With the
increase of the personnel density from 0.04 person per square
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FIGURE 12. (a) The clusters of users. (b) The selected user-pairs. (c) The channel allocation of cells.

FIGURE 13. Positioning trace of the target user by five different method.

TABLE 3. Overall positioning error of a few technologies.

meter to 0.4 person per square meter, the overall positioning
error of the proposed scheme increases 0.57m, whereas the
other increases 1.77m. Therefore, it can be concluded that the
robustness of the proposed method against dense personnel
interference has a very superior performance.

It can be seen from the analysis of several experimental
results that the positioning accuracy of the system is also
affected by the accuracy of the PDR prediction, as shown
in Fig.16. Obviously, because that the overall positioning
error increases with the variance of PDR equation, the accu-
racy has a negative correlation with the variance of PDR
equation which determines the error of PDR. And it can
be observed from Fig.16 that the proposed scheme is less
affected by the error of PDR than the single user particle
filter, whichmeans our indoor positioning system has a strong
adaptability on different qualities of intelligent terminals.

FIGURE 14. Comparison of average positioning error among different
schemes.

FIGURE 15. Overall positioning error at different density of personnel.

D. THE ANALYSIS OF THE PERFORMANCE OF INDOOR
COLLABORATIVE POSITIONING SYSTEM
In order to evaluate the performance of the indoor
collaborative positioning algorithm, the time consumption
of all the processes in the positioning system are separately
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FIGURE 16. Overall positioning error vs. the error of PDR.

measured during the experiments, including the WiFi
positioning method, the dynamic user pairing algorithm,
the Chirp acoustic ranging process and the particle-pair filter.
During the experiments, the number of reference points is
64 and the number of users is 100. The measurement results
are shown in Table 4. As can be seen from Table 4, the time
consumption of each process of the positioning system is
extremely short, which fully satisfies the real-time perfor-
mance of the positioning system.

TABLE 4. Time consumption of processes in the positioning system.

Different performance of the positioning accuracy caused
by different walking speed of the users are also measured
during the experiments. When the walking speed of the users
are 1 m/s, 2 m/s, 3 m/s and 4 m/s, the real-time positioning
error are shown in Table 5. According to the data, the walking
speed of normal adults is 2 m/s. In the actual environment,
the users’ walking speed are set to 1 to 4 m/s. It can be
seen from Table 5 that, although the positioning error of the
system increases with the user’s walking speed, the average
positioning error of the positioning system is only 0.530 m

TABLE 5. Real-time positioning performance.

when the user’s walking speed is 4 m/s. To sum up, the posi-
tioning performance of the proposed algorithm is better than
most positioning technologies, so the system can be called an
accurate indoor positioning system.

V. CONCLUSIONS
In this paper, we have proposed a novel and efficient scheme
which constructs user-pairing dynamically and fuses the
WiFi-based indoor positioning, PDR and Chirp acoustic
signal distance measurement with the adaptive particle-pair
filter. Aiming at the obstacle that the density of personnel seri-
ously affects the accuracy of WiFi positioning, the algorithm
specializes in fusing the multisource information to obtain
more accurate location information in a collaborative pattern
of positioning in a random noise environment.

Repeated experiments on a actual scenario demonstrate
that, our proposed approach addressed the decrease of posi-
tioning accuracy caused by the intensive personnel in the
interest area. The overall error of the proposed positioning
system is 0.36 m, which is nearly 3 and 2 times smaller
than that of WiFi-based positioning and single user particle
filter positioning system respectively. In summary, the overall
accuracy of the proposed system canmeet the requirement for
high precision localization and tracking under the condition
of personnel intensive.

REFERENCES
[1] N. Ul Hassan, A. Naeem, M. A. Pasha, T. Jadoon, and C. Yuen, ‘‘Indoor

positioning using visible LED lights: A survey,’’ ACM Comput. Surv.,
vol. 48, pp. 1–32, 2015, Art. no. 20.

[2] C. Yang and H.-R. Shao, ‘‘WiFi-based indoor positioning,’’ IEEE
Commun. Mag., vol. 53, no. 3, pp. 150–157, Mar. 2015.

[3] X.-Y. Lin, T.-W. Ho, C.-C. Fang, Z.-S. Yen, B.-J. Yang, and F. Lai,
‘‘A mobile indoor positioning system based on iBeacon technology,’’ in
Proc. IEEE EMBC, Milan, Italy, Aug. 2015, pp. 4970–4973.

[4] C.-H. Huang, L.-H. Lee, C. C. Ho, L.-L. Wu, and Z.-H. Lai, ‘‘Real-time
RFID indoor positioning system based on Kalman-filter drift removal
and Heron-bilateration location estimation,’’ IEEE Trans. Instrum. Meas.,
vol. 64, no. 3, pp. 728–739, Mar. 2015.

[5] R. Harle, ‘‘A survey of indoor inertial positioning systems for pedestrians,’’
IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1281–1293, Jul. 2013.

[6] X. Du, K. Yang, and D. Zhou, ‘‘Mapsense: Mitigating inconsistent WiFi
signals using signal patterns and pathway map for indoor positioning,’’
IEEE Internet Things J., to be published.

[7] C. Park and S. H. Rhee, ‘‘Indoor positioning using Wi-Fi fingerprint with
signal clustering,’’ in Proc. IEEE ICTC, Jeju, South Korea, Oct. 2017,
pp. 820–822.

[8] X. Du and K. Yang, ‘‘A map-assisted WiFi AP placement algorithm
enabling mobile device’s indoor positioning,’’ IEEE Syst. J., vol. 11, no. 3,
pp. 1467–1475, Sep. 2017.

[9] M. Zhang, W. Shen, Z. Yao, and J. Zhu, ‘‘Multiple information fusion
indoor location algorithm based on WiFi and improved PDR,’’ in Proc.
IEEE CCC, Chengdu, China, Jul. 2016, pp. 5086–5092.

[10] H. Xujian and W. Hao, ‘‘WiFi indoor positioning algorithm based on
improved Kalman filtering,’’ in Proc. IEEE ICITBS, Changsha, China,
Dec. 2016, pp. 349–352.

[11] H. Nurminen, M. Raitoharju, and R. Piché, ‘‘An efficient indoor position-
ing particle filter using a floor-plan based proposal distribution,’’ in Proc.
IEEE FUSION, Heidelberg, Germany, Jul. 2016, pp. 541–548.

[12] Y. Zhang, Y. Zhu, F. Yan, L. Shen, and T. Song, ‘‘Indoor positioning
and tracking using particle filters with suboptimal importance density,’’
in Proc. IEEE VTC-Fall, Montreal, QC, Canada, Sep. 2016, pp. 1–5.

[13] I. Masmitja, P. J. Bouvet, S. Gomariz, J. Aguzzi, and J. del Rio, ‘‘Underwa-
ter mobile target trackingwith particle filter using an autonomous vehicle,’’
in Proc. IEEE ENC, Helsinki, Finland, Jun. 2016, pp. 1–9.

5806 VOLUME 7, 2019



X. Lu et al.: Indoor Collaborative Positioning With Adaptive Particle-Pair Filtering Based on Dynamic User Pairing

[14] N. Hassan, S. Mathavan, and K. Kamal, ‘‘Road crack detection using
the particle filter,’’ in Proc. IEEE ICAC, Huddersfield, U.K., Sep. 2017,
pp. 1–6.

[15] L. Yao, Y.-W.A.Wu, L. Yao, and Z. Z. Liao, ‘‘An integrated IMU andUWB
sensor based indoor positioning system,’’ in Proc. IEEE IPIN, Sapporo,
Japan, Sep. 2017, pp. 1–8.

[16] W. Xue, W. Qiu, X. Hua, and K. Yu, ‘‘Improved Wi-Fi RSSI mea-
surement for indoor localization,’’ IEEE Sensors J., vol. 17, no. 7,
pp. 2224–2230, Apr. 2017.

[17] T. Parthornratt and K. Techakittiroj, ‘‘Improving accuracy of WiFi posi-
tioning system by using geographical information system (GIS),’’ in
Proc. IEEE Wireless Telecommun. Symp., Pomana, CA, USA, Apr. 2006,
pp. 1–6.

[18] P. Bahl and V. N. Padmanabhan, ‘‘RADAR: An in-building RF-based user
location and tracking system,’’ in Proc. IEEE INFOCOM, Tel Aviv, Israel,
vol. 2, Mar. 2000, pp. 775–784.

[19] H. X. Jian and W. Hao, ‘‘WiFi indoor location optimization method based
on position fingerprint algorithm,’’ in Proc. IEEE ICSGEA, Changsha,
China, May 2017, pp. 585–588.

[20] J. Lategahn, M. Müller, and C. Röhrig, ‘‘Robust pedestrian localization in
indoor environments with an IMU aided TDoA system,’’ in Proc. IPIN,
Busan, South Korea, 2014, pp. 465–472.

[21] C. Huang, S. He, Z. Jiang, C. Li, Y. Wang, and X. Wang, ‘‘Indoor
positioning system based on improved PDR and magnetic calibration
using smartphone,’’ in Proc. PIMRC, Washington, DC, USA, 2014,
pp. 2099–2103.

[22] Z. Yang, X. Feng, and Q. Zhang, ‘‘Adometer: Push the limit of pedestrian
indoor localization through cooperation,’’ IEEE Trans. Mobile Comput.,
vol. 13, no. 11, pp. 2473–2483, Nov. 2014.

[23] A. Springer, W. Gugler, M. Huemer, L. Reindl, C. C. W. Ruppel, and
R. Weigel, ‘‘Spread spectrum communications using chirp signals,’’ in
Proc. IEEE EUROCOMM, Munich, Germany, May 2000, pp. 166–170.

[24] C.Wang, Z. Zhang, L. Wu, and J. Dang, ‘‘High-precision multiple-antenna
indoor positioning system based on chirp signal,’’ in Proc. IEEE WCSP,
Nanjing, China, Oct. 2017, pp. 1–5.

[25] P. Zietek, J. Kolakowski, and J. Modelski, ‘‘Improved method for TDOA
estimation with chirp signals,’’ in Proc. IEEE Eur. Microw. Conf.,
Manchester, U.K., Oct. 2011, pp. 83–86.

[26] H. Farrokhi, ‘‘TOA estimation using MUSIC super-resolution techniques
for an indoor audible chirp ranging system,’’ in Proc. IEEE Int. Conf.
Signal Process. Commun., Dubai, United Arab Emirates, Nov. 2007,
pp. 987–990.

[27] X. Ge, J. Yang, H. Gharavi, and Y. Sun, ‘‘Energy efficiency challenges
of 5G small cell networks,’’ IEEE Commun. Mag., vol. 55, no. 5,
pp. 184–191, May 2017.

[28] B. Gui and Q. Shen, ‘‘Research on emotional word clustering based
on affinity propagation,’’ in Proc. IEEE CIS, Hong Kong, Dec. 2017,
pp. 151–154.

[29] C. Liu, R. Hey, and W. Wang, ‘‘K-AP clustering algorithm for large scale
dataset,’’ in Proc. IEEE Int. Workshop Complex. Data Mining, Nanjing,
Jiangsu, Sep. 2011, pp. 87–89.

[30] A. G. Ponce, J. R. Marcial-Romero, J. A. Henrández, and G. De Ita,
‘‘An algorithm to approximate the chromatic number of graphs,’’ in Proc.
IEEE CONIELECOMP, Cholula, Puebla, Feb. 2015, pp. 110–115.

[31] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, ‘‘Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,’’ IEE Proc. F-Radar
Signal Process., vol. 140, no. 2, pp. 107–113, Apr. 1993.

XIAOFENG LU received the B.Sc. degree from
Sichuan University, Chengdu, China, in 1996,
the M.Sc. degree from Hunan University,
Changsha, China, in 1999, and the Ph.D. degree
in communication and information systems from
the Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2006. From 1999 to 2003,
he was a Research and Development Engineer
with the Wuhan Research Institute of Post and
Telecommunications. He is currently an Associate

Professor with the State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an, China. His main research interests lie in the area
of broadband wireless communications, including resource allocation and
virtualization, MU-MIMO, and OFDMA.

KUN YANG received the the M.Sc. and B.Sc.
degrees from the Computer Science Department,
Jilin University, China, and Ph.D. degree from the
Department of Electronic and Electrical Engineer-
ing, University College London (UCL), U.K. He
is currently a Full Professor with the School of
Computer Science and Electronic Engineering,
University of Essex, U.K. Before joining the Uni-
versity of Essex, in 2003, he was with UCL on sev-
eral European Union research projects for several

years. His main research interests include heterogeneous wireless networks,
fixed mobile convergence, future Internet technology and network virtual-
ization, cloud computing. He has published over 60 journal papers. He is a
Senior Member of the IEEE and a Fellow of IET. He serves on the editorial
boards of both the IEEE and non-IEEE journals.

JIAYU LIU was born in Shaanxi, China. She
received the B.Sc. degree in communication engi-
neering from Xidian University, Xi’an, China,
in 2014, where she is currently pursuing the M.Sc.
degree in communication and information sys-
tem with the State Key Laboratory of Integrated
Service Networks. Her research interests include
indoor localization, machine learning, and collab-
orative filtering system for LBS.

CHANGLIN YANG was born in Henan, China.
He received the B.Sc. degree in electronic infor-
mation engineering from Zhengzhou University,
Zhengzhou, China, in 2016. He is currently pursu-
ing the M.Sc. degree in electronic and communi-
cation engineering with the State Key Laboratory
of Integrated Service Networks, Xidian Univer-
sity, Xi’an. His research interests include Indoor
localization, software-defined wireless network,
and LBS.

ZIBO ZHANG was born in Anhui, China.
He received the B.Sc. degree in electronic infor-
mation engineering fromXidian University, Xi’an,
China, in 2015, and the M.Sc. degree in elec-
tronic and communication engineering from the
State Key Laboratory of Integrated Service Net-
works, Xidian University. His research interests
include indoor localization, android application
development, software-defined wireless network,
and LBS.

HAILIN ZHANG received the B.S. and M.S.
degrees from Northwestern Polytechnic Univer-
sity, Xi’an, China, in 1985 and 1988, respectively,
and the Ph.D. degree from Xidian University,
Xi’an, in 1991, where he is currently a Full Pro-
fessor and the Head of the School of Telecom-
munications Engineering. His main research inter-
ests include the area of broadband wireless com-
munications, including massive MIMO, OFDM,
and space-time coding. He has recently published

78 papers in telecommunications journals and proceedings.

VOLUME 7, 2019 5807


	INTRODUCTION
	SYSTEM OVERVIEW
	SYSTEM ARCHITECTURE
	INFRASTRUCTURES APPLIED IN THE SYSTEM
	WiFi POSITIONING MODULE
	TRAJECTORY FORECASTING MODULE
	DISTANCE MEASUREMENT AND PROCESS MODULE


	ADAPTIVE PARTICLE-PAIR FILTERING BASED ON DUP
	DUP ALGORITHM
	FDMA OF CHIRP SIGNAL
	DEFINITION AND CALCULATION OF USER-PAIR DISTANCE

	ADAPTIVE PARTICLE-PAIR FILTER
	BAYESIAN THEORY APPLIED TO MOTION TRACKING
	THE PRINCIPLE OF ADAPTIVE PARTICLE-PAIR FILTERING


	IMPLEMENTATION AND EVALUATION
	SYSTEM IMPLEMENTATION
	EVALUATION METHODOLOGY
	EXPERIMENTAL RESULTS AND COMPARISON WITH RELATED TECHNOLOGIES
	THE ANALYSIS OF THE PERFORMANCE OF INDOOR COLLABORATIVE POSITIONING SYSTEM

	CONCLUSIONS
	REFERENCES
	Biographies
	XIAOFENG LU
	KUN YANG
	JIAYU LIU
	CHANGLIN YANG
	ZIBO ZHANG
	HAILIN ZHANG


