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ABSTRACT In this paper, a new method is proposed for the path planning of multi-robots in unknown
environments. The method is inspired by multi-objective particle swarm optimization (MOPSO) and
is named multi-robot MOPSO. It considers shortness, safety, and smoothness. Due to the obscurity of
the environment, the robots should decide the moving direction based on the information gathered by
sensors only such that the optimal path between the start and goal positions can be found at the end of
the algorithm. Sharing knowledge among the navigating robots is necessary to achieve this aim. So, a new
concept, named the probabilistic window, is introduced in this paper. It combines the current information
obtained through the robot sensors and experiences of the previous robots to select the paths that seem
more likely to achieve higher fitness in the mentioned objectives. The proposed method has an outstanding
performance on different complex benchmarks, and the results have shown that it is more effective and
efficient compared with the classic and the state-of-the-art methods.

INDEX TERMS Path planning, trajectory optimization, particle swarm optimization, multi-robot systems.

I. INTRODUCTION
Path planning (PP) is one of the principal procedures in
Multi-Robot Systems (MRS) which have widespread appli-
cation nowadays [1]. It can be described as seeking a valid
and optimal path between two positions without colliding
with the obstacles. Various approaches have been proposed to
solve PP problem [2] but generating an optimal obstacle-free
path in MRS remains challenging due to its NP-hard nature
and complexity. These methods can generally be classified
into two main groups: Offline (global) and online (local).
In global algorithms, all the information about the environ-
ment is known in advance. But, there is no complete infor-
mation about the environment in local algorithms. Hence,
the algorithms depend on the information gathered by the
sensors [3].

Offline approaches such as cell decomposition and
roadmap [4] partition the workspace into obstacle free cells
that are considered as the nodes of a graph. The existence of a
direct route between adjacent cells is represented by the edges
of the graph. Then, a graph searching algorithm is used to find
an optimal path [5]. The offline approaches are not suitable
for high-dimensional space and real-time applications [6].

Furthermore, these approaches might get trapped in a local
minima in large environments with several solutions [7].

Online methods such as RRT [8] and potential fields [9]
are proposed to solve the PP problem in unknown dynamic
environments. These methods provide the ability to react
to the changes during the robot movement. However, due
to factors such as high dimensionality of the search space,
the geometric nature of the obstacles, and the complexity of
robot’s kinematic and dynamic model, PP problem cannot be
solved, given reasonable computational resources [10].

Utilizing heuristic approaches inspired from biologi-
cal or sociological systems like Genetic Algorithm (GA) [11],
particle swarm optimization (PSO) [12] and Ant Colony
Optimization (ACO) [13], [14] is a very popular way to
solve the PP problem. These methods often achieve higher
performance in comparison with the classical approaches,
especially in complex environments. But, there are two main
defects in the heuristic methods proposed previously. Firstly,
in most of the existing algorithms, it is assumed that the
environment is totally or at least partially known. Secondly,
these approaches are proposed for the single robot sys-
tems. To alleviate the mentioned shortcomings, a heuristic
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approach is proposed for solving the path planning problem
of multi-robot systems in an unknown environment in this
paper. The proposed method finds the optimal path via shar-
ing knowledge among navigating robots and exploiting the
power of Multi-Objective PSO (MOPSO).

Shortness, safety, and smoothness are three considered
objectives and the proposed algorithm tries to provide the
best Pareto front paths in the mentioned term. One of our
main contributions in this paper is introducing the concept
of the probabilistic window. It quantifies the information
obtained through sensors and experiences of the previous
robots by assigning a probability to the reachable positions.
Then, the robot moves according to these probabilities. Since
unknowingness of the environment, there is no predefined
map and this window was evolved over a PSO inspired
procedure. The proposed method is named Multi-robot
Multi-objective Particle Swarm Optimization (MMPSO).
The simulation results show its superiority to other state of
the art and classical PP methods.

The remainder of this paper is organized as follows. Some
of the related works are reviewed in the next section. The third
section provides the proposed method. Results and the con-
clusion are presented in fourth and fifth sections, respectively.

II. RELATED WORK
The idea of utilizing Multi-Objective Optimization (MOO)
algorithms for PP is deeply exploited before [15], [16]. Some
of the most relevant literature to this subject is reviewed in
the following.

Masehian and Sedighizadeh [17] proposed a multi-
objective path planning method. This hybrid algorithm
employs PSO to generate Probabilistic Road Map (PRM).
The main idea of the algorithm is using PRM for collision
avoidance while PSO is responsible for searching the best
path in the global space; the algorithm considers two objec-
tives, the shortness, and the smoothness. Gong et al. [18]
divided the robot workspace by a series of horizontal, and
vertical parallel lines and employed MOPSO to tackle the PP
problem. The considered objectives are the safety and the path
length. This algorithm works based on a foreknowable map
of the environment which is not always possible.

Bhattacharjee et al. [19] employed the Artificial Bee
Colony (ABC) algorithm to tackle the PP problem for an
MRS. The algorithm assigns fitness values to the paths of
robots and tries to find the motion trajectories which mini-
mize the moving distance of all robots. But, the main issue
is that the algorithm may not work properly because the
objective function could take several values. Wang et al. [20]
used the improved multi-objective ACO. The objective func-
tion is proposed in such a way that it has a tendency to
a short, secure and smooth path. This algorithm assumes
that the environment is known in advance, too. Hidalgo-
Paniagua et al. [21] presented a heuristic algorithm for solv-
ing PP problem in the static environments. The method tries
to find the shortest, the safest, and the smoothest path based
on the Firefly Algorithm (FA). Panda et al. [22] presented

a hybrid algorithm for multi-robot PP problem in the static
environments. The authors combined FA algorithmwith Inva-
sive Weed Optimization (IWO) to overcome the limitation of
slow convergence of the FA algorithm in large space problems
and provided a balance between exploration and exploitation
in the workspace. The presented approach by Hajimirsadeghi
and Lucas [23] solves the PP problem for multi-robot in a
dynamic environment using Improved Gravitational Search
Algorithm (IGSA). The algorithm only considers the length
of the robot paths.

Jun and Qingbao [24] employ the NSGA-II to solve
multi-objective path planning in a known environment. The
authors considered shortness, smoothness, and secureness as
the objectives. They introduce a chaotic method that uses the
acquired knowledge from the environment to increase the
performance of the algorithm. Ahmed and Deb [25] used
an NSGA-II algorithm with enhanced selection scheme to
solve multi-objective PP with the same three objectives.
Davoodi et al. [26] applied GA to solve the multi-objective
PP problem in known discrete environments. They consid-
ered the shortness and safety in fitness function and intro-
duced a new operator which is claimed to cause better
exploration of the search space. Geetha et al. [27] proposed
multi-objective path planning based on a hybrid algorithm.
They combined ACO and GA to achieve three objectives
including safety, smoothness, and shortness. In order to
increase the efficiency of the proposed approach, the genetic
operator was adapted with ACO. There are two main draw-
backs in the proposed algorithm. First, the approach of
computing the optimal solution has ambiguity and second,
the algorithm can deal with known environments while in
many situations, the robot must work in unknown environ-
ments that necessitate the real-time process.

In this paper, we employ the PSO algorithm due to the sim-
plicity, efficiency and faster convergence. It is worthmention-
ing here that, all the mentioned approaches do not have any
post-processing step. But, the found paths by the proposed
algorithm are enhanced through an extra post-processing
step.

III. METHODOLOGY
In this section, we briefly discuss the assumption and the
problem formulation first. Then the PSO algorithm and the
general procedure of the proposed method are mentioned.

A. ASSUMPTION AND PROBLEM DEFINITION
A group of robots traverses within an environment E , search-
ing for a specified goal point. As the group reaches the goal,
they send the path information to the next group. The set of
robots is given as (1).

S =
{
Rj
i

}
i = 1, 2, . . . ,Gs j = 1, 2, . . . ,Ng (1)

where the subscript i denotes the robot number inside the
group, the superscript j denotes the group number,Gs denotes
the total size of the group, and Ng denotes the total number of
groups. It is assumed that every robot can bemodeled as a free
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moving point in a two-dimensional space that is considered
as a grid cell. Each robot has equipped with Sn sensors that
can measure the distance to the surrounding obstacles and
the distance to the goal point. The configuration of sensors
provides information of a circular area with radius r that
is called selection window SW (see Fig. 1). The selection
window is divided into Sn sectors and every grid cell is
assigned to the sector that covers its most area.

FIGURE 1. Schematic of the selection window.

A finite subset of the environment cells is occupied by the
obstacles. Furthermore, different configurations of obstacles
in terms of shape, density, occupancy level, and positionsmay
exist. We assume that a cell is either entirely occupied by an
obstacle or free of obstacles.

FIGURE 2. Schematic of a path.

As it is shown in Fig. 2, each path is a sequence of coor-
dinate’s doublets (row, column). The first cell of each path

corresponds to the start point while the final cell of the list
corresponds to the goal point. It may be different number of
intermediate cells in each path.

The PP problem is finding the shortest, safest and
smoothest available path due to the multi-objectiveness of the
problem. There could be multiple non-dominating solutions
instead of one unique solution. The quantitative measure
of the mentioned objectives and the proposed method are
described in the following subsections.

B. PARTICLE SWARM OPTIMIZATION (PSO)
Initially, PSO is introduced by Eberhart and Kennedy [28]
in 1995 and got popular due to its simplicity. In PSO,
the swarm of particles is initialized by random positions and
velocities. The velocity parameter tunes the movement of
particles. Each particle moves toward the best-found position
inside the group that is called Pbest and the best-found posi-
tion by all member of swarmGbest. The position and velocity
of the ith particle in tth iteration are denoted by xi(t) and vi(t),
respectively and can be calculated through (2) and (3).

vi (t + 1) = wvi(t)+ r1c1 (Pbest i(t)− xi(t))

+ r2c2(Gbest(t)− xi(t)) (2)

xi+1(t) = xi(t)+ vi(t + 1) (3)

where c1, c2 are the acceleration coefficients. r1, r2 are the
random numbers uniformly distributed in the range of [0, 1],
and w is a real value [29].

C. GENERAL PROCEDURE
The pseudocode of the proposed algorithm is mentioned in
Algorithm 1. At each iteration, a group of robots searches
the goal. Inside each group, the robots move in turn. After
each robot reaches the goal, it does a post-processing step
to obtain the enhanced path. So, whenever all the jth group
robots attain the goal, a set of paths PathGj are at hand and
the evaluation routine is triggered. These paths are evaluated
using three objectives (fitness) functions FGj.

PathGj
= {EnahncedPathRj

1, . . . ,EnhancedPathR
j
Gs
} (4)

FGj
= {FRj

1,FR
j
2, . . . ,FR

j
Gs
} (5)

FRj
i = {PLF

j
i,PSF

j
i,PαF

j
i} (6)

where PLFji denotes the path length, PSFji denotes the path
safety, and PαFji denotes the path smoothness. If the best
Pareto paths of the jth group dominates the current Pareto
front members, the Pareto front is modified. So in each itera-
tion, the Pareto front contains the best found path, heretofore.
Afterward, a new group of robots will roam through the envi-
ronment for finding the goal, starting from the same initial
position while carrying the solution generated by previous
groups. The goal is to provide the Pareto front path from the
start point to the goal point in three considered objectives.

Combining experiences of previous robots and current sen-
sor measurement is a straight way to this goal in such an
unknown environment. In this way, the paths of robots are
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Algorithm 1 Pseudocode of MMPSO
1:MMPSO ( )
2: input: E, Gs, Ng, Start , Goal
3: output: ParetoFront
4: GroupIDX = 1
5: ParetoFront = []
6: while(GroupIDX < Ng + 1) do
7: RobotIDX = 1
8: BestPathGroupIDX = []
9: PathGGroupIDX

= []
10: while(RobotIDX < Gs + 1) do
11: EnhancedPathRGroupIDXRobotIDX =

Roam_Robot(RobotIDX , GroupIDX , Start , Goal)
12: Add EnhancedPathRGroupIDXRobotIDX to PathGGroupIDX

13: RobotIDX = RobotIDX + 1
14: endwhile
15: ParetoBestGroupIDX=Evaluation(PathGGroupIDXNg)
16: if(ParetoBestGroupIDX dominates ParetoFront)
17: Modify ParetoFront according to

ParetoBestGroupIDX

18: end if
19: GroupIDX = GroupIDX+ 1
20: end while
21: end MMPSO

evolved and get enhanced whatever more robots traverse the
environment. The combination is considered in each robot
moving strategy and will be completely described in the
following.

Algorithm 2 Pseudocode of Individual Robot PP
1: Roam_Robot( )
2: input: RobotIDX ,GroupIDX , Start , Goal
3: output: EnhancedPathRGroupIDXRobotIDX
4: PathRGroupIDXRobotIDX = []
5: while(RobotRobotIDX does not reach the Goal) do
6: Update Selection Window Trough Sensors

Information
7: Update Probabilistic Window
8: select one position to move according to assigned
probability by Probabilistic Window
9: Add selected Position to PathRGroupIDXRobotIDX
10: end while
11: EnhancedPathRGroupIDXRobotIDX =PostProcess(PathR

GroupIDX
RobotIDX )

12: end Roam_Robot

The pseudocode of individual robot PP procedure is men-
tioned in Algorithm 2. During the movement, each robot
updates the selection window by information gained from the
surrounding environment through equipped sensors. Then,
the probabilistic window is updated. It determines which
position seems more promising according to the current
information and previous experiences. The robot will move
according to the assigned probability by the probabilistic

window until it reaches the goal. After the robot arrival,
the post-processing procedure starts.

The evaluating procedure of the probabilistic window will
be described completely in the next section. It is designed in
such a way that causes robots to move toward the global best
solution of the former groups while reduces the probability
of collision with discovered obstacles. It gives a reason-
able weight to exploring the environment to finding shorter
and smoother paths. After all robots reach the goal, a non-
dominated sorting algorithmwill be applied on the found path
by different groups and the best paths are stored in the Pareto
front.

It can be presumed that paths are encoded as the points of
a new space and a multi-objective fitness value is assigned
to them. Then, a PSO inspired algorithm is used to search
the new space for the global min which is representative of
the shortest, safest and smoothest path. Every single robot
that roams around the environment can be taught as a particle
which explores the search space. The robot has a tendency to
the global best points while keep trying to explore the space
individually. The set of non-dominated paths that are found
by robots are considered as the Pareto optimal solutions and
returned by the algorithm.

D. PROBABILISTIC WINDOW
To convert the sensor measurements into the decision vari-
ables, we introduce the concept of the probabilistic window.
It normalizes the sensor measurements to a global scale. Let
the ith robot of the jth group be in the grid cell (C), all the
reachable cells are denoted by N (C) and PW j

i (C) denotes
the probabilistic window of the grid cell (C). PW j

i (C) is a
probability measure and assigns a probability to all of the
cells in the N (C). The robot selects one of N (C) members as
the next cell tomove according to a probability value assigned
by PW j

i (C). Equations (7) to (9) present a formal definition
of PW j

i (C).

PW j
i (C) : N (C) → {0, 1} (7)

PW j
i (C) =

{
PW j

i (cn)
}
∀n ∈ N (c) (8)

PW j
i (cn) =

PV j
i (cn)∑

n∈N (c) PV
j
i (cn)

(9)

where PV j
i (Cn) is the probabilistic value of the nth cell

in N (C). It is considered as the mean of probabilistic dis-
tance window (PDW j

i (Cn)) and probabilistic sector window
(PSW j

i (C)).

PV j
i (cn) = (1+ GB(cn))× mean

(
PDW j

i (cn) ,PSW
j
i(cn)

)
(10)

where GB(cn) returns 1 if cn is located on one of the previous
global best paths otherwise, it returns 0.

The first term in (10) doubles the probability of select-
ing points on the global best path of the previous groups.
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PDW j
i (Cn) is calculated by adding the normalized value of

the distance matrix (D(cn)) and the occupancy matrix (O(cn))
according to (11).

PDW j
i(cn) =

α (Max_D− D (cn))
Max_D

+ (1− α)
(Max_O− O (cn))

Max_O
(11)

Max_D = max
n∈N (C)

D(cn) (12)

Max_O = max
n∈N (C)

O(cn) (13)

where O (cn) is the occupancy value of cell (cn) and belongs
to [0, 1] where 0 shows the emptiness of the cell and 1 means
that the cell is full. D (cn) is the shortest distance from the cell
(cn) to the virtual line connecting the start and goal points.
Max_O and Max_D are the maximum values of occupancy
and cell distances within the probabilistic window. The vir-
tual line (l) is defined mathematically in (14) and D(cn) is
computed by (15).

l =
{[

x
y

]
|y = mx+ b;m =

Ygoal − Ystart

Xgoal − Xstart
,

b = Ystart −mXstart

}
(14)

D(cn) =
|b+ mXcn − Ycn |
√
1+ m2

(15)

where Xcn and Ycn are the Euclidean coordinates of the cell
(cn), m and b are the slope and intercept of the virtual line,
respectively. α is a coefficient in the range of [0, 1] that
tunes the tradeoff between shortness and security of the path.
Selecting near zero value for this parameter causes tending
to short paths while near one values drive robots to the safer
paths.

If the covered grid cells by kth sector are denoted by
CN (Sk ), the occupancy of the kth sector for the ith robot in
the jth group SOji (sk) is defined as the sum of occupancy of
its grid cell.

SOji (sk) =
∑

cn∈CN (Sk )

O(cn) (16)

The probabilistic sector window of the cell (cn) is calcu-
lated according to (17).

PSW j
i (cn) =

12∑
k=1

δ (cn, sk)
(
1−

SO (sk)
TO(C)

)
(17)

where δ(cnsi) function returns 1 if the cell (cn) is covered by
the sector sk otherwise, it returns 0. TO(c) denotes the total
occupancy of all sectors and calculated through (18).

TO(C) =
12∑
k=1

SO(sk ) (18)

E. PATH POST PROCESSING
This process enhances the path in terms of shortness and
smoothness by omitting redundant points. It starts after the
robot arrival and continues until the state in which adding
new non-crossing segment is impossible or continuous for
some constant iteration. An exemplary schematic is depicted
in Fig. 3 and pseudocode of the procedure is mentioned in
Algorithm 3.

FIGURE 3. Schematic of path enhancement.

Algorithm 3 Pseudocode of Post-Processing
1: Post− Processing( )
2: input:PathRGroupIDXRobotIDX
3: output: EnhancedPathRGroupIDXRobotIDX
4: EnhancedPathRGroupIDXRobotIDX = PathRGroupIDXRobotIDX
5: while (MaxIteration or Enhancementisimpossible)
4: for i = 1 : 1 : length(EnhancedPathRobotIDX )
5: for j = length

(
EnhancedPathRobotIDX

)
: −1 : i+ 2

6: if
(
line

(
PathRobotIDX (i) andPathRobotIDX (j)

)
is safe

)
7: Modify EnhancedPathRGroupIDXRobotIDX
8: end if
9: end for
10: end for
11: end while
12: : end Post− Processing

F. PATH EVALUATION
The evaluation process investigates the post-processed paths
in terms of shortness, safety and smoothness. These objec-
tives are discussed for a path containing n cells in the fol-
lowing and the pseudocode of this process is mentioned in
Algorithm 4.

The path length is the total Euclidean distance roamed by
the robot. It is obtained through summing out the lengths of
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Algorithm 4 Pseudocode of Path Evaluation
1: Evaluation( )
2: input:PathGGroupIDX , GS
3: output: ParetoBestGroupIDX

4: for RobotIDX = 1 : 1 : GS
5: FRGroupIDXRobotIDX (1) = PLF(EnhancedPathRGroupIDXRobotIDX )

6: FRGroupIDXRobotIDX (2) = PLS
(
EnhancedPathRGroupIDXRobotIDX

)
7: FRGroupIDXRobotIDX (3) = PαF(EnhancedPathRGroupIDXRobotIDX )

8: end for
9: ParetoBestGroupIDX=NondominantFRGroupIDXelements
10: end Evaluation

path segments using (19).

PL =
n−1∑
k=1

d(L[k],L[k+ 1]) (19)

where d(L [k]L [k + 1]) is the segment length between the
kth and (k+ 1)th coordinates of the path list. The nearest path
between two points, is a direct line. So, the shortness fitness
is estimated by (20).

PLF =
d(Start, goal)

PL
(20)

where d(Start, goal) is the length of the direct line between
start and goal positions.

The MDO(c) for any arbitrary grid cell (c) is defined
as the distance to the nearest obstacle. Considering the
sensor ranges, if the distance to the nearest obstacle is
greater than Sensor Threshold , we set the MDO(c) value
to Sensor Threshold . The safety fitness is estimated by
mean of path cells MDO, according to (22). We set the
Sensor Threshold to 5 in our experiments.

PS =
n∑

i=1

min(Sensor Threshold,MDO (Ci)) (21)

PSF =
PS

n× Sensor Threshold
(22)

The smoothness fitness measure how snaky is a specific
path. As it is depicted in Fig. 4, the smoothness depends on
the angels between consecutive segments. The best angle for
being smooth is the closest one to 180◦ which means that the
path segment is a straight line. So, the smoothness objective
function can be estimated as the division of angels mean in
the consecutive path segments by 180 as (24).

Pα =
1

n− 2

n−2∑
k=1

α (L (k) , (k + 2)) (23)

PαF =
Pα
180

(24)

where α (k, k + 2) is the angle between the consecu-
tive path segments

−−−−−−−−−→
L (k)L (k + 1) and

−−−−−−−−−−−−→
L (k + 1)L (k + 2),

0 ≤ α(.)≤ π .

FIGURE 4. Schematic of path angle.

IV. RESULTS
This section contains two parts. In the first part, we inves-
tigate our proposed algorithm on different simple environ-
ments containing circular, oval and polygonal obstacles. The
algorithm is compared with two state of the art methods in
publicly available complex benchmarks for PP.

A scenario is formed by a map, a starting point, and a goal
point. To compute the objective values of founded path in this
section, we use the mentioned functions in the last subsection
(Section III. F). formulations are completely discussed in
this subsection; we just substitute the values in the formulas.
The values of parameters that are used in the simulations are
mentioned in Table 1.

TABLE 1. Values of parameters.

A. SIMPLE ENVIRONMENTS
Four sparse and overcrowded environments are considered in
this section. All the simple environments with sparse obsta-
cles are 100 × 100 grids. The simple environments with
overcrowded obstacles are 100 × 200 grids. The starting
and the goal points in all scenarios are determined. But,
the environments are completely unknown. The algorithm is
compared with one heuristic and two classical approaches.
The selected classical approaches are Potential Field (PF) and
Probabilistic Roadmap (PRM), and Firefly Algorithm (FA)
is chosen among the heuristic approach. The features of
the selected algorithm are mentioned in TABLE 2. All
of the methods except MMPSO assume all information about
the environment is available. As it is declared, PF considers
the shortness and safety objectives through attractive and
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TABLE 2. Applied methods.

repulsive forces. Likewise, the applied FA algorithm consid-
ers the shortness and smoothness objectives.

To provide a reference path that makes comparison and
evaluation of the optimality degree easier and due to the
simplicity of the environments, we use a Brute Forth approach
and produce a huge but limited number of paths. Then,
the objective function of these paths is calculated and themost
optimum path is considered as an approximation of Pareto
optimal path in three mentioned objectives. The found path is
depicted in violet color in all figures in this section. Whatever
a path is closer to the ideal reference point, it means, it is the
better approximation of Pareto optimal solution.

FIGURE 5. Sparse polygonal environment experiment – 1.

The found paths by the mentioned algorithm in a sim-
ple environment containing a few polygonal obstacles are
depicted in Fig. 5 and Fig. 6. As it can be seen, the algorithm
found the near-optimal path and performs better, although
other methods are offline. The quantitative results are stated
in TABLE 4 and TABLE 5. In the first scenario, MMPSO
found two paths as Pareto optimal and both of them are
drawn. One of these paths is similar to the PF path but
shorter and smoother. This path is denoted by MMPSO/1 in
TABLE 3. It is worth mentioning that these methods con-
sider fewer objectives, the results showed that our proposed
method achieves better.

The values of the objective functions in a crowded environ-
ment with the polygonal obstacles are mentioned in TABLE 5

FIGURE 6. Sparse polygonal environment experiment - 2.

TABLE 3. Sparse polygonal environment experiment – 1.

TABLE 4. Sparse polygonal environment experiment - 2.

TABLE 5. Crowded polygonal environment experiment.

and the found paths are depicted in Fig. 7.MMPSO found two
paths. The found path that is similar to the partially-optimal
path is denoted by MMPSO/2 in TABLE 5, and the objective
values are rounded up to two decimal places.
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FIGURE 7. Crowded polygonal environment experiment.

FIGURE 8. Circular environment experiment - 1.

FIGURE 9. Circular environment experiment – 2.

Output paths of four above mentioned algorithms are
drawn in Fig 8 and Fig.9 in two sparse and overcrowded envi-
ronments with oval and circular obstacles, and the objective
values are reported in TABLE 6 and TABLE 7. As the numer-
ical results verify, MMPSO performs better in comparison
with the other methods in both scenarios.

The superiority of the algorithm to the other methods is
obvious in all of the above-mentioned scenarios. Although
the output path of MMPSO maybe not the shortest available
path, the safety is perfect and the smoothness is better in
comparisonwith the othermethods. It should be noted that the
MMPSO is an online algorithm which only gets information
from the surrounding environment and previous experiences.

TABLE 6. Circular environment experiment - 1.

TABLE 7. Circular environment experiment - 2.

B. COMPLEX ENVIRONMENTS
In this section, the evaluation metrics is discussed first. Then,
the performance of the proposed method is analyzed and
compared with two state of the art methods for PP based on
the Non-Dominated Sorting Genetic Algorithm (NGSA) and
Multi-Objective Firefly Algorithm (MOFA).

Evaluating the quality of non–dominated set of MOO solu-
tions is an open problem and numerous approaches have
been proposed to evaluate this quality. The most common
method is quality indicators (QIs). A QI is a function that
associates with a real number to the input non-dominated
set(s). The most popular QIs are the unary QIs (UQIs) and
the binary QIs (BQIs). UQIs take a single non-dominated
set as input and return its quality evaluation. A BQI takes
two non-dominated sets and outputs a real number that is the
evaluation of the relative quality of one set with respect to
the other. Majority of the proposed quality measures consider
either one or two convergence and diversity metrics. The
convergence measures indicate how far the found solutions
are from the true Pareto optimal solutions while the diversity
metrics specify the scatter of solutions on the true Pareto
front. We consider the Hyper-Volume (HV) evaluation metric
that is described in the following.

HV is a UQI that enumerates the quality of the input NS
with regard to the convergence and diversity on a single scale.
It measures the covered volume by solutions in the objective
function space. If S = {s1, s2, . . . , sn} be a NS. The HV
is calculated as the union of all elements of S hyper-cubes,
according to (25). Where HP(si) denotes the corresponding
hypercube of the ith element of S, and L is the Lebesgue
measure [30].

HV (S) = L
n⋃

i=1

HP (si) (25)
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TABLE 8. Complex environment hyper-volume results.

We used two datasets which are made publicly available by
Hidalgo-Paniagua et al. [21]. Both datasets have 100 × 100
environments. To compare fairly, we use the same start and
goal points. The results of NSGA andMOFA are fetched from
the mentioned paper [21] and compared withMMPSO results
in the following. Several runs to tune the parameter were
run first. In the test time, we repeat each scenario 10 times
to be sure about the statistical significance of the obtained
results. The path with the median quality metric is depicted
as the final result. TABLE 8 shows the median hyper-volume,
of path found byMMPSO, NSGA-II/1 [24], NSGA-II/2 [25],
and MOFA [21]. Fig. 10 and Fig. 11 show the best paths
corresponding to the approximated Pareto front by MMPSO,
MOFA versus NSGA-II when they are applied to the PP
problem.MMPSO found two paths as the Pareto front in each
scenario.

FIGURE 10. Complex environment experiment (Map A) results:
(A) MMPSO (B) MOFA (C) NSGA-II/1 (D) NGSA-II/2.

The shortness, safety, and smoothness objective values
for first and second complex environments are reported in
TABLE 9 and TABLE 10, respectively. The blue line in
MMPSO part is referred to MMPSO/1 and the red dashed
line is referred toMMPSO/2 in TABLE 9 and TABLE 10. The
same reference values are used to evaluate the objectives and
the numbers are rounded up to two decimal places. As we can

FIGURE 11. Complex environment experiment (Map B) results:
(A) MMPSO (B) MOFA (C) NSGA-II/1 (D) NGSA-II/2.

TABLE 9. Complex environment experiment (Map A).

TABLE 10. Complex environment experiment (Map B).

see, for all scenarios, the results obtained through MMPSO
dominate solutions of the other algorithms.

V. CONCLUSION AND FUTURE WORK
We proposed a multi-objective path planning approach in this
paper. Our main novelty is the introduction of the probabilis-
tic window concept. It unifies the current sensor informa-
tion and previous robot experience. It assigns a probability
to each reachable position. The probability assignment is
designed inspiring from PSO and makes the selection of the
shorter, safer and smoother paths more probable. In addition,
to achieve effective and accurate solutions (paths), a post-
processing method, which enhances the paths in terms of
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shortness and smoothness, is presented. The obtained results
show the superiority of the proposed approach in simple and
complex benchmark in comparison with the classic and state
of the art PP methods. In our future work, we shall validate
the approach on more complex obstacles configurations and
its implementation it on real-world scenarios.
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