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ABSTRACT An input vector composed of various features plays an important role in short-term traffic
forecasting. However, there is limited research on the optimal feature selection of an input vector for a certain
forecasting task. To fill the gap, this paper proposes a cohesion-based heuristic feature selection method by
analyzing the nature of the forecasting methods. This method is able to determine which features should
be contained in an input vector to make a forecasting algorithm perform better. The proposed method is
demonstrated in two experiments based on the empirical traffic flow data. The results show that the method
is able to improve the performances of the short-term traffic forecasting algorithms. It is then suggested to
consider the proposed method as a preprocessing procedure in practical forecasting applications.

INDEX TERMS Traffic flow, short-term forecasting, optimal feature selection, input vector.

I. INTRODUCTION
Short-term traffic forecasting is a basic and important part
of intelligent transportation systems. Traffic managers make
use of it to drive traffic control and guidance strategies, while
travelers can benefit from it in making route choices.

By definition, short-term traffic forecasting is the pro-
cess to predict key traffic parameters such as speed, flow,
occupancy or travel time, with a forecasting horizon typ-
ically ranging from 5 to 30 minutes at specific locations.
The general form of the traffic forecasting problem can be
expressed as:

y(t + 1) = f (x(t)) (1)

where x(t) denotes the traffic features available at time t . Nor-
mally, it includes data elements that are assumed to influence
the target traffic feature. If only time series is considered,
x(t) usually includes {y(t), y(t − 1), . . . , y(t − n)}, where n
is a measure of the time history. In some spatial temporal
forecasting models, x(t) includes traffic data not only from
the link of interest, but also from related links that are con-
sidered to affect traffic evolution of the target link. In the
field of short-term traffic forecasting, x(t) is usually called
a ‘‘input vector’’. The function f (·) in Equation 1 defines the
relationship between input vectors and output results depicted
by using a forecasting model. This relationship can be

depicted in the form of mathematical equations, or so-called
‘‘black-box’’ nonparametric mapping models.

In the field of traffic forecasting, the forecasting algorithms
have been widely studied [1]–[6], which is a key that deter-
mines the forecasting results. Beyond that, the input vector
is another key, i.e., inappropriately selected input vectors
easily result in non-ideal forecasting results. Unfortunately,
there exist few works focusing on ‘‘how to determine the
input vector’’, as it will be shown in the following section
of literature review.

To facilitate the research regarding feature selection, this
paper proposes a cohesion-based feature selection method
for short-term traffic flow forecasting. Experiments based on
real-world data are conducted, and the results show that the
proposed method can reduce the forecasting error of four
widely used forecasting methods. The proposed method can
be treated as a data preprocessing procedure in various traffic
flow forecasting applications.

The rest of this paper is organized as follows. Section II
first gives a brief literature review of the short-term traffic
forecasting and the research regarding feature selection.
Section III proposes the cohesion-based feature selection
method. Section IV conducts two experiments with real-
world traffic data collected at two different locations,
to demonstrate the effectiveness of the proposed method,
Section V concludes the paper and offers future directions.
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II. A BRIEF LITERATURE REVIEW
In general, there are two classes of traffic forecasting
methods, i.e., parametric and nonparametric methods. The
parametric method assumes that there is an explicit math-
ematical form of f (·) in Equation 1 that is characterized
by a set of parameters. Historical data is used to deter-
mine the parameters that can minimize the forecasting error.
Then, the enclosed formulas can be used in the real-time
forecasting.

Due to the space limitation, we only briefly review some of
the most important works, and readers can refer to the latest
literature review given in [1] and [2] for more detail of various
short-term forecasting research.

A. PARAMETRIC FORECASTING METHODS
Among the existing parametric methods, the most popular
one is the time series-related method, which treats traffic
flow as an ordinary time series. One of the most pop-
ular models is Auto Regressive Integrated Moving Aver-
age (ARIMA) method. In the early time of traffic forecasting,
ARIMA was widely used [7]–[10]. However, the ARIMA
method requires significant expertise to calibrate and main-
tain, and lacks self-learning ability. These problems hinder
the wide use of the ARIMA method in real-world traffic
forecasting [11]. In the recent decade, various ARIMA-based
methods are developed. For example, the multi-variable
ARIMA method [12] incorporates multi-sites data into the
traditional model. Reference [12] states that their method
improves the forecasting accuracy, and can achieve large-
scale forecasting with low computational burden. Besides the
ARIMA-based models, it is worth noting that the state-space
and linear regression methods are also popular parametric
methods [13], [14].

B. NONPARAMETRIC FORECASTING METHODS
Instead of finding the explicit mathematical form, nonpara-
metric methods are driven by data and allow data to speak
for itself [15]. One of the most popular nonparametric meth-
ods is nonparametric regression (NPR). The NPR method
retains all historical observation and searches for the most
similar case of the current state, and then makes forecast-
ing. Reference [16] investigated the practical use of the NPR
method and discussed the potential problems of the method
in practice. Reference [17] studied the multi-variant NPR
forecasting, as well as the influence of neighbor size and the
transferability of database, which are valuable topics for the
practical use of the NPR model. Reference [18] made three
improvements for faster calculation and higher accuracy,
including the data organization and the search mechanism.
References [19] and [20] incorporated additional informa-
tion into the NRP forecasting, such as historical and real-
time traffic states, and stated that these incorporations help
to reduce forecasting errors. The shortcomings of the NPR
method (or even of all nonparametric methods) are obvious,
i.e., the requirements of a large amount of data, a large storage
space, and heavy computational burden.

C. FEATURE SELECTION OF AN INPUT VECTOR
As above-mentioned, an input vector is critical for the good-
ness of the forecasting result. For example, [17] incorporated
speed and occupancy into the input vector, and the forecasting
accuracy was thus promoted. The flow on surrounding roads
was added into the input vector, due to the fact that the
upstream flow may have influence on the downstream flow
to be predicted [12], [21], [22]. Reference [23] also showed
that feature selection can improve the forecasting accuracy.
The p-test score was used to conduct the feature ranking
and wrapper-like scheme, which aims to select the optimal
number of features for traffic congestion prediction. A fuzzy
entropy feature selector was applied to determine redundant
factors and rank factor importance when modeling the inci-
dent duration [24]. Moreover, [25] utilized correlation-based
method to choose the most relevant factors as the input of the
SVM model for the prediction of the zonal crash frequency.
Reference [26] employed the Recursive Feature Elimination
to screen out the important factors in traffic accidents pre-
diction. A Lasso method based Granger causality model
was adopted in [27] to retrieve spatiotemporal characteristics
with a form of causal relationship, based on which a multi-
variable linear regression model was built to predict traffic
flow prediction in a freeway. Although the methods include
related features in the input vector, few of them proposes
an optimized way to select input vectors that can make the
forecasting results as good as possible.

III. A COHESION-BASED FEATURE SELECTION METHOD
Let L0 be the study site in a road network, and t and t + δ be
current time and the time of prediction, respectively. Denoted
by V0(t + δ) the traffic volume at time t + δ at L0. Then,
the input vector St is selected (commonly based on expertise),
and it is composed of features assumed to influence V0(t+δ).
We define Pt {St ,V0(t + δ)} as a pattern, which consists of
input vector St and forecasting resultV0(t+δ). Then, a pattern
database P can be constructed, including the patterns for all
time slices. An input vector selection strategy that impacts on
the pattern database is proposed as follows.

Denote by d(P1,P2) the distance between two patterns. For
a given pattern Pt ∈ P, the nearest n similar patterns could
be found, which are denoted by Pt1 ∼ Ptn and named as
the similar pattern set (SPS). In the field of pattern recog-
nition, it is usually assumed that the mapping function is
continuous, meaning that the more similar the input vectors
are, the smaller the difference between the corresponding
outputs will be. Based on this assumption, a cohesion index
is proposed as follows to estimate the difference of outputs in
an SPS based on Gamma test [28], [29].

Ci =
n∑
j=1

(V0(tj)− V0(t))2 (2)

For each pattern Pti (1 6 i 6 N ) in the pattern database,
the average cohesion index is written as

C =
N∑
i

Ci
2N

(3)
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The SPS for each pattern is built, and each SPS is associ-
ated with a cohesion index. Then, a relationship between the
complete pattern database and the average cohesion index is
written as follows.

minC = g(P) (4)

In essence, this is a feature selection process to find the best
structure of an input vector, which can minimize the average
cohesion index of the pattern database. Therefore, we name
the proposed method as a cohesion-based feature selection
algorithm (CFSA).

FIGURE 1. The framework of the proposed cohesion-based selection
algorithm.

Since the feasible solution set is discrete and it is hard to
explicitly formulate g(·) in Equation 4, the clonal selection
algorithm1 is employed to solve this problem. The framework
of the proposed CFSA is introduced as follows (also see
Figure 1).

A. CODING SCHEME
A binary coding scheme is adopted in our model. The length
of chromosome equals to the length of the candidate features.
Each entry of chromosome represents whether a feature is
selected in an input vector (Figure 2).

B. ANTIBODY ANTIGEN AFFINITY
Antibody antigen affinity is the fitness function of a general
evolutionary algorithm. It aims to minimize the average cohe-
sion index for whole pattern database. The less the average
cohesion index of each chromosome is, the larger the possi-
bility that this chromosome is kept will be. Pseudo codes of
computing the fitness function is in Algorithm 1.

1 The clonal selection algorithm is an optimized search algorithm based
on Evolutionary Algorithm and Artificial Immune System. It is suitable for
finding an optimal or near optimal solution from a large-size discrete feasible
set, particularly for high dimensional data.

FIGURE 2. Coding scheme.

Algorithm 1 Pseudo Codes of Computing the Fitness
Function

1 Decode chromosome
2 Construct a pattern database in terms of decoded
chromosome

3 foreach For each pattern in the pattern database Pti
(1 6 i 6 N) do

4 Find k nearest patterns of Pti denoted as Pt1 ∼ Ptk ;
5 Calculate the cohesion index for each pattern by

following Equation 2.
6 end
7 Calculate the average cohesion index for the pattern data
by following Equation 3.

C. AFFINITY BETWEEN ANTIBODIES
The following Equation 5 is employed to calculate the affinity
between antibodies to fully use the complementary advan-
tages of different features and to illustrate the difference
between the two feature selection combinations.

θi = min{Dij} = min{exp(||Si − Sj||)},

i 6= j; i, j = 1, 2, . . . ,M (5)

where M is the length of the vector. Note that the greater
the difference, the greater the value; the better the diversity
of the antibody group, the more conducive to the search
of the optimal solution. In the following section, we use
Hamming distance to measure the difference between two
chromosomes.

D. CALCULATE CLONAL NUMBER
The clone number of each antibody is calculated by using
the following Equation 6. The number of antibody clones is
adjusted based the value of antibody antigen affinity and the
value of affinity between antibodies.

qi(k) =
⌊

Ci∑M
j=1 Cj

· θi

⌋
, i = 1, 2, . . . ,M (6)

E. ACCELERATION TECHNIQUES
The calculation of one cohesion index is a typical K -nearest-
neighbors (KNN) search problem, whereas the computation
of the average cohesion index requires to conduct the KNN
search for N times. Moreover, the genetic algorithm itself is
a heuristic search procedure whose computation burden is
usually high in computing the fitness function. The heavy
computational burden will be a big problemwhen the number
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of patterns is large. Therefore, the following two acceleration
techniques are applied in the study.

1) APPLICATION OF AN ADVANCED
SEARCHING DATA STRUCTURE
Suppose that a linear data structure is adopted to create the
pattern database, and the time complexity isO(N ). Therefore,
the total time complexity is O(N 2). An advanced searching
structure, i.e., KD tree,2 is employed in this study.

2) REDUCTION OF THE TOTAL AMOUNTS
OF THE KNN SEARCH
In the procedure of calculating the average cohesion index,
all patterns in the database are taken into account. However,
it may be not necessary for a pattern database with a large
number of patterns. Sampling methods can be applied to
reduce the number of patterns that need to search. Here,
the density-biased sampling algorithm [32] is employed.

IV. EXPERIMENTS
A. EXPERIMENT DESIGN
In the Twin Cities, Minnesota, United States, over 4,000 dou-
ble inductive loop detectors has been installed on its road
network, and real-time traffic flow data are daily collected.3

The data used here was collected at two sites on a section of
I-35E South (i.e., Site I and Site II in Figure 3).

FIGURE 3. Locations where the data were collected.

For each detector, we use the data during 3/1/2012 and
3/31/2012 as the training data, and the data during 4/1/2012
and 4/5/2012 as test data. All data is averaged every five
minutes. For each site, we test the one-step forecasting
(i.e., forecasting the average flow of next 5 minutes, denoted
by V (t + 1)) and the two-steps forecasting (forecasting the
average flow of next 5 10 minutes, denoted by V (t + 2)).
In total, there are four scenarios. Note that the data points
that are less than 50 vehicles per interval are discarded in

2 KD tree is first proposed in [30] to provide a data structure for fast multi-
dimensional data search. It can be seen as an extension of the binary sort tree.
One can refer to [30] and [31] for the details of creating KD tree and KD tree-
based KNN search algorithm. It is proved in [30] that the time complexity
of creating a KD tree is O(N logN ). The time complexity of a KNN search
operation on KD tree is O(N logN +K ) and can be assumed to be O(N logN )
since K is normally much less that N .

3The data can be downloaded from http://www.d.umn.edu/tdrl/traffic/

the experiment, since it is not valuable to forecast low-volume
traffic flow.
For each scenario, the following three classes of input

vectors are examined:
(1) CFSA input vector. The CFSA input vector is an

optimized input vector using the proposed method. When
applying the method, the neighbor number is set to 20 accord-
ing to [20]. Euclidean distance is used tomeasure the distance
between patterns, and 20 chromosomes are contained in the
GA algorithm.
(2) Time series (TS) input vector. TS input vector refers

to the classic input vector that is composed by the average
flow of the current interval and previous three time intervals.

(3) Naive spatial-temporal (NST) input vector. This
class of input vectors incorporates direct upstream flow and
historical flow.

Two popular models, i.e., the KNN non-linear-
regression (NPR) model and the support vector mach-
ine (SVM) model, are employed to test the effect of the three
classes of input vectors.

Two indices are adopted to measure the performance of
forecasting:

(1) Mean absolute percentage error (MAPE). MAPE is
a reflection of the overall performance. The definition is as
follows:

MAPE =
1
N

N−1∑
t=0

|V (t + 1)− V̂ (t + 1)|
V (t + 1)

(7)

where V̂ (t + 1) is the forecasted traffic volume, V (t + 1) is
the ground-truth volume.

(2) MAPE at leap points. Tracking the abrupt change of
the traffic flow is vital for traffic management, and thus the
tracking capability is an important performance index of a
forecasting algorithm. It can be measured by the MAPE at
leap points. In detail, time t is considered to be a leap point,
if the following condition is satisfied,

|V (t + 1)− V (t)|
V (t)

> σ (8)

where σ is a threshold and set to 10% here.

B. EXPERIMENT RESULTS: SITE I
Experiments using the data collected at Site I are first
conducted. The selected input vectors with three different
configurations are listed in Table 1.

The performances of the one-step and two-step forecasting
using Site I data are listed in Table 2. From the table, we can
find that with the optimized input vector (i.e., CFSA input
vector), all indices are lower for the NPR and SVM models.

To see more detail, the data collected from 4/5/2012 is
taken as a sample to show the improvements. The time-
series curve of traffic flow during the whole day is shown in
Figure 4. It can be seen that there are two peak (congestion)
periods. The forecasting results of the first two hours of
morning peak (6:00-8:00, within the box) is selected to make
a comparison of different input vectors.
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TABLE 1. Site I: selected input vectors.

TABLE 2. Site I: forecasting errors.

FIGURE 4. Empirical traffic flow time series of 4/5/2012 at Site I.

FIGURE 5. Visualized time-series of the forecasting results at Site I.
(a) One-step, NPR. (b) One-step, SVM. (c) Two-step, NPR.
(d) Two-step, SVM.

Figure 5 compares the forecasted traffic flow with the
ground-truth data. It can be seen that in the rapid increasing
region, the forecasting algorithm with the CFSA input vector
performs much better than the those with the TS and NST
input vectors. With the CFSA input vector, the forecasted

TABLE 3. Site II: selected input vectors.

TABLE 4. Site II: forecasting errors.

FIGURE 6. Empirical traffic flow time series of 4/5/2012 at Site II.

flow tracks the empirical flow better, while the results using
the other two input vectors have obvious time lags.

C. EXPERIMENT RESULTS: SITE II
To make the results solider, we use the data at Site II and
re-conduct the experiments. The selected input vectors with
three different configurations are listed in Table 3.

The performances of the one-step and two-step forecasting
at Site II are listed in Table 4. It can be also seen from the
table that the optimized input vector (i.e., CFSA input vector)
results in lower performance indices.

As in the previous case, we present the improvements
in Figure 6 by taking the traffic flow data on 4/5/2012 as
an example. A sharp peak is found at approximately 22:00,
which is a non-recurrent pattern, since it doesn’t appear on
the previous days. Thus, it is a good scenario to examine the
performance of forecasting.

Figure 7 compares the forecasted traffic flow with the
ground-truth data. For the one-step forecasting, the predicted
flow during the onset phase of the congestion shows a small
lag, which is not a good forecasting compared with the one
during the offset phase. The forecasting results with the
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FIGURE 7. Visualized time-series of the forecasting results at Site II.
(a) One-step, NPR. (b) One-step, SVM. (c) Two-step, NPR.
(d) Two-step, SVM.

CFSA input vector are able to follow the abrupt changes of
traffic flow for both the onset and offset phases of a peak.
The forecasting results with the TS and NST input vectors
exhibit obvious lags during the onset phase. In the two-step
forecasting, all results are not quite ideal compared with the
results of the one-step forecasting. However, the results with
the CFSA input vector are still better than those with the TS
and NST input vectors.

D. ANALYSIS OF THE EXPERIMENT RESULTS
We summarize the findings from the experiments as follows.

(1) The proposed method successfully improves the per-
formance of both the NPR and SVM traffic flow forecasting,
measured by using MAPE and MAPE at leap points. The
MAPE is reduced by 1%∼2%, and the MAPE at leap points
is reduced by 2%∼5%.
(2) The MAPE at leap points is very high. In fact, fore-

casting the abrupt change of traffic flow is still a challenge
for most of the existing approaches. However, after applying
our proposed input vector selection method, the forecasting
method can better track the evolution of traffic flow.

(3) Different input vectors are selected for 5 min and
10 min forecasting tasks, while in some existing works,
the same input vector is used. This fact indicates that we
should customize input vector (maybe other parameters) for
different requirement of forecasting.

V. CONCLUSION
Short-term traffic flow forecasting is important for many
ITS applications. Comparing with the fruitful forecasting
algorithms, the research on the feature selection (i.e. how to
design the input vector) remains elusive. Moreover, with the
rapid development of information technology, more andmore
data is collected and can be used in forecasting. A preprocess
method that can ‘‘filter’’ the large amount of data has become
an urgent need.

With the above motivation, this paper proposes a cohesion-
based feature selection method to design the input vec-
tor for nonparametric short-term traffic flow forecasting.
Experiments are conducted based on real-world traffic flow
data. The results show that the proposed feature selec-
tion method can reduce forecasting errors under various
scenarios.

The main shortcoming of the proposed method is the high
computational burden, since it is a heuristic method and a
complex searching procedure is adopted to obtain the fitness
value. However, we believe that it is not a severe problem
in practical environments, due to the following considera-
tions: (1) The feature selection is an off-line preprocessing
procedure; (2) The advanced data structure and distributed
architectures can greatly accelerate the calculation; (3) The
development of computer hardware will greatly improve the
computing power; (4) The state space of this problem is
relatively small, compared to many complex optimization
problems. Thus there will not be many iterations before
convergence.

There are several interesting research directions regarding
the study. First, only one variable is employed in this study,
and thus multivariate analysis can be tested in future. Second,
some other factors can be considered in the objective func-
tion, e.g. the length of input vectors. This is because longer
vectors mean more time consumption and less matched
patterns in real-time forecasting. More factors may turn
the problem into a multi-objective problem, and a multi-
objective genetic algorithm such as NSGA II could be a better
solution.
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