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ABSTRACT Private processes are the basis to construct the collaborative business processes, and their
correctness has a direct impact on the correctness of collaborative business processes. Thus, the modeling
and correctness of private processes is a key issue that business designers should consider at design time.
To this end, we propose an approach for constructing correct private processes in a refinement manner. In this
approach, we first present a formal model for private processes and abstract the control flow of the model
into four basic blocks. Then, we derive a set of refinement rules for the four basic blocks and present an
approach that relies on the refinement rules for constructing correct private processes. Finally, we prove
that the private process established by our approach is correct at the syntax and semantic levels, and thus a
subsequent correctness verification is avoided. Our approach is validated through a case study, and the results
show that the approach is more effective than the existing work in terms of modeling private processes.

INDEX TERMS Collaborative business process, private process, basic block, refinement rule, correctness.

I. INTRODUCTION
With the rapid development of economic globalization,
the business model of enterprises in the new information era
has undergone major changes [1]. That is, the business model
has evolved from individual enterprises with an independent
development pattern into multiple enterprises with a cooper-
ation pattern. This means that no enterprise is isolated in the
modern business environment [2]–[3]. To achieve a common
business goal, business processes in the collaboration need
to cross organizational boundaries and then to interact with
each other to form a relatively stable process view. Such a
process view is widely known as a collaborative business
process [24], [42].

Collaborative business processes that are regarded as a
crucial enabling technology can achieve the integration of
cross-organizational enterprise applications. Currently, such
an enabling technology has been widely used in multiple
industries. Some prominent examples are enterprise infor-
mation systems based on PAIS (Process-Aware Information
Systems) [4], e-commerce business processes [5], and

medical business processes [6]. In these systems, to ensure the
correct implementation of collaborative business processes,
various modeling approaches are presented. Generally, these
approaches can be classified into two kinds: the top-down
approach [9], [10] and the bottom-up approach [6]–[7]. The
top-down approach requires business designers to give a
global contract and transformation rules and then to generate
the business process for each organization from the con-
tract using these given transformation rules. Nevertheless, the
top-down approach that is usually restricted by transforma-
tion rules only establishes business processes with limited
control structures (i.e., sequence, switch, flow, and loop
control structures), which is not flexible and applicable in
practice. In contrast, the bottom-up approach allows each
organization to define its own private process indepen-
dently and then construct a collaborative business process
by composing these private processes together. Therefore,
the bottom-up approach provides participating organizations
freedom to develop their own business processes indepen-
dently, and this in turn solves the inflexible and inapplicable
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issues of the top-down approach. Hence, in this paper we
focus on the bottom-up approach. Particularly, a private pro-
cess is owned by one organization and describes the internal
business logic as well as the message exchanges this orga-
nization is engaged [11], [18]. In practice, private processes
correspond to the executable processes of organizations and
are usually described using the Business Process Execution
Language (BPEL) [18].

However, in the bottom-up modeling approach, private
processes in the collaboration are developed by different
organizations, and cannot foresee all potential interactions
at design time. Thus, in actual collaboration, the execution
of the established model may produce undesirable outcomes
such as deadlocks and livelocks. Thus, the correctness analy-
sis of collaborative business processes is considered to be an
important issue in Business Process Management (BPM) [7].

At present, multiple approaches for the correctness
analysis of collaborative business processes have presented.
However, these approaches mainly focus on composite cor-
rectness, but fail to consider self-correctness. Composite
correctness means that the composition of private processes
in the collaboration can terminate correctly, while self-
correctness means that a private process under a perfect
environment is considered to be correct at both the syntax
and semantic levels [7]. Note that given a private process,
its external environment in our context refers to the other
private processes in the collaboration, and the term perfect
implies that whenever the private process is expected to
receive or send a message, its environment always sends or
receives such the message. For a private process, if it does
not conform to self-correctness, then composite correctness
may be violated [7]. Additionally, in the correctness analysis
of collaborative business processes, self-correctness should
be met before composite correctness [7]. Hence in this paper
we focus on self-correctness.

Self-correctness is an important aspect that business
designers should consider at design time. Neglecting the
aspect will make the construction of private processes lack
a guideline, and this in turn affects modelling efficiency in
practice. Additionally, self-correctness is usually analyzed
based on the state space of private processes. If the structure
of private processes is complex such as the number of par-
allel branches in private processes is large or the length of
these parallel branches is longer, then the state-space explo-
sion problem may occur. This problem will directly affect
the correctness analysis of private processes, and eventu-
ally affect the correctness analysis of collaborative business
processes [7].

To address these problems, we propose an approach
that relies on four basic blocks (i.e., sequence, selection,
concurrency and iteration blocks) for constructing correct
private processes. This approach allows participating orga-
nizations to construct their private processes in a refinement
manner, and ensures that the established private processes
are correct at both the syntax and semantic levels. As a
subsequent correctness analysis for private processes can be

avoided, the efficiency of the correctness analysis of collab-
orative business processes can be improved eventually [7].
Note that we focus in this paper on structured private pro-
cesses since they are close to BPEL, which is the standard
language for implementing private processes using service-
oriented technologies. Additionally, structured private
processes allow for a simple definition of refinement
rules [41]. Particularly, for unstructured processes, several
approaches have been presented to convert an unstructured
process into a structured one or a BPEL process while
preserving its behavior [22], [23].

The main contributions of this paper are as follows:
(1) We propose a method that can be used to abstracting the

control flow of private processes into four basic blocks.
Based on the four basic blocks, we derive a set of refine-
ment rules and then present a method to build private
processes through stepwise refinement.

(2) We prove that the private processes built using our
approach are correct at the syntax and semantic levels.

(3) The case study shows that our method is easy to use for
business designers and can avoid the state-space explo-
sion problem in existing approaches.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 presents the
formal definition for private processes. Section 4 presents
the method for constructing private processes and proves the
established private processes are correct. Section 5 evaluates
the effectiveness and efficiency of the approach using a case
study. Section 6 concludes this paper.

II. MOTIVATION EXAMPLE
In this section, we present a simplified cell phone design
process (CPD) used throughout the paper to illustrate our
approach. CPD involves 2 participants, i.e., a hardware
designer (denoted as HarDesigner) and a software developer
(denoted as SofDeveloper). The interaction between the two
participants is depicted in Figure 1, which includes the fol-
lowing steps:
(1) To design a new cell phone, HarDesigner first concur-

rently designs its motherboard and peripherals according
to actual needs, and sends the motherboard parameters
motPar to SofDeveloper;

(2) After receiving motPar, SofDeveloper develops the soft-
ware motSoft for the motherboard;

(3) After motSoft is developed, SofDeveloper sends motSoft
to HarDesigner;

(4) After receivingmotSoft,HarDesigner integrates both the
software motSoft and the hardware (i.e., the motherboard
and peripherals) to complete the design of the phone.

In Figure 1, we can see that the correctness of
CPD involves two aspects: self-correctness and composite
correctness. Self-correctness means that the private processes
of both HarDesigner and SofDeveloper are correct. Compos-
ite correctness means that the composition of their private
processes is correct.
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FIGURE 1. The interaction of CPD depicted by UML sequence diagram.

However, the existing work mainly concentrates on com-
position correctness yet ignores self-correctness. In fact, dur-
ing the execution ofCPD, self-correctness has a direct impact
on composite correctness. For example, if the private pro-
cess of HarDesigner has a deadlock during execution, then
composite correctness must be violated. Additionally, if the
structure of the private processes of HarDesigner and SofDe-
veloper is complex, then the state-space explosion problem
may occur, and this in turn results in low efficiency when
analyzing composite correctness. Therefore, how to construct
correct private processes to avoid subsequent correctness
verification for private processes remains largely open.

III. PRELIMINARIES
In this section, we present a formal model for private pro-
cesses. A private process consists of tasks and the control flow
between tasks. A task is an atomic unit of work or activity in
a business process. Formally, a task is defined as follows.
Definition 1 (Task):A task is a 4-tuple Tasks= (name, org,

MsgRec, MsgSend), where
1) name is the name of task;
2) org is the organization to which task belongs;
3) MsgRec denotes a set of messages which is received by

task before it is executed;
4) MsgSend denotes a set of messages which is sent by task

after it is executed.
Given a task ta, we use ta.name, ta.org, ta.MsgRec and

ta.MsgSend to refer to different components of ta. In particu-
lar, if the condition ta.MsgRec 6= Ø∨ ta.MsgSend 6= Ø holds,
then we refer to ta as a communication task, otherwise ta is
a local task. A communication task makes its private process
interact with its external environment, as the task sends mes-
sages to its external environment or receives messages from
its external environment.

The control flow specifies sequential constraints between a
set of tasks using control structures such as sequence, switch

and flow structures. In our work, we employ Petri nets to
model the control flow, as they have an intuitive graphical
representation, strict formal semantics and are suitable for
expressing various control structures.
Definition 2 (Control Flow): The control flow is a basic

Petri net Flow= (P,T ; F,M0, i, o), where
(1) P is a finite set of places;
(2) T is a finite set of transitions;
(3) F ⊆ (P× T ) ∪ (T × P) is a flow relation;
(4) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1;
(5) i and o are two special places, which represent source and

sink places, respectively.
With the concepts of task and control flow, a private pro-

cess is formally defined as follows.
Definition 3 (Business Process): A private process is a

3-tuple BP = (Tasks, Flow, f ), where
(1) Tasks is a set of tasks. For any task∈Tasks, task conforms

to Definition 1;
(2) Flow is the control flow;
(3) f : T → Tasks is a function that assigns tasks to

transitions.
In essence, the control flow of a private process describes

the internal business logic of the private process. Addition-
ally, for a task task in the private process, if task is a com-
munication task, meaning that the private process needs to
interact with its external environment when executing task.
By defining that the messages need to be received before
the execution of task and the messages need to be sent after
the execution of task (see Definition 1), we can well specify
the interaction between the private process and its external
environment.

For a private process BP and its external environment E ,
the running state of BP can be represented with a set of
markingsM ⊆ Flow.P. In practice, the execution of the tasks
in BP is not only restricted by the control flow of BP, but may
also be affected by E . A task is enabled under the markingM ,
denoted asM [t>, iff its corresponding transition t is enabled
under M , and the messages that task needs to receive is
available, then a new marking M ′ can be reached by the
execution of task, denoted by M [task > M ′.
By Definition 2, we can derive that the control flow of

private processes is a workflow net [13]. Therefore, we define
the correctness of the control flow of private processes using
soundness [13].
Definition 4 (Sound): A business process BP is sound, iff

(1) ∀M : M0[σ1 > M → M [σ2 > Mf , where Mf is the final
marking of BP, such that for any p ∈ BP.Flow.P, p 6= o:
Mf (p) = 0 and Mf (o) = 1;

(2) ∀M ′: M0[σ > M ′ ∧M ′ ≥ o→ M ′ = o;
(3) ∀t ∈ BP.Flow.T , there exist two markings M ,M ′ such

that M0[σ > M [t > M ′.

where σ, σ1, σ2 ∈ BP.Flow.T∗; M [σ > M ′ indicates that
BP reaches a new marking M ′ from the marking M by exe-
cuting a sequence of transitions σ .
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IV. BASIC BLOCKS AND REFINEMENT RULES
In this section, we first define four basic blocks. Then,
we derive the refinement rules for the four basic blocks.
Finally, we present an approach for constructing private pro-
cesses, and analyze the correctness of the established private
processes.

A. BASIC BLOCKS
As the introduction illustrates, we focus in this paper on
structured private processes such as BPEL processes. Typi-
cally, structured processes consist of four basic control flow
structures, i.e., sequence, selection, iteration and concurrency
structures [41]. In essence, these four basic control flow
structures correspond to the sequence, switch, flow, and loop
control structures in BPEL.

Theoretically, we can’t produce a private process with
arbitrary structure by refining these four basic blocks [25].
However, according to our investigation, most of pri-
vate processes independently developed in reality (such as
BPEL-based service processes) are structured. Hence, our
approach that constructs the correct private process by refin-
ing the basic blocks is applied well in practice.

In the following, we formally define four basic blocks
for the above four control structures. Note that in our work,
we define private processes (see Definition 3) that realize
the separation of the control flow and tasks. Thus, we can
abstract the control flow of private processes into four types
of basic blocks (i.e., sequence, selection, concurrency, and
iterative blocks) without involving tasks, and each basic block
corresponds to a control structure. For the sake of simplicity,
Definitions 4-11 and Rules 1-4 only consider the control flow,
and no tasks are involved.

A basic block is a structural fragment with exactly one
entry and exactly one exit in a private process. In our context,
we employ Petri nets to model basic blocks. Formally, a basic
block is defined as follows.
Definition 5 (Basic Block): A basic block is a 7- tuple

B = (P,T ; F,Ae,Ax ,Re,Ru), where
(1) P is a set of places;
(2) T is a set of transitions;
(3) F ⊆ (P× T ) ∪ (T × P) is a flow relation;
(4) Ae,Ax ⊆ T are the entry and exit of the basic block,

respectively;
(5) Re,Ru ⊆ T denote a set of refinable transitions and a

set of non-refinable transitions, respectively. Particularly,
refinable transitions are transitions that can be replaced
with basic blocks when constructing private processes,
while non-refinable transitions have only been added for
routing purposes, i.e., preserving the integrity of basic
blocks.

In Figure 2 (a), a sequence block depicts the sequential
execution of the tasks corresponding to the transitions ti
and tj.
Definition 6 (Sequence Block): Let B = (P,T ; F,Ae,

Ax ,Re,Ru) be a basic block, we call B a sequence block, iff
B satisfies the following conditions:

FIGURE 2. The basic blocks.

(1) P = {p};
(2) T = {ti, tj};
(3) F = {(ti, p), (p, tj)};
(4) Ae = {ti};
(5) Ax = {tj};
(6) Re = {ti, tj};
(7) Ru = Ø.
In Figure 2 (b), a concurrency block depicts the

concurrent execution of the tasks corresponding to the
transitions t1, . . . , tn.
Definition 7 (Concurrency Block): Let B = (P,T ; F,Ae,

Ax ,Re,Ru) be a basic block, we call B a concurrency block,
iff B satisfies the following conditions:
(1) P = {p11, p12, . . . , pn1, pn2};
(2) T = {t1, . . . , tn, te, tx};
(3) F = {(te, p11), . . . , (te, pn1), (p11, t1), . . . , (pn1, tn),

(t1, p12), . . . , (tn, pn2), (p12, tx), . . . , (pn2, tx)};
(4) Ae = {te};
(5) Ax = {tx};
(6) Re ={t1, . . . , tn};
(7) Ru = {te, tx}.

In Figure 2 (c), a selection block depicts the selec-
tive execution of the tasks corresponding to the transitions
t1, . . . , tn.
Definition 8 (Selection Block): Let B = (P,T ; F,Ae,

Ax ,Re,Ru) be a basic block, we call B a selection block,
iff B satisfies the following conditions:
(1) P = Ø;
(2) T = {t1, . . . , tn};
(3) F = Ø;
(4) Ae = {t1, . . . , tn};
(5) Ax = {t1, . . . , tn};
(6) Re ={t1, . . . , tn};
(7) Ru = {te, tx}.

In Figure 2 (d), an iteration block depicts the iterative
execution of the tasks corresponding to the transitions ti, tj.
Definition 9 (Iteration Block): Let B = (P,T ; F,Ae,

Ax ,Re,Ru) be a basic block, we call B an iteration block, iff
B satisfies the following conditions:
(1) P = {p1, p2};
(2) T = {ti, tj, te, tx};
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FIGURE 3. The source control flow of HarDesigner.

(3) F = {(te, p1), (p1, ti), (ti, p2), (p2, tj), (tj, p1), (p2, tx)};
(4) Ae = {te};
(5) Ax = {tx};
(6) Re = {ti, tj};
(7) Ru = {te, tx}.

B. REFINING BASIC BLOCKS
Based on the above four basic blocks, we can derive refine-
ment rules. At first, we introduced the notion of source con-
trol flow. A source control flow saves as the start point for
constructing the control flow of a private process. Formally,
we define a source control flow as follows.
Definition 10 (Source Control Flow): A source control

flow is a 6-tuple SP = (P,T ; F,Re,Ru,M0), where
(1) P = {i, o};
(2) T = {t};
(3) F ⊆ {(i, t), (t, o)};
(4) Re ={t};
(5) Ru = Ø;
(6) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1;
(7) i, o ∈ P are two special places, which represent source

and sink places, respectively.
Afterwards, we can generate a refined control flow by

refining transition t in a source control flow. Formally,
a refined control flow is defined as follows.
Example 1: To develop the private process ofHarDesigner

in CPD, we need to first define its source control flow,
as shown in Figure 3.
Definition 11 (Refined Control Flow): A refined control

flow is a 6-tuple RP = (P,T ; F,Re,Ru,M0), where
(1) P is a finite set of places;
(2) T is a finite set of transitions;
(3) F ⊆ (P× T ) ∪ (T × P) is a flow relation;
(4) Re is a set of refinable transitions;
(5) Ru is a set of non-refinable transitions;
(6) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1;
(7) i, o ∈ P are two special places, which represent source

and sink places, respectively.
In essence, source control flows can be regarded as initial

refined control flows. By iteratively refining refined control
flows, we are able to generate the control flow of private
processes.

With the concept of refined control flow, we present several
refinement rules based on four basic blocks as follows.

The refinement rule based on sequence blocks is depicted
in Figure 4(a).
Rule 1: Let RP= (P,T ; F,Re,Ru,M0) be a refined control

flow, then a new refined control flow obtained by a sequential
refinement of t in RP is RP’= (P′,T ′; F ′,R′e,R

′
u,M0), where

FIGURE 4. The refinement rules.

FIGURE 5. The sequence block for t in Fig. 3.

FIGURE 6. The refinement of the source control flow in Fig. 3.

(1) P′ = P∪{p};
(2) T ′ = T∪{ti, tj} − {t};
(3) F ′ = F∪{(c11, ti), . . . , (cn1, ti), (tj, c12), . . . , (tj, cn2)}−

{(c11, t), . . . , (cn1, t), (t, c12), . . . , (t, cn2)};
(4) R′e= Re∪{ti, tj} − {t};
(5) R′u= Ru;
(6) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1.

Example 2: According to the scenario depicted
in Figure 1, for HarDesigner, we can define the sequence
block corresponding to the transition t in its source control
flow, as shown in Figure 5.

Then, we refine the transition t in the source control flow
in Figure 3 according to Rule 1, and the refined control flow
obtained is shown in Figure 6.

The refinement rule based on concurrency blocks is
depicted in Figure 4(b). Formally,
Rule 2: Let RP= (P,T ; F,Re,Ru,M0) be a refined control

flow, then a new refined control flow obtained by a concurrent
refinement of t in RP is RP’ = (P′,T ′; F ′,R′e,R

′
u,M0),

where

(1) P′ = P∪{p11, p12, . . . , pn1, pn2};
(2) T ′ = T∪{t1, . . . , tn, te, tx}−{t};
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FIGURE 7. The concurrency block for t1 in Fig. 6.

(3) F ′ = F∪{(c11, te), . . . , (cn1, te), (tx ,c12), . . . , (tx ,cn2)}
∪{(te, p11), . . . , (te, pn1), (p11, t1), . . . , (pn1, tn), (t1, p12),
. . . , (tn, pn2), (p12, tx), . . . , (pn2, tx)}−{(c11, t), . . . ,
(cn1, t), (t, c12), . . . , (t, cn2)};

(4) R′e= Re∪{ti, tj}−{t};
(5) R′u= Ru∪{te, tx};
(6) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1.
Example 3:According to the scenario depicted in Figure 1,

we can define a concurrency block for the transition t1 in
Figure 6, as shown in Figure 7.

Then, we refine the transition t1 in Figure 6 according
to Rule 2, and the refined control flow obtained is shown
in Figure 8.

The refinement rule based on selection blocks is depicted
in Figure 4(c). Formally,
Rule 3: Let RP= (P,T ; F,Re,Ru,M0) be a refined control

flow, then a new refined control flow obtained by a selective
refinement of t in RP is RP’= (P′,T ′; F ′,R′e,R

′
u,M0), where

(1) P′ = P;
(2) T ′ = T∪{t1, . . . , tn}−{t};
(3) F ′ = F∪{(c11, ti), . . . , (cn1, ti), (c11, tj), . . . , (cn1, tj)}∪

{(ti, c12), . . . , (ti, pn2), (tj, c12), . . . , (tj, pn2)}−{(c11, t),
. . . , (cn1, t), (t, c12), . . . , (t, cn2)};

(4) R′e= Re∪{t1, . . . , tn}−{t};
(5) R′u= Ru.
The refinement rule based on iteration blocks is depicted

in Figure 4(d). Formally,
Rule 4: Let RP= (P,T ; F,Re,Ru,M0) be a refined control

flow, then a new refined control flow obtained by an iterative
refinement of t in RP is RP’= (P′,T ′; F ′,R′e,R

′
u,M0), where

(1) P′ = P∪{p1, p2};
(2) T ′ = T∪{ti, tj, te, tx}−{t};
(3) F ′ = F∪{(c11, te), . . . , (cn1, te), (tx ,c12), . . . , (tx ,cn2)}∪

{(te, p1), (p1, ti), (ti, p2), (p2, tj), (tj, p1), (p2, tx)}−
{(c11, t), . . . , (cn1, t), (t, c12), . . . , (t, cn2)};

(4) R′e= Re∪{ti, tj}−{t};
(5) R′u= Ru∪{te, tx};
(6) M0 is the initial marking, such that for any p ∈ P, p 6= i:

M0(p) = 0 and M0(i) = 1.
Example 4: According to Figure 8, we finally obtain

HarDesigner’s refined control flow as shown in Figure 9.

C. CONSTRUCTING PRIVATE PROCESSES
Based on the above refinement rules, we propose an approach
for constructing private processes. In practice, our approach
that serves as a modeling guideline can assists business

FIGURE 8. The refinement of t1 via rule 2.

FIGURE 9. The refined control flow of HarDesigner.

designers reducing the modeling complexity of private pro-
cesses. Concretely, our approach could be done by the fol-
lowing steps:
(1) Define a source control flow SP that savers as the start

point for building the control flow of a particular private
process.

(2) Analyze the refinable transition t in SP, and determine
the basic block corresponding to t . Refine SP according
to the corresponding refinement rule to generate a new
refined control flow RP1.

(3) If the granularity (the granularity is determined by busi-
ness designers) of RP1 is appropriate, then the refinement
process ceases, otherwise jump step (4).

(4) Set RP=RP1, and analyze the refinable transition
t ∈RP.Re in SP. Determine the basic block corresponding
to t , and refine SP according to the corresponding refine-
ment rule to produce a new refined control flow RP2.

(5) Repeat step (4) until the appropriate granularity is
reached, then a final refined control flow is obtained.
Extract the places and transitions in the final refined
control flow to construct a control flow named Flow.

(6) Associate each transition in Flow with a task to obtain a
private process BP.

Example 5: According to the refined control flow shown
in Figure 9, we only need to extract the places, transitions
and flows in it, then we can construct the control flow of
HarDesigner, as shown in Figure 10.
Then, according to the scenario depicted in Figure 1,

we define the tasks in HarDesigner, as shown in Table 1.
In Table 1, Name represents the name of the task; Org is
the organization to which the task belongs; MsgRec denotes
a set of messages which is received by the task before it is
executed; MsgSend denotes a set of messages which is sent
by the task after it is executed.

Finally, we define the mapping function f = {(t11, task11),
(t12, task12), (t2, task2), (te, task), (tx , task)}. The mapping
function f associates each transition in the control flow
shown in Figure 10 with a task, resulting in the private
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TABLE 1. The tasks of CPD.

FIGURE 10. The control flow of HarDesigner.

FIGURE 11. The private process of HarDesigner.

process ofHarDesigner, as shown in Figure 11. In particular,
transitions te and tx are only associated with empty tasks for
routing purposes.

Following the above procedure, we can analyze the correct-
ness of private processes. Generally, the correctness of private
processes can be analyzed at both the syntax and semantic
levels [7]. Therefore, we distinguish between two kinds of
correctness in our context: syntax correctness and semantic
correctness.
Compared with traditional modeling languages of busi-

ness processes such as EPC, YAWL and BPMN, WF-nets
have a more mathematical representation and are more easily
converted into other specific modeling languages such as
BPEL in practice. Therefore, in this paper we define syntax
correctness as the fact that the control flow between tasks
in private processes is a WF-net. That is, let BP= (Tasks,
Flow, f ) be a private process, BP is syntactically correct,
if and only if Flow is a WF-net.
By analyzing the refinement procedure of private pro-

cesses, we can conclude that the final refined control flow
is a WF-net.
Theorem 1: Let RP = (P,T ; F,Re,Ru,M0) be a final

refined control flow, then RP is a WF-net.
Proof:We prove this theorem by induction on n, where

n refers to the number of refinements. Let SP be the source
control flow of RP.

(1) For n = 1, we need to prove that SP is a WF-net.
By Definition 9, we know that the conclusion holds.

(2) For n = k , the refined control flow RPk is a WF-net,
where RPk is generated by refining SP for k times.

(3) For n = k+1, we need to prove that the refined control
flow RPk+1 is a WF-net, where RPk+1 is generated by
refining SP for (k+1) times.
(1) If RPk+1 is obtained by a sequential refinement of t

in RPk , then we know that •i = Ø and o• = Ø
in RPk+1 according to Rule 1. According to
Definition 5, we know that Ae1 ={ti}, Ax1 ={tj},
F={(ti, p), (p, tj)}, and then derive ti and tj are con-
nected. Since RPk is a WF-net, we know that i and
t are connected and t and o are connected, and then
derive i and ti are connected, ti and tj are connected,
and tj and o are connected. If an extra transition e is
added into RPk+1, such that e• = o and •e = i, then
we can derive that RPk+1 is strongly connected.

(2) If RPk+1 is obtained by a concurrent refinement, or a
selective refinement, or an iterative refinement of t
in RPk , the proof is similar to (a). To save space,
the rest of the proof is omitted.

Combining the analysis of (1), (2) and (3), we can derive
that RP is a WF-net. �
Specially, for a refined control flow RP= (P,T ; F,Re,

Ru,M0), and two elements e1 and e2 ⊆ P ∪ T , if
e1 and e2 are connected, if and only if the condition
{(e1, p1), . . . , (pn, e2)}⊆ F holds, where for any i ∈[1..n],
pi ⊆ P ∪ T . The term strongly connected means that for any
two elements e1 and e2 ⊆ P ∪ T , e1, e2 are connected.

Theorem 1 states that the final refined control flow is a
WF-net. Therefore, we can conclude that the built private
processes are syntactically correct.
Corollary 1: Let BP be a built private process, then BP is

syntactically correct.
Proof: Let RP= (P,T ; F,Re,Ru,M0) be a final refined

control flow. Thus, we can construct the control flow of BP,
i.e., Flow= (P,T ; F,M0, i, o). According to the modeling
approach described in section 4.2, we know that each tran-
sition in Flow is associated with a task, i.e., there exists a
mapping function f , such that for any t ∈ T , there is a task
task, such that f (t) = task.
By Theorem 1, we know that RP is a WF-net, and then

derive that Flow is a WF-net as well. Hence, we know that
the structure between the tasks in BP (determined by Flow)
meets the properties of WF-nets. �
Example 6: According to Corollary 1, we know that

HarDesigner’s private process is syntactically correct,
because the control flow shown in Figure 11 has exactly one
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source place i and exactly one sink place o. Additionally, if we
add a transition e such that e• = o and •e = i, then the control
flow is strongly connected.

As the motivation example illustrates, the correctness of
private processes (such as HarDesigner) has a direct impact
on the correctness of collaborative business processes (such
as CPD). To improve the efficiency of formal verification of
collaborative business processes, it is usually required that the
private process in the collaboration is correct first.

Informally, semantic correctness means that private pro-
cesses are able to successfully terminate through the exe-
cution of sequences of tasks. Since the private process is a
single process, its semantic correctness can be defined with
the sound property.
Definition 12 (Semantic Correctness): A business process

BP is semantically correct, if and only if the following con-
ditions hold:
(1) ∀M : M0[σ1 > M → M [σ2 > Mf , where Mf is the final

marking of BP, such that for any p ∈BP.Flow.P, p 6= o:
Mf (p) =0 and Mf (o) =1;

(2) ∀M ′: M0[σ > M ′∧M ′≥ o→ M ′= o;
(3) ∀task∈BP.Task∗, there exist two markings M and M ′,

such that M0[σ > M [task> M ′.
where σ, σ1, σ2 ∈BP.Task∗; M [σ > M ′ indicates that
BP reaches a new marking M ′ from the marking M by exe-
cuting a sequence of tasks σ .

In Definition 12, (1) refers to any marking M that is
reachable from the initial marking, the final marking can be
reachable from M by the execution of a sequence of tasks;
(2) states that if the final marking is reached, then there is
exactly one token in the place o, and no tokens in the other
places. (1) and (2) limit the situation where deadlocks and
livelocks do not occur in BP. (3) states that there are no dead
tasks in BP.

In particular, Definition 12 and Definition 4 are similar as
they are both defined with soundness. Yet, Definition 4 only
defines the correctness of the control flow of private processes
from the viewpoint of transitions, Definition 12 defines the
semantic correctness of private processes from the viewpoint
of tasks, and involves both the control flow and the message
flow (i.e., the interaction between private processes via mes-
sage exchange).

To prove the private process built through our approach is
semantically correct, we first present several theorems related
to the basic blocks in the following.
Theorem 2: Let t be a refinable transition, and t is

refined by a sequence block B = (P,T ; F,Ae,Ax ,Re,Ru).
If M [t > M ′, then M [B > M ′.

Proof: SinceM [t > M ′, we know that ti is enable under
M according to Definition 6 and Rule 1, and then derive that
M [ti >{p}, {p}[tj > M ′. �
Theorem 3: Let t be a refinable transition, and t is

refined by a concurrency block B = (P,T ; F,Ae,Ax ,Re,Ru).
If M [t > M ′, then M [B > M ′.

Proof: Since M [t > M ′, we know that te is enable
underM according to Definition 7 and Rule 2, and then derive

that M [te >{p11, . . . , pn1}, {p11, . . . , pn1}[{t1, . . . , tn}>
{p12, . . . , pn2}, {p12, . . . , pn2}[tj > M ′. �
Theorem 4: Let t be a refinable transition, and t is

refined by a selection block B = (P,T ; F,Ae,Ax ,Re,Ru).
If M [t > M ′, then M [B > M ′.

Proof: Since M [t > M ′, we know that for any
transition t ∈{t1, . . . , tn} is enable under M according to
Definition 8 and Rule 3, and then derive that M [{t1, . . . ,
tn}> M ′. �
Theorem 5: Let t be a refinable transition, and t is

refined by an iteration block B = (P,T ; F,Ae,Ax ,Re,Ru).
If M [t > M ′, then M [B > M ′.

Proof: Since M [t > M ′, we know that te is enable
under M according to Definition 9 and Rule 4, and then
derive that M [te >{p1}, {p1}[ti >{p2}, {p2}[tj >{p1}, . . . ,
{p1}[ti >{p2}, {p2}[tx > M ′. �
By the use of Theorem 2∼ Theorem 5, we can derive that

a final refined control flow is sound [7].
Theorem 6: Let RP = (P,T ; F,Re,Ru,M0) be a final

refined control flow, then RP is sound.
Proof:We prove this theorem by induction on n, where

n refers to the number of refinements. Let SP be the source
control flow of RP.

(1) For n = 1, we need to prove that SP is sound. According
to Definition 4 and Definition 10, we know that
M0[t > Mf , and then derive that RP is sound.

(2) For n = k , the refined control flow RPk is sound, where
RPk is generated by refining SP for k times.

(3) For n = k+1, we need to prove that the refined control
flowRPk+1 is sound, where RPk+1 is generated by refin-
ing SP for (k+1) times.
(1) Let t be a refinable transition in RP, and t is refined

by a sequence block B. Since RPk is sound, we know
that M [t > M ′. According to Theorem 2, we know
thatM [B > M ′, and then derive that RPk+1 is sound.

(2) Let t be a refinable transition in RP, and t is refined
by a concurrency block B. Since RPk is sound,
we know that M [t > M ′. According to Theorem 3,
we know thatM [B > M ′, and then derive that RPk+1
is sound.

(3) Let t be a refinable transition in RP, and t is refined
by a selection block B. Since RPk is sound, we know
that M [t > M ′. According to Theorem 4, we know
thatM [B > M ′, and then derive that RPk+1 is sound.

(4) Let t be a refinable transition in RP, and t is refined
by an iteration block B. Since RPk is sound, we know
that M [t > M ′. According to Theorem 5, we know
thatM [B > M ′, and then derive that RPk+1 is sound.

Combining the analysis of (1), (2) and (3), we can derive
that RP is sound. �
With Definition 12 and Theorem 6, we can prove

the private process built by our approach is semantically
correct.
Corollary 2: Let BP be a private process built by our

approach, then BP is semantically correct.
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FIGURE 12. The interaction of OP depicted by UML sequence diagram.

Proof: LetRP = (P,T ; F,Re,Ru,M0) be the final
refined control flow of BP. We can construct the control
flow of BP, i.e.,Flow= (P,T ; F,M0, i, o). According to the
modeling approach presented in section 4.2, we know that
each transition in Flow is associated with a task, i.e., there
exists a mapping function f , such that for any t ∈ T , there
is a task task, such that f (t) =task. Using Flow and f ,
we construct the private process BP=(Tasks, Flow, f ), where
Tasks ={task| task= f (t)}.
According to Theorem 6, we know that RP is sound, and

then derive that Flow is sound as well. That is,
(1) ∀M : M0[σ1 > M → M [σ2 > Mf ;
(2) ∀M ′: M0[σ > M ′∧M ′≥ o→ M ′= o;
(3) ∀t ∈Flow.T , there exist two markings nnnM ,M ′ such

that M0[σ > M [t > M ′.
where σ, σ1, σ2 ∈Flow.T∗; M [σ > M ′ indicates that Flow
reaches a new markingM ′ from the markingM by executing
a sequence of transitions σ .

We recall that the execution of private processes under a
perfect environment E . This means that E is always able
to send or receive a message whenever a private process is
expected to receive or send such amessage. Therefore, we can
derive the following conditions hold:
(1) ∀M : M0[f (σ1) > M → M [f (σ2) > Mf ;
(2) ∀M ′: M0[f (σ ) > M ′∧M ′≥ o→ M ′= o;
(3) ∀task∈BP.Task, there exist two markings nM and M ′

such that M0[f (σ ) > M [task> M ′.
where σ denotes a sequence of transitions, while f (σ ) denotes
the sequence of tasks corresponding to σ .
According to Definition 12, we derive that BP is semanti-

cally correct. �
Corollary 2 states that the private process built via our

approach is semantically correct. Thus, a subsequent cor-
rectness analysis for private processes is avoided, and the

efficiency of the correctness analysis of collaborative busi-
ness processes is improved eventually.
Example 7: According to Corollary 2, we know that

HarDesigner’s private process is semantically correct. That
is, since the control flow shown in Figure 11 is sound and
the message software received by the task task2 is available,
we can derive that the private process must be executed
correctly (according to definition 3) without any undesired
outcome, such as deadlocks and livelocks.

V. CASE STUDY
In this section, we first choose a simplified order
process (OP) from the supply chain collaboration domain as
our case study. Then, we illustrate the effectiveness of our
approach via modeling the private processes in OP. Finally,
we quantitatively evaluate the analytical efficiency of our
approach and the related work. All experiments were carried
out on a PC with 1.60GHz Processor and 8GB of RAM,
running Windows 10.

A. ORDER PROCESS
OP involves 2n + 3 participants, i.e., 1 retailer (denoted
as Ret), 1 manufacturer (denoted asMaf), n parts suppli-
ers (denoted asPartSup1, . . . , PartSupn), n parts shippers
(denoted asPartShp1, . . . , PartShpn) and 1 product shipper
(denoted asProShp). The interaction between these partici-
pants is depicted in Figure 12, which includes the following
steps:

(1) Ret negotiates with Maf on the price of the ordered
product;

(2) After the price is agreed, Ret submits an order O toMaf;
(3) After receiving O, Maf analyzes O, and determines that

O consists of parts A1 ∼ An, and then sends requests for
purchasing these parts to PartSup1, . . . , PartSupn;
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FIGURE 13. The construction of Maf’s private process.

(4) After receiving the purchasing requests, PartSup1, . . . ,
PartSupn will notify PartShp1, . . . , PartShpn to deliver
the purchasing parts to Maf;

(5) After receiving these parts, Maf produces an ordered
product P by assembling these parts;

(6) Maf notifies ProShp to deliver P to Ret.

B. MODELING THE PRIVATE PROCESSES IN OP
In practice, the private processes involved in OP can be con-
structed by our approach. To save space, we only present the
procedure for constructingMaf’s private process. The private
processes of other participants inOP can be built in a manner
similar to Maf.

Concretely, we first define a source control flow shown
in Figure 13(a) that savers as the start point for construct-
ing the control flow of Maf’s private process. Afterwards,
we repeatedly employ Rule 1∼ Rule 4 to refine the
refinable transitions in the refined control flows shown
in Figure 13 (a)∼ Figure 13(d) to obtain the control flow (e)

of Maf, as shown in Figure 13 (e). For example, the refine-
ment of the transition quotation negotiation in Figure 13(b)
is achieved by using Rule 4 and Rule 1. At last, we associate
each transition in the control flow ofMaf with a specific task
to construct the private process of Maf.
From the procedure shown in Figure 13, we can see

that our approach conforms to business designers’ thinking
habits during the construction of private processes. Therefore,
in practice our approach that serves as a modeling guideline
can assist business designers reducing themodeling complex-
ity of private processes.

C. EFFICIENCY EVALUATION
In order to evaluate the analysis efficiency of our approach,
we choose representative research [6], [7] for experiments.
The basic idea of the approaches in [6] and [7] remains
the same. Thus, we regard them as an approach in our
context. Additionally, in this paper we focus on structured
private processes (the reasons are illustrated in section 2).
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FIGURE 14. Analysis efficiency of syntax correctness per approach.

Thus, these structured private processes can be abstracted
into four basic blocks in an easy way. Based on these four
basic blocks, our approach is able to construct private pro-
cesses with correctness using the presented refinement rules.
Since the constructed private processes are correct at both
the syntax and semantic levels, an extra effort of correctness
verification for private processes is avoided. In contrast, for
modeling flexibility, the approach in [6] and [7] does not
consider correctness when constructing private processes.
Thus, the constructed models are usually unstructured and
may be incorrect. In order to ensure the correctness of these
unstructured processes, the work in [6] and [7] proposed
methods for verifying correctness. Meanwhile, both our work
and the work in [6] and [7] use soundness as the correctness
criterion of private processes. Hence, based on the above
arguments, we claim that it is reasonable to compare the
analysis efficiency of our approach and the approach [6], [7].

Concretely, we take Maf’s private process shown
in Figure 13(e) as an experimental object, and then conduct a
series of experiments on the object to quantitatively evaluate
our approach and the approach in [6] and [7] in terms of
analysis efficiency. In our work, we employ model checking
to as a formal method for syntactic and semantic correctness
analysis. The basic idea of model checking is to represent the
system and the properties to be verified as a state transition
modelM and a temporal logic formula φ, respectively. Then,
it converts ‘‘whether the system satisfies the desired proper-
ties’’ into ‘‘whetherM satisfies the formula φ, i.e.,M | = φ′′.
Since the efficiency of model checking is determined by the
state space of M , we can use the metrics in [19], i.e., reach-
able state, fair transition and system diameter, to evaluate
the analytical efficiency of our approach and the approach
in [6] and [7]. System diameter is the search depth, indicating
the distance from the initial state to the farthest reachable
state, while reachable state and fair transition reflect the
size of the state space of the system and directly affect the
efficiency of model checking [19]. Particularly, reachable
state, fair transition and system diameter are automatically
calculated in the experiment. Specifically, given a state tran-
sition model M , the number of the states and transitions in

M can be used to represent reachable state and fair transition,
respectively. Additionally, system diameter can be calculated
using the standard DFS algorithm [26], which expresses the
length of the longest path that can be reached from the initial
state of M .

Note that in this paper, we only consider key factors
(i.e., reachable state, fair transition, and system diameter)
that affect the efficiency of formal verification, and use
these factors as metrics to evaluate the analysis efficiency
of the correctness of private processes. How to use model
checking to verify the correctness of private processes is out
of scope of this paper, and interesting readers are referred
to [20].

In our context, we distinguish between two kinds of anal-
ysis efficiency: the analysis efficiency of syntax correctness
and the analysis efficiency of semantic correctness.

The analysis efficiency of syntax correctness refers to the
cost of building a private process with syntax correctness.
Concretely, given a private process P generated by refine-
ment, we abstract the places and transitions in P into nodes,
and then abstract the flows in P into edges to generate a
directed graph G. Assuming that the number of nodes in G
and the number of edges in G are V and E , respectively. The
length of the longest path inG is L. Then, the cost of building
private process P with syntax correctness is represented by
the reachable state S = V , the fair transition T = E , and the
system diameter D = L. Among them, the longest path in G
can be obtained by the DFS algorithm [26].

For our approach and the approach in [6] and [7], the com-
parison of their analysis efficiency in terms of syntax cor-
rectness is depicted in Figure 14. In Figure 14, we can see
that as the number of purchasing parts increases (n increases
from 1 to 5), the reachable state and fair transition of the
state model M corresponding to [6] and [7] increases lin-
early, and the system diameter of M remains unchanged.
In contrast, the reachable state, fair transition and system
diameter corresponding to our approach are all zero. Hence,
we can conclude that since our approach can ensure syntax
correctness in advance and does not need to traverse the
control flow of Maf’s private process, the analysis efficiency
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FIGURE 15. Analysis efficiency of semantic correctness per approach.

TABLE 2. Experimental results in terms of syntax correctness.

of syntax correctness of our method obviously outperforms
the approach in [6] and [7].

The analysis efficiency of semantic correctness refers to
the cost of building a private process with semantic correct-
ness. Concretely, given a private process P built by refine-
ment, we generate the reachable graphG of P. Assuming that
the number of nodes inG and the number of edges inG are V
and E , respectively. The length of the longest path in G is L.
Then, the cost of building private process P with semantic
correctness is represented by the reachable state S = V , the
fair transition T = E , and the system diameter D = L.
Among them, the longest path in G can be obtained by the
DFS algorithm [26], and the reachable graph can be generated
using the algorithm described in [25].

For our approach and the approach in [6] and [7], the com-
parison of their analysis efficiency in terms of semantic cor-
rectness is depicted in Figure 15. In Figure 15, we can see
that as the number of purchasing parts increases (n increases
from 1 to 5), the system diameter of the state model M
corresponding to [6] and [7] increases linearly, while the
reachable state and fair transition of M increases exponen-
tially. In particular, when n = 5, the state model corre-
sponding to [6] and [7] cannot be generated. This makes
Maf’s semantic correctness undecidable, and this in turn
results in the correctness of OP undecidable as well. In con-
trast, the reachable state, fair transition and system diam-
eter corresponding to our approach are all zero. Hence,
we can conclude that since our method can ensure semantic
correctness in advance and does not need to exploit and
analyze the reachable graph of Maf’s private process, the

analysis efficiency of semantic correctness of our approach
significantly outperforms the approach in [6] and [7]. Note
that the state model M here refers to the reachable graph
generated by Maf’s private process. Several algorithms have
been presented to generate the reachable graph of Petri nets,
and interesting readers are referred to [21].

Currently, there are no public collaborative business
processes available for experiments [27]. Yet, in order to
evaluate the analytical effectiveness of our approach more
generally, we choose 60 real-world cases (such as a booking
system, a risk management process, and an emergency
management system) from existing research papers and the
BPMN case base (http://www.bpmn.org/) for experiments.
These cases specify actual scenarios in different areas, which
represent diverse and practical private processes.

For these sixty cases, we first analyze syntax correctness,
and Table 2 presents the experimental results of some cases.
In Table 2, |P| and |T | represent the number of places and
transitions in the case, respectively. RS, FT, and SD represent
the reachable state, fair transition, and system diameter used
to identify the analytical efficiency of syntax correctness,
respectively.

In Table 2, we can see that as the structural complexity of
the private process increases, the reachable state, fair transi-
tion and system diameter of the state modelM corresponding
to [6] and [7] increases as well. For example, the structure
of Ca-13 is more complex than Ca-9, i.e., the number of
nodes (places and transitions) and flows in Ca-13 is more
than Ca-9, and hence the analytical efficiency of the syntax
correctness ofCa-13 is lower thanCa-9. In contrast, since our
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TABLE 3. Experimental results in terms of semantic correctness.

approach can ensure syntax correctness in advance and does
not need to traverse the control flow of the private process
(i.e., RS, FT and SD are ‘−’), the analytical efficiency of the
syntax correctness of our approach obviously outperforms the
approach in [6] and [7].

Afterwards, we analyze semantic correctness, and
Table 3 presents the experimental results of some cases. Note
that |P|, |T |, RS, FT, and SD are specified in Table 2.
In Table 3, we can see that as the behavioral complexity of

the private process increases, the reachable state, fair transi-
tion and system diameter of the state modelM corresponding
to [6] and [7] increases rapidly. For example, the behavioral
structure of Ca-13 is more complex than Ca-24, i.e., the
number of nodes and transitions in the reachable graph
of Ca-13 is significantly more than Ca-24, and hence the
analytical efficiency of the semantic correctness of Ca-13 is
much lower than Ca-9. In contrast, since our approach can
ensure semantic correctness in advance and does not need to
exploit and analyze the reachable graph of the private process
(i.e., RS, FT and SD are ‘X’), the analysis efficiency of
semantic correctness of our method significantly outperforms
the approach in [6] and [7].

VI. RELATED WORK
Our work is related to two research axes: (1) modeling collab-
orative business processes; and (2) the correctness analysis of
collaborative business processes.

A. MODELING COLLABORATIVE BUSINESS PROCESSES
The existing work in this area can be divided into two cate-
gories: the top-down modeling approach and the bottom-up
modeling approach.

1) THE TOP-DOWN MODELING APPROACH
Van der Aalst et al. [9] presented a Public-To-Private (P2P)
approach that relies on rules based on behavioral inheritance
to model inter-organizational workflows. Their approach cre-
ates a shared public workflow (i.e., contract), and then par-
tition the public workflow over organizations. At the end,
a private workflow is created for each party that corresponds
to a subclass of the respective part of the public workflow
in terms of mapping rules. After that, Aalst et al. [10]
used a contract to describe the composition of public views
in the collaboration, and then each organization incremen-
tally implements its own part involved in the contract using

transformation rules. Matthias et al. [28] presented a frame-
work called VerChor to construct the collaborative business
process in a top-down manner. Their approach first defines
a choreography that specifies the interaction between peers
from a global point of view. Afterwards, the choreography
is used to obtain peers via projection while preserving real-
izability. That is, the composition of these peers conforms
to the choreography. At last, the developer may implement
the peers by transformation rules, or adding business code.
Marco et al. [29] presented an approach that constructs the
collaborative business process by reusing existing third-party
services. Their approach first specifies a choreography that
model the external interaction between participating services
by specifying peer-to-peer message exchanges from a global
point of view. Then, a set of services is selected from the
service inventory according to the peers generated from the
choreography. At Last, the developer composes these selected
services to achieve the choreography via coordination dele-
gates. Coordination delegates are additional software entities
that are used to control the interaction between services to
achieve choreography realizability enforcement.

The above approaches either focus on the design of trans-
formation rules, or deal with the realizability problem with
respect to choreographies. However, the problem of the cor-
rectness of collaborative business processes is not considered.

2) THE BOTTOM-UP MODELING APPROACH
Wang et al. [8] presented an approach for the construction
of collaborative business processes considering privacy. Their
approach first assumes that the internal view (i.e., private pro-
cess) of participating organizations in the collaboration are
extend free choice nets and presents a set of meta constructs
including sequence, choice, concurrency and loop meta con-
structs. Afterwards, the approach proposes reductive rules for
these meta constructs to obtain public views corresponding
to internal views. At last, by composing these public views,
a collaborative business process is built. Eshuis et al. [14]
introduced the notion of process view. A process view shields
secret or irrelevant details from a private business process by
projection rules (such as Black box projection, Glass box pro-
jection, Gray box projection), thus allowing an organization
to reveal only public and relevant parts of its private business
process to partner organizations. By composing the process
view of each party in the collaboration, a collaborative busi-
ness process can be obtained. Fei et al. [15] presented an
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approach that relies on Petri nets and Pi calculus for modeling
collaborative business processes. Their approach employs
Petri nets to model the control flow of private processes in the
collaboration, and uses Pi calculus to specify the interaction
between private processes. Then, the approach generates the
communication behavior of each participating organization
using the reachable graph of Petri nets. Lastly, by composing
the communication behavior of these participating organi-
zations using parallel composition, a collaborative business
process can be obtained. Qi et al. [11] proposed an approach
for constructing collaborative business processes by extract-
ing public processes from private processes. Their approach
defines the business process model to represent private pro-
cesses, and abstracts it into four basic blocks. Based on
these four basic blocks, this approach proposes extraction
rules for these basic blocks to obtain the public process of
each party and composes these public processes to establish
a collaborative business process considering privacy. How-
ever, the above approaches mainly focus on the construction
of collaborative business processes with individual features
(e.g., autonomy and privacy), but fail to consider the correct-
ness of collaborative business processes.

B. CORRECTNESS ANALYSIS OF COLLABORATIVE
BUSINESS PROCESSES
The existing work in this area can be divided into three
categories, i.e., automata-based approaches, petri net-based
approach, and process algebra-based approaches.

1) AUTOMATA-BASED APPROACHES
Zhou et al. [30] proposed an automata-based approach for
verifying mediated service interactions considering expected
behavior. Their approach first employs Labeled Transition
Systems (LTS) to model service protocols (each service pro-
tocol corresponds to a service-based process). Then, accord-
ing to the adaptation mechanisms of a certain adapter,
the approach generates the logic of the adapter that can
be used to reconcile the mismatches between the proto-
cols. Lastly, the reachability and liveness properties are ver-
ified using SPIN, and the result indicates whether the inter-
action is always adaptable. Flavio et al. [31] proposed a for-
mal approach for modeling and verifying BPMN-based busi-
ness process collaborations. Their approach first proposes
the operational semantics for a relevant subset of BPMN
elements that can be used to map BPMN-based collabora-
tive business processes into Labeled Transition Systems, and
then verifies correctness properties (e.g., the reachability and
liveness properties) in terms of LTL formulae using the tool
Maude.

2) PETRI NET-BASED APPROACHES
Aalst [7] presented an IOWF (Inter-Organizational Work-
flow) based approach for modeling and analyzing inter-
organizational workflows. In this approach, the authors first
use WF-net (Workflow net) [13] to model the business
process of each party. Particularly, a WF-net is a special

Petri net with exactly one source place i and exactly one
sink place o. Additionally, if we add a transition e such
that e• = o and •e = i, then the WF-net is strongly
connected. Then, they define two communication mecha-
nisms, i.e., asynchronous communication and synchronous
communication, to model interactions between business pro-
cesses and compose the business process of each party in the
collaboration using these two communication mechanisms
to obtain an inter-organizational workflow represented by
IOWF. Lastly, they employ the unfolding operator to trans-
form an IOWF into aWF-net, and verify the correctness of the
IOWF in terms of the soundness property. Zhang et al. [16]
presented an approach that relies on Petri nets and Pi cal-
culus for modeling collaborative business processes. Their
approach first employs Petri nets and Pi calculus to model
the local processes in the collaboration and the interaction
protocols between these local processes, respectively. Then,
the approach defines the logic correctness of collaborative
business processes based on soundness [7]. Lastly, a method
verifying the logic correctness is presented, i.e., each local
process is sound and the pi process modeling the interaction
between local processes can be reduced into the process 0.
Ge et al. [12] presented an approach that relies on Interaction-
Oriented Petri Nets (IOPN) to model collaborative business
processes. Their approach first uses IOPN to describe the
workflow coordination between different organizations, i.e.,
collaborative business processes. Then, the approach intro-
duces the notion of weak sound to define the logic correctness
of collaborative business processes. At last, a decomposition
approachwith invariant analysis that can decompose a circuit-
free and relaxed sound IOPN into a set of sequence diagrams
is presented. This decomposition approach can avoid the
state-space explosion problem, thereby improving the effi-
ciency of correctness analysis. Zeng et al. [6] presented a
Petri nets-based approach for modeling and verifying cross-
department processes considering different kinds of coordi-
nation patterns. Their approach extends WF-net by consider-
ing resource and message factors, namely RM_WF_Net, and
additionally proposes several coordination patterns among
different departments. By composing the business process
of each party described by RM_WF_Net in the collabora-
tion using these presented coordination patterns, a cross-
department business process can be obtained and the sound-
ness of the cross-department business process can be ana-
lyzed based on its reachable graph, i.e., 1) for any mark-
ing M that is reachable from the initial marking, the final
marking can be reachable from M by executing a sequence
of transitions, 2) if the final marking is reached, then there
is exactly one token in the place o, and no tokens in the
other places; and 3) there are no dead transitions in cross-
department business process. To verify the correctness of
complex business processes, Kheldoun et al. [32] proposed
a formal verification approach based on high-level Petri
nets. Their approach first uses Business Process Modeling
Notation (BPMN) to model complex collaborative business
processes. Then, the approach presents a formal semantics
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for BPMN using recursive ECATNets that can transform
BPMN-based collaborative business processes into Petri nets.
Finally, the correctness properties (e.g., the reachability prop-
erty) with respect to collaborative business processes can be
verified using the Maude LTL model checker. To verify the
timed compatibility for mediation-aided web service compo-
sition, Du et al. [33] presented a three stages approach. First,
stage 1 treats each service represented by the timed open
workflow net (ToN) in the composition as a fragment. Sec-
ond, stage 2 transforms fragments into a time automata net
(TAN) based on structure transformation and interactive mes-
sage transformation. Finally, stage 3 checks all types of tem-
poral constraints (i.e., related correctness properties) using
UPPAAL. To avoid the verification of composite correctness,
Bi et al. [34] proposed a novel compatibility enforcement
approach based on Petri Nets. Their approach first employs
service workflow nets to model service choreography
(i.e., collaborative business processes). Afterwards, by com-
bining structure and reachability analyses, the approach gen-
erates a controlled reduced graph for a collaborative business
process, and then develops a maximally permissive state
feedback control policy to prevent abnormity. Lastly, an opti-
mal controller is constructed for the administrator of service
composition to avoid deadlocks in service choreography.

3) PROCESS ALGEBRA-BASED APPROACHES
Wong et al. [35] proposed an approach for modeling and
verification of BPMN processes. Their approach introduces
a semantic model for BPMN in the process algebra CSP
(Communicating Sequential Process), and then specifies
behavioral properties of BPMN diagrams and verifies
the properties via automatic model checking tool FDR.
To guarantee the success of Business Process Mod-
elling (BPM), Mendoza et al. [36] proposed a conceptual
framework for business processes compositional verifica-
tion. Their approach transforms collaborative business pro-
cesses specified by BPMN into Communicating Sequential
Processes+Time (CSP+T) processes, and then specifies the
desired temporal properties in terms of Clocked Computa-
tion Tree Logic (CCTL) formulae and verifies the properties
through Failure Divergence Refinement (FDR2). To improve
the reliability for web service-based business process collabo-
ration, Zhu et al. [37] presented an approach tomodel and ver-
ify web service-based business process collaboration based
on model transformation. Their approach first establishes a
modeling and verifying framework based on model transfor-
mation. Then, the approach presents a set of rules to transform
BPE based private processes into CSP processes. Finally,
the correctness of the composition of private processes are
verified using the model checking tool Failure Divergence
Refinement (FDR).

However, the above approaches focus on composite
correctness, assuming that self-correctness is satisfied in
advance. In fact, if the structure of private processes is com-
plex, then the state-space explosion problem may occur. This
problemwill directly affect the correctness analysis of private

processes, and eventually affect the correctness analysis of
collaborative business processes. How to avoid state-space
explosion in the correctness analysis of private processes to
improve the correctness analysis of collaborative business
process is a key problem yet the above approaches have not
discussed this problem in detail.

4) OTHER APPROACHES
Sheng et al. [38] proposed an automata-based approach
for behavioral modeling and automated verification of web
service-based processes. Their approach models operational
and control behaviors of web service-based processes in
terms of automata, and then proposes an automated verifi-
cation approach based on symbolic model checking. In par-
ticular, the approach extracts the checking properties, in the
form of temporal logic formulas, from control behaviors, and
automatically verifies the properties in operational behaviors
using the NuSMVmodel checker. To verify BPMN processes
with a large model size, Dechsupa et al. [39] presented an
approach for transforming the BPMN process into a col-
ored petri net using Partitioning. Their approach proposes a
framework for transforming BPMN processes into colored
Petri nets from the control flow and data flow perspectives.
Particularly, the partitioning technique for BPMN processes
is applied to reduce the complexity and leads to a CPN
model that can support the hierarchical and compositional
verification techniques that are suitable for the large-scale
BPMN design models. Afterwards, correctness properties
can be defined and automatically verified using CPN tools.
Liu et al. [40] proposed an extended logical petri nets
(ELPNs) to model and analyze business processes. Their
approach mainly illustrates the concept, firing rules, and
reachable graph construction algorithm of ELPNs. Taking
advantage of the reachable graph, the business processes
built by ELPNs can be verified. Typically, private processes
under a cross-organizational setting involve both the control
flow and the message flow (i.e., the interaction between
private processes via message exchange). However, the above
approaches only focus on the business process within a single
organization, and deal with the correctness of the control flow
of business processes. Additionally, these approaches ensure
correctness by verification, yet our approach can guarantee
the fact that the built private processes itself is correct, and
thus a subsequent correctness verification is avoided.

A comparative summary of previous efforts in this area is
given in Table 4. The columns of the table correspond to the
following criteria.
1) CC indicates whether the approach supports compos-

ite correctness fully (+), partially (+/−) or not at all
(−). It can be seen that the existing approaches mainly
focus on composite correctness, but fail to consider self-
correctness.

2) SC indicates whether the approach supports self-
correctness fully (+), partially (+/−) or not at all (−).
It can be seen that only the approaches in [38]–[40] focus
on self-correctness, yet the message flow is ignored.
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TABLE 4. A comparison of related work on correctness analysis.

3) MDC indicates the means for determining correctness,
where N for no means provided to determine correct-
ness, V for determining correctness by verification, and
C for determining correctness by construction, i.e., the
constructed private process itself is correct. It can be
seen that only our approach can product private processes
with correctness, thus avoiding a subsequent correctness
verification.

VII. CONCLUSION
In the bottom-up approach, private processes are the basis for
constructing collaborative business processes. Their correct-
ness is considered to be an important issue in the construc-
tion of private processes, and affects the correctness analysis
of collaborative business processes. In order to effectively
construct private processes, we propose an approach based
on four basic blocks to stepwise construct private processes.
The approach that serves as a modeling guideline can assist
business designers reducing the modeling complexity of pri-
vate processes. Meanwhile, it can ensure that the constructed
private processes are correct at both the syntax and semantic
levels, and thus a subsequent correctness analysis for private
processes is avoided.

The future work will be mainly carried out in the
following three aspects: 1) since our approach focuses on
self-correctness, i.e., assuming a perfect environment exists.
In fact, if we relax this condition and consider the execution
of tasks under an inter-organizational environment, then
composite correctness is involved. The existing work on the
verification of composite correctness usually suffers from the
state-space explosion problem, how to effectively verify com-
posite correctness will be discussed in our future work; and
2) In this paper, we only focus on message-based
asynchronous communication between private processes.

The future work will consider self-correctness in
the case involving both asynchronous and synchronous
communication.
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