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ABSTRACT Industrial robots can be found in many manufacturing applications that suffer from imprecise
position control of their own drive systems due to unknown external disturbances and parametric uncertain-
ties. To address this problem, this paper proposes a robust cascade path-tracking control method to achieve
better position control performance for a networked industrial robot. In the joint task space, the cascade
control framework is formulated for the developed robotic actuation system, which consists of an inner speed
loop and an outer position loop. Instead of exploring the conventional model-based approaches, a multiple
degree-of-freedom constrained iterative feedback tuning (CIFT) method is presented to regulate the cascade
controller by utilizing the monitored process data straightforwardly. With the integration of the normalized
input constraints and position tracking error, the proposed CIFT method seeks an optimal solution to track
the desired position profiles with satisfactory accuracy and improved robustness. Theoretical analysis is
performed to verify the asymptotical convergence of the closed-loop system. Implemented on a real-time
networked industrial robot, experimental results demonstrate that the proposed method can enhance the
dynamic path tracking and system robustness during various operating situations.

INDEX TERMS Cascade control, path-tracking, networked industrial robot, constrained iterative feedback
tuning, input constraints.

I. INTRODUCTION
Nowadays, industrial robots are widely applied in the man-
ufacturing fields, such as drilling, painting process, machin-
ing and part assembly, in where an industrial robot should
be steered along a predefined position reference trajectory
[1]–[3]. For this purpose, there exist extensive strategies
concerned with the robotic path-tracking controller design,
such as model predictive control [4], iterative learning con-
trol [5], sliding mode control [6] and their combinations
[7], [8]. However, the precise path-tracking of an indus-
trial robot is still challenging as the coupling characteris-
tics among the actuators will generate complex mechanical
dynamics. Moreover, the industrial robots have been toward
electric-motor powered and servo-controlled directions. The
dynamic tracking of the robotic actuation system is affected
by the internal or external disturbances, system uncertainties
and time-varying operating environment [9], [10]. Thereby,
an improved path-tracking performance of an industrial robot
is becoming necessary for the potential applications.

Among the existing positioning methods, cascade con-
trol method has the ability to attenuate the disturbances
and enhance the system tracking simultaneously when
single feedback control cannot achieve a satisfactory per-
formance [11]. The cascade control systems are composed
of two nested control loops, in where the output of the pri-
mary controller drives the inner secondary controller. Up to
now, owing to the extra adjustable parameters and relatively
simple implementation, some cascade control results tailored
to the position path-following issues of the robotic systems
have been reported. For instance, a cascade control algorithm
is designed to separate the hydraulic dynamics of parallel
robots from the mechanical part [12]; Nedic et al. [13] have
developed amodel-based cascade controller tuningmethod to
provide precise control of the hydraulic actuator for a parallel
robot platform; in the robotic joint space, a position motion
controller is presented to make the actual hydraulic actuators
conform to the desired reference [14]. The specific cascade
structure of these robotic systems is beneficial to design
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flexibilities and robust control. However, an explicit model
of the robot to be controlled is required for implementation,
which implies that additional information about the pose
and the displacement of the end-effect should be obtained
from direct kinematical estimations or multiple degree-of-
freedom (DOF) sensors.

In practical physical systems, such as the robotic systems,
it is still a tough task to get a priori knowledge of the high
nonlinear and time-varying characteristics [15], [16]. As a
result of that, the kinematical parameters or dynamical mod-
els of a robot are not easy to be identified [17], [18].Modeling
a plant is an approximation of the real system with unmod-
eled dynamics and parametric uncertainties, and therefore the
resulting path-tracking errors of model-basedmethods cannot
converge to a small attenuation level if the identified model
is inaccurate. Moreover, recent studies have revealed inherent
fractional-order features in the servo drive systems, which
increases the difficulties to design a model-based cascade
controller for such servo-controlled robots [19], [20]. Another
underlying problem is that the existing cascade controllers are
usually tuned sequentially via different techniques, i.e., the
inner secondary controller is tuned first to give a faster
tracking response, followed by the optimization of the outer
primary controller [21]. In this context, as an industrial robot
has multi-DOF actuators to be controlled, the consequential
tuning complexities and consuming computation time cannot
be neglected.

To overcome these limitations, iterative feedback tun-
ing (IFT) strategy is considered for automatic tuning of the
industrial robotic cascade system in this paper, which only
relies on available input and output data measured from
the experiments [22]. IFT can handle the nonlinear behav-
iors of the controlled plant with high precision and better
insensitivity to external disturbances. The repetitive nature
of the robot-executive manufacturing processes provides a
good opportunity for IFT techniques. The recent years have
witnessed IFT implemented in many industrial applications
due to its superior model-free automatic tuning capacity
[10], [23]–[26]. However, only a few IFT-involved researches
target on the cascade system design: in [10], the IFT algo-
rithm is adopted to tune a typical cascade speed and position
control structure of a servo control system; in additional,
adaptive controller for a real experimental quadcopter is
proposed using cascade IFT method to adjust the vehicle
angle [27]; data-driven IFT is used to tune the parameters
of a cascade feedback controller minimizing an H2 criterion
as presented in [28]. On the other hand, communication
networks have been employed for industrial processes and
equipment to transmit the measurement output and control
signal [29], [30]. Vast amounts of network data with sufficient
information of the actual systems are generated and stored,
which can be applied to directly design a controller [31].
Unlike the traditional point-to-point system, the network-
controlled industrial robot guarantees a high-speed and
reliable data transmission, which gives an opportunity to
tune the cascade controllers using data-based IFT method.

FIGURE 1. The developed networked industrial robot.

According to the authors’ best knowledge, there are no
explored works on the specific combinations of the IFT-based
cascade system with multi-DOF industrial robots, which
motivates us to integrate the IFT into robotic cascade system
to improve its path-tracking performance.

For an industrial robot, the limited mechanical properties
and saturation nonlinearities of actuation motors restrict its
velocities, which is caused by the rate of the actuator inputs
and the constraints of magnitude [32]. Higher overshoot,
longer regulation time and deteriorative system stability may
result from ignoring the input saturation effect. To design a
robotic path-tracking controller, not only the following error
should be eliminated, but also the control inputs should not
exceed the bounds. For this purpose, there have been research
works of the input-constrained tracking control for robotic
systems, such as robot manipulators, mobile robot, and cable-
suspended robot [33]–[37]. However, in the aforesaid robotic
cascade control publications, it is implicitly assumed that the
designed systems can furnish any required drive torque value,
thus actuator saturations are typically omitted from the objec-
tive function to simplify the controller tuning. Beyond the
saturation problem, in the industrial robot environments, the
inherent robustness of the robotic systems is also alleviated
by the external disturbances and parameter vibration. The
resulting undesirable system behaviors or degraded closed-
loop performance are inadequate to meet the practical preci-
sion requirements for an industrial robot.

FIGURE 2. Field oriented control on an actuated joint.

Motivated by the above challenges, this paper proposes a
practical constrained IFT (CIFT)-based cascade controller to
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FIGURE 3. Block diagram of the proposed cascade position controller.

formulate a robust path-tracking of a networked industrial
robot. Comparing with the existing ones, the distinguished
features of the proposed method are threefold: (1) under
unknown system dynamics, CIFT offers an effective way to
utilize the monitored data requiring no explicit model infor-
mation of the controlled industrial robot, which mitigates
the shortcoming of the traditional model-based methods;
(2) superior to the sequential tuning procedure, the proposed
cascade controller, which can optimize the control parameters
for the primary and secondary loops simultaneously, is easy
to implement in the multi-DOF industrial robot due to its rela-
tively lower computational burden; (3) to enhance the system
robustness, input constraints are incorporated into the CIFT
attaining a global optimum solution for the cascade controller,
which has the capacity of mitigating the actuation saturation
and achieving a satisfactory path-tracking performance.

The remainder of this paper is organized as follows.
Section II describes the networked industrial robotic cascade
control system. In Section III, a robust CIFT method is
presented to optimize the cascade control parameters with
consideration of the path-tracking error and normalized input
constraints. Two illustrative experiments on a real-time net-
worked industrial robot are conducted to verify the effective-
ness of the developed robust cascade path-tracking method
in Section IV. Finally, conclusions and future works are pro-
vided in Section V.

II. NETWORKED INDUSTRIAL ROBOTIC
CASCADE CONTROL SYSTEM
A. NETWORKED INDUSTRIAL ROBOT
As illustrated in Fig. 1, a networked industrial robot is devel-
oped in this paper, the control architecture ofwhich comprises
a standard PC using the open-source Linux OS, an ARM
cortex-A8 microprocessor interface, and permanent magnet
synchronous motor (PMSM) servo control systems. Specifi-
cally, the upper PC provides the user interaction interfacewith
functions of teaching simulations, numeric control, signal
animation and debugging, etc; the microprocessor controller,
consisting of a kernel module, a motion control module and
a communication module, is mainly responsible for decod-
ing position, interpolation, path planning, position reference
transmitting for each servo drive while it receives the cur-
rent position; PMSM servo systems are used to drive each
joint so that the developed industrial robot can realize the

desired movement of the end-effector. To satisfy the real-time
requirements, industrial network, often referred as fieldbus,
is applied for the developed industrial robotic servo control
systems due to its remarkable advantages of reduction of
wiring, ease of maintenance, remote operation and reliable
data transmission [35]. The developed communication net-
work protocol here is EtherCAT protocol with 1 ms cycle
time. The network technology meets the requirements of
multi-axis, multi-channel, short communication period of an
industrial robot. To guarantee the practicability and reliability
for data-transmission, the developed EtherCAT processes the
following network technical characteristics and mechanisms:
bicyclic redundant hardware architecture, data packet retrans-
mission, error detection and handling.
Remark 1: In In this paper, the EtherCAT network is

employed for the process data communication, including the
control input signal, position command/feedback, and control
parameters. For the networked industrial system, lots of data
can be received and stored at each communication cycle.
Model-based control theories are only available when accu-
rate mathematic models can be identified by historical or real-
time data. In comparison, the direct utilization of these data
for controller design and theoretical analysis is efficient
and meaningful. Hence, we focus on the cascade position-
following controller design based on the data-driven model-
free IFT method using the network-transmitted input/output
data.

B. CASCADE POSITION CONTROLLER
In practice, the efficiency and tracking performance of an
industrial robot mainly depend on the dynamic response of
its own drive systems. In the joint space coordinate, a cas-
cade field oriented control framework is employed for the
mechatronic joints actuated by the PMSM as shown in Fig. 2,
and a primary position controller and a secondary speed
controller are designed to achieve a satisfactory path-tracking
for the developed robot. The simplified block diagram of
the robotic cascade path-tracking control system is presented
in Fig. 3. As shown in Fig. 3, the inner speed loop consists of
a speed controller Cs(z, θs) parameterized by θs and the loop
model Gs(z) while the outer position loop includes a position
controller Cp(z, θp) parameterized by θp and the position loop
modelGp(z). Define us(t) and up(t) as the control inputs of the
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inner speed loop and outer position loop, respectively. Then,
the discrete-time cascade process can be described as follows

ys(t) = Gs(z)us(t) (1)

yp(t) = Gp(z)up(t)+ vp(t) (2)

where ys(t) and yP(t) are the output signals of the inner
speed loop and outer position loop, respectively, and vp(t)
are the measurement noises and disturbances. For the cascade
control process, the output from the inner process becomes
the input to the outer process, i.e., up(t) = ys(t).
Furthermore, substituting the reference signal rp(t) into

(1) and (2), the cascade robotic system is reformulated as

yp(t, θs, θp) = Tp(z, θs, θp)rp(t)+ Sp(z, θs, θp)vp(t) (3)
ys(t, θs, θp) = Ts(z, θs, θp)(rp(t)− vp(t)) (4)

us(t) =
Ts(z, θs, θp)

Gs
(rp(t)− vp(t))

=
Tp(z, θs, θp)

GsGp
(rp(t)− vp(t)) (5)

where

Ti(z, θs) =
Cs(z, θs)Gs(z)

1+ Cs(z, θs)Gs(z)
(6)

Tp(z, θs, θp) =
Cp(z, θp)Ti(z, θs)Gp(z)

1+ Cp(z, θp)Ti(z, θs)Gp(z)
(7)

Ts(z, θs, θp) =
Tp(z, θs, θp)

Gp(z)
(8)

Sp(z, θs, θp) = 1− Tp(z, θs, θp) (9)

To ensure potential control performance of the developed
cascade controller, the crucial task is the tuning of its con-
trol parameters contributing to design flexibility and control
superiority. This paper explores a model-free tuning solution
for the cascade controller so that the closed-loop system
can achieve a precise path-tracking, despite the modeling
uncertainties and unknown system dynamics.

III. MULTI-DOF CASCADE POSITION
CONTROLLER TUNING
In the manufacturing applications, the joint typically perform
tasks in a specific repetitive manner. Given this context,
this paper proposes an iteration-related optimization method
for the cascade position controller, as demonstrated by the
following results.

A. CASCADE ITERATIVE FEEDBACK TUNING
To guarantee that the PMSM servo drive tracks the desired
trajectory yd (t) for each joint, we consider the following
objective J (θs, θp) with respect to the tracking error and
controller input magnitude

J (θs, θp) =
1
2N

[
N∑
t=1

(yp(t, θs, θp)− yd (t))2

+ λ

N∑
t=1

us(t, θs, θp)2
]

(10)

where λ denotes a pre-defined weighting factor.

By defining θ = [ θs θp ]T, the optimal cascade control
parameters vector θ∗ can be derived as

θ∗ = argmin
θ
J (θ ) (11)

Considering that the gradient of (10) depends on the partial
derivative of yp and us in relation to θs and θp, we have

∂J (θ )
∂(θ )

=
1
N

[
N∑
t=1

(yp(t, θ )− yd (t))
∂yp(t, θ)
∂(θ )

+ λ

N∑
t=1

us(t)
∂us(t)
∂(θ )

]
(12)

Dropping the dependence on θ for simplification reason
yields

∂J (θ )
∂θ
=

[
∂J (θ )
∂θs

∂J (θ )
∂θp

]T

=


1
N

N∑
t=1

(
(yp(t)− yd (t))

∂yp(t)
∂θs

+ λus(t)
∂us(t)
∂θs

)
1
N

N∑
t=1

(
(yp(t)− yd (t))

∂yp(t)
∂θp

+ λus(t)
∂us(t)
∂θp

)


(13)

According to (7), it can be obtained that

∂Tp
∂θs
=

∂

∂θs

(
CpTiGp

1+ CpTiGp

)
=
∂Cs
∂θs

[
CpGp

(1+ CpTiGp)2
Gs

(1+ CsGs)2

]
(14)

∂Tp
∂θp
=

∂

∂θp

(
CpTiGp

1+ CpTiGp

)
=
∂Cp
∂θp

[
TiGp

(1+ CpTiGp)2

]
(15)

The combination of (3)-(5), (14) and (15) gives the partial
derivative of yp with respect to θs and θp

∂yp
∂θs
=

∂

∂θs
(Tprp + Spvp) =

∂

∂θs
(Tprp − Tpvp + vp)

=
∂Cs
Cs∂θs

[
CpGp

(1+ CpTiGp)2
CsGs

(1+ CsGs)2
(rp − vp)

]
=

∂Cs
Cs∂θs

[
Tp(rp − yp)−

Ts
Cp

(yp − vp)
]

∂yp
∂θp
=

∂

∂θp
(Tprp − Tpvp + vp) (16)

=
∂Cp
∂θp

[
TiGp

(1+ CpTiGp)2
(rp − vp)

]
=

∂Cp
Cp∂θp

[
CpTiGp

(1+ CpTiGp)2
rp −

CpTiGp
(1+ CpTiGp)2

vp

]
=

∂Cp
Cp∂θp

[
Tp(rp − yp)

]
(17)
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Similar to the above analysis, the partial derivatives of us
in regards to θs and θp are derived as

∂us
∂θs
=

∂

∂θs

[
Tp

GsGp
(rp − vp)

]
=

∂Cs
Cs∂θs

[
CpGp

GsGp(1+ CpTiGp)2
CsGs

(1+ CsGs)2
(rp − vp)

]
=

∂Cs
Cs∂θs

[
Tp

GsGp
(rp − yp)−

Ts
GsGpCp

(yp − vp)
]

=
∂Cs
Cs∂θs

[
Tp

GsGp
(rp − yp)−

Tp
GpGsGpCp

(yp − vp)
]

∂us
∂θp
=

∂

∂θp

[
Tp

GsGp
(rp − vp)

]
(18)

=
∂Cp
Cp∂θp

[
CpTiGp

GsGp(1+ CpTiGp)2
(rp − vp)

]
=

∂Cp
Cp∂θp

[
Tp

GsGp
(rp − yp)

]
(19)

Therefore, the descent-gradient of the objective function
considering the nested cascade control parameters is deter-
mined by

∂yp
∂θ
=


∂yp
∂θs
∂yp
∂θp

 =


∂Cs
Cs∂θs

[
Tp(rp − yp)−

Ts
Cp

(yp−vp)
]

∂Cp
Cp∂θp

[
Tp(rp − yp)

]


(20)
∂us
∂θ
=

[
∂us
∂θs

∂us
∂θp

]T

=


∂Cs
Cs∂θs

[
Tp(rp − yp)
GsGp

−
Tp(yp − vp)
GpGsGpCp

]
∂Cp
Cp∂θp

[
Tp

GsGp
(rp − yp)

]
 (21)

In this paper, the system model Gs is assumed to be
unknown, one reason lies in its general form containing time-
varying control coefficients, unclear parameters and unpre-
dictable uncertainties. As for Gp, since it typically indicates
the relationship between the speed feedback and position
feedback, it can be derived directly, i.e., it is 1/s in the devel-
oped networked industrial robot. As shown in (20) and (21),
the gradients of the objective function cannot be obtained
when the systemmodelGs is identified inaccurately. To solve
this problem, inspired by the conventional IFT idea, three
iterative experiments are performed so that the corresponding
received data can be applied to estimate (20) and (21) as
follows:
â First experiment: r1p = r1

y1p=Tpr
1
+Spv1p, y

1
s =Tsr

1
−Tsv1p, u

1
s =

Tpr1−Tpv1p
GsGp

(22)

â Second experiment: r2p = r1 − y1p
y2p = Tp(r1 − y1p)+ Spv

2
p, y

2
s = Ts(r1 − y1p)− Tsv

2
p,

u2s =
Tp(r1 − y1p)− Tpv

2
p

GsGp
(23)

â Third experiment: r3p = r1

y3p=Tpr
1
+Spv3p, y

3
s =Tsr

1
−Tsv3p, u

3
s =

Tpr1−Tpv3p
GsGp

(24)
Then, the following estimators are constructed for the

partial derivatives of yp and us in (20) and (21)

∂̂yp
∂θ
=

[
∂̂yp
∂θs

∂̂yp
∂θp

]T
=


∂Cs
Cs∂θs

(
y2p −

y3s − y
2
s

Cp

)
∂Cp
Cp∂θp

(
y2p
)

 (25)

∂̂us
∂θ
=

[
∂̂us
∂θs

∂̂us
∂θp

]T
=


∂Cs
Cs∂θs

(
u2s −

u3s − u
2
s

GpCp

)
∂Cp
Cp∂θp

(
u2s
)


(26)

The estimation of the objective function (12) is finally
achieved by

∂̂J (θ )
∂θ
=

1
N

N∑
t=1

[(
y1p − yd

) ∂̂yp
∂θ
+ λu1s

∂̂us
∂θ

]
(27)

Here, the components
(
y1p − yd

)
and u1s contains the noise

from the first experiment while the estimations of
(
∂yp/∂θ

)
and(∂us/∂θ) are computed using data from different exper-
iments. It is reasonably assumed that vp is mutually inde-
pendent bounded stochastic noise of the system, and rp is
quasi-stationary and uncorrelated with the noises. Hence, the
unbiased estimation of the objective gradient can be obtained.

The minimization of the objective function is realized by
iterative updating law of the cascade position controller

θ i+1j = θ ij − γ
i
j

(
Rij
)−1 ∂̂J (θ ij)

∂θ j
(28)

where j denotes j-th actuated joint, i denotes the iteration, γ ij is
the positive step size and Rij is determined by the following
Gauss-Newton approximation of the Hessian matrix to speed
up the convergence

Rij =
1
N

N∑
t=1


[
∂̂yp,j
∂θ j

(θ ij)

][
∂̂yp,j
∂θ j

(θ ij)

]T

+λ

[
∂̂us,j
∂θ j

(θ ij)

][
∂̂us,j
∂θ j

(θ ij)

]T (29)

Remark 2: For (28), Rij is a positive definite matrix deter-
mining the descent-gradient direction, and the positive step
size γ ij serves as the learning gain controlling the rate of
the change between the parameters of the new controller and
the previous one. Note that the step size plays a dominant
role in maintaining the convergence and stability of the opti-
mization. To be more specific, a large step size will lead to
faster convergence properties while achieving better stability.
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Thereby, as studied in [38], the step size should be chosen
to satisfy that: (1) the resulting system converges to a local
minimum of the cost function; (2) the stability of the closed-
loop system is ensured. In association with the theoretical
analysis in the next section, the step size is selected as
0 < γ ij = {a1, a2}/N ≤ 1 to guarantee a stable closed-
loop system, where 0 < a1 < a2 are pre-defined coefficients
to obtain a stable and converged closed-loop system. In this
way, faster tuning convergence and improved stability can be
guaranteed during the tuning process.

B. CONTROL INPUT CONSTRAINTS
To address the actuator torque saturation phenomenon and
enhance the system robustness, the following traditional anti-
windup function is introduced to limit the control input
magnitude

u(us) = sat(us) =


umax if us ≥ umax

us if umin < us < umax

umin if us ≤ umin

(30)

where us denotes the input signal generated by the cascade
controller, umin and umax are the minimum and maximum
control inputs, respectively.

Inspired by Wang et al. [39], this paper presents the fol-
lowing function to provide a smooth approximation for u(us)
to further tackle the input saturation

h(us) =



umax tanh
(

us
umax

)
= umax

eus/umax − e−us/umax

eus/umax + e−us/umax
, us ≥ 0

umin tanh
(

us
umin

)
= umin

eus/umin − e−us/umin

eus/umin + e−us/umin
, us < 0

(31)

By employing (31), the saturation function can be
described as

u(us) = h(us)+1(us) (32)

where 1(us) = sat(us) − h(us) is the difference between
sat(us) and h(us), which is a bounded function satisfying the
following inequality

|1(us)| = |sat(us)− h(us)| ≤ u′

u′ = max {umax (1− tanh(1)) , umin (tanh(1)− 1)}

(33)

According to (33), 1(us) will converge to 0 when the
control input signal reaches the limitations. In contrast,1(us)
approaches upper/lower limit from 0 if |us| is located in the
limited range [umin, umax]. As shown in Fig. 4, the proposed
saturation function h(us) is capable of improving the system
dynamic smoothly.

To enhance the system robustness, as shown in (10),
the performance criterion is subject to input constraints,
which complicate the cascade controller design together with

FIGURE 4. The comparison of the control input limitation functions.

the path-tracking error. In other words, a suitable trade-off
between the primary tracking performance and the constrain-
ing on the control input is imposed on the objective function.
In practice, a prior control goal must be accomplished to
guarantee satisfactory system behaviors. An additional con-
sideration can be further integrated into the criterion, which
improves the comprehensive performance of the closed-loop
system. Theweighting factormay vary greatly as the potential
systems being controlled have diverse requirements for the
control input. In this paper, the tracking criterion has priority
over the input signal limitation. Considering that, an optimal
adjustment should be conducted for the weighting factor and
thus a normalizing coefficient Kn is presented to achieve a
balance between the path-tracking error and control input
constraints

Kn =
ymax − ymin

umax − umin
(34)

where ymax and ymin are the maximum and minimum value of
the desired position, respectively.

Substituting the normalizing coefficient Kn into the
designed objective function results in

Jn(ρ) = min
ρ

{
1
2N

N∑
t=1

[
yp − yd

]2
+ λKn

1
2N

N∑
t=1

(us)2
}
(35)

With the normalized design criterion (35), it becomes pos-
sible to make the trade-off of the CIFT method suitable for
various applications. As the developed networked industrial
robot hasmultiple joints need to be controlled, the final global
solution with the normalized design criterion is given by

θ i+1j = θ ij − γ
i
j

(
Rin,j

)−1 [ ∂̂Jn
∂θ j

(θ ij)
]

∂̂Jn
∂θ

(θ ij ) =
1
N

N∑
t=1

(
∂̂yp,j
∂θ

(
y1p,j − yd

)
+ λKn,ju1s,j

∂̂us,j
∂θ

)

Rin,j =
1
N

N∑
t=1


[
∂̂yp,j
∂θ j

(θ ij)

][
∂̂yp,j
∂θ j

(θ ij)

]T

+ λKn,j

[
∂̂us,j
∂θ j

(θ ij)

][
∂̂us,j
∂θ j

(θ ij)

]T (36)
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Remark 3: Here, the essential differences between the pro-
posed method and the existing ones are emphasized as: 1) dif-
ferent with the traditional model-based methods depending
on system identification accuracy, data-driven tuning mech-
anism is presented to regulate the control parameters in the
absence of system explicit parametric models; 2) unlike con-
ventional cascade control strategies, this method can tune the
nested control loops concurrently to guarantee the optimiza-
tion efficiency as the calculation burdens and the complexities
of data processing are reduced significantly; 3) the normal-
ized input constraints, which is usually omitted in the existing
criterions, are consolidated into the objective function to
alleviate the actuator saturation and achieve a robust path-
tracking.

To summarize, the following concludes the procedure of
the CIFT method:

1) Determine the initial control parameters for the devel-
oped algorithm;

2) Perform three iterative experiments based on (22)-(23);
3) Calculate the partial derivatives via (25) and (26);
4) Optimize the optimal parameters according to (36);
5) If the stop condition is satisfied, finish the tuning;

otherwise, set i = i + 1 and go back to 2) for the next
iteration cycle.

C. THEORETICAL ANALYSIS
The theoretical analysis of this paper is divided into two parts:
the former establishes the convergence of the closed-loop
system while the other part verifies the asymptotic accuracy
of the tuning procedure.
Part 1 (The Tuning Convergence): As studied in the tradi-

tional IFT method [38], the asymptotical convergence of the
CIFT can be guaranteed if it is implemented with an unbiased
gradient estimation of the objective criterion and a convergent
step size.

This paper performs three specific experiments to obtain
the necessary data for the descent gradient calculation, which
can be implemented without identifying a dynamic model of
the system to be controlled. From (22) to (26), we have

∂̂yp
∂θ
=
∂yp
∂θ
+


∂Cs
Cs∂θs

(
Spv2p −

Tsv1p + Tsv
2
p − Tsv

3
p

Cp

)
∂Cp
Cp∂θp

(
Spv2p

)
 (37)

∂̂us
∂θ
=
∂us
∂θ
+

Tp
GsGp


∂Cs
Cs∂θs

(
−v2p −

v1p + v
2
p − v

3
p

GpCp

)
∂Cp
Cp∂θp

(
−v2p

)
(38)

Note that v1p, v
2
p and v

3
p are mutually independent bounded

under the assumption that the experiments are sufficiently
separated in time-domain, so that the gradient estimation of
the objective function turns out to be unbiased. Moreover,
the configuration of 0 < γ ij ≤ 1 meet the requirements of

a suitable step size since

∞∑
i=1

γ ij = ∞,

∞∑
i=1

[
γ ij

]2
<∞ (39)

Therefore, the final tuned cascade controller approaches an
optimum solution with guaranteed convergence.
Part II: (Asymptotic Accuracy Of The Proposed Method):

According to the gradient calculation variability, we are now
to quantify the asymptotic accuracy of the proposed CIFT
method. As the proposed method tends toward the gradient-
based descent direction, it is concluded that the optimization
error is an asymptotical distribution with zero mean and
covariance matrix

∑
, i.e.,

√
N (θ ij − θ̃ j)

D
→N (0, 6)∑

= a2
∫
∞

0
e(C

j)t (Rj)−1 Cov [∂Jn
∂θ

(θ̃ j)
] (

Rj
)−1

e(C
j)Ttdt

C j
= (1/2)I − a

(
Rin,j

)−1
Hj(θ̃ j) (40)

where the constant Rj and θ̃ j denote the stabilized Rin,j and
θ ij, respectively, Hj(θ̃ j) denotes the Hessian Matrix of JN (θ ij)
when θ ij = θ̃ j, a = γ ij N , I is the unit diagonal matrix.
The proof of the above-mentioned results is very similar to
the gradient estimated control systems [40], which can be
extended to this paper and it is therefore omitted here.
Remark 4: The above-mentioned results quantify the

asymptotic accuracy of the developed CIFT-tuned cascade
controller, which crucially depends on the covariance of
the descent-gradient computation. Furthermore, as presented
in [41], an optimal prefilter can be constructed to enhance
the accuracy of the IFT, which leads to a relatively small
covariance matrix. However, the output of the plant under
normal operating conditions, i.e., with zero reference sig-
nal, is required to collect large amounts of data to compute
the optimal prefilter. Considering the tuning efficiency and
calculation burden, the contribution of the optimal prefilter
is considered as being negligible in the practical robotic
application in this paper.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
To carried out the experiments, a six-DOF networked indus-
trial robot actuated by the PMSMs is considered, as shown
in Fig. 5. The overall implementation architecture consists
of three layers: (1) the terminal conversation layer real-
izes the human-machine interaction so that the users can
customize their own instructions through teaching program;
(2) the decision layer completes the multi-axis interpolation
and the proposed cascade path-tracking controller tuning;
(3) the behavior layer provides the drivers for the actuator
devices, including PMSM servo systems and I/O devices,
and the end-effect of the industrial robot can achieve the
reference position. EtherCAT industrial network is served as
the communication interface between the decision layer and

8476 VOLUME 7, 2019



Y. Xie et al.: Robust Cascade Path-Tracking Control of Networked Industrial Robot

FIGURE 5. Six-DOF networked industrial robot.

TABLE 1. Specifications of the networked industrial robot.

the behaviors layer. For the developed robotic drive system,
the powertrain of each actuated joint is composed of a servo
motor, a reducer and external load. The specifications of the
networked industrial robot are provided by Table 1.

The joints actuated by PMSM are controlled individu-
ally using a cascade controller with the optimal control
parameters regulated using the implemented CIFT algorithm,
as demonstrated in Fig 6. Through inverse kinematics, the ref-
erence and feedback position of each joint are evaluated from
the desired orientation ρ′XYZ and the feedback end-effector
orientation ρXYZ , separately. For the developed networked
robotic cascade system, we typically employ the proportional
controller θp =

[
Kp
]
and the proportional-integral controller

θs =
[
Ks KI

]T for the inner speed loop and the outer position
loop, respectively, which implies

Cs = Ks + KI
T 2z2

Tz2 − Tz
=

[
Tz2 − Tz
Tz2 − Tz

T 2z2

Tz2 − Tz

]
θs

(41)

Cp = Kp = θp (42)

where T = 1 ms denotes the sampling time.
To implement the proposed CIFT method, the step size for

Kp, Ks and KI are specified as 0.01, 0.0001, 0.01, respec-
tively, and λ is set as 0.001. The baseline control parameters
θp = [0.78], θs = [2.34, 0.0200] sequentially tuned by trail
and error are used for benchmarking and comparison purpose,
and it can help in converging to the optimal solution sooner.

FIGURE 6. The implementation of the cascade path-tracking controller.

B. EXPERIMENTAL RESULTS
To verify the feasibility and reliability of the proposed CIFT-
tuned cascade controller, we consider a typical repetitive ref-
erence for the palletizing application using a desired profile
with a period of 6 s. An additional 5.32 kg payload can be
added to the end-effect so that more time-varying external
disturbances are provided to verify the robustness of the pro-
posed cascade controller. For the comparative experiments,
two cases of without (Case 1) or with (Case 2) payload are
studied to demonstrate the effectiveness and applicability of
the developed robust cascade path-tracking control method.

TABLE 2. The tuned parameters using CIFT method in Case 1.

1) Case 1: For the palletizing application, the position
references of joint 4 and 6 remain zero during the nor-
mal operation. The converged control parameters are given
in Table 2. The position responses and tracking errors of
PMSM-actuated joints are shown in Fig. 7 and Fig. 8,
respectively. As shown in Fig. 8, the traditional model-based
cascade controller is not suitable for the robotic drive sys-
tems as the tracking errors are too high, while the proposed
CIFT-tuned cascade controller has better performance, result-
ing in the reduction of position-tracking error. There are
some peaks of tracking errors that are mainly caused by
actuator reversal, rotation clearances of and angle gears and
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FIGURE 7. Position path-tracking of each joint in case 1.

FIGURE 8. Position tracking error of each joint in case 1.

coulomb friction, especially when the robot arm changes the
directions.

It is noted that the CITF-tuned cascade controller has the
capacity of providing better robustness against these exter-
nal disturbances among the comparison controllers. Take
joint 5 for example, the maximum position error for model-
based cascade controller and CIFT-tuned controller are
5.3 × 10−3rad, 1.5 × 10−3rad, respectively. Hence,
the dynamic following performance of the resulting system is
improved via the proposed method. Fig. 9 shows the control
input currents of robotic joints, and we can see smoother con-
trol input signal using the proposed method with decreased
magnitude. Some high peak inputs caused by gravity and
undesired disturbances are eliminated, especially for joints
1, 3 and 5. A subdued control input signal leads to smaller
overshoot and position vibration.

For the end-effect path-tracking, Fig. 10 and Fig. 11
presents the position responses and the corresponding track-
ing errors, respectively. Comparing to the traditional model-
based method, the resulting system using the model-free
CIFT-tuned cascade method behaves closely as the desired

FIGURE 9. Control input of each actuator in case 1.

FIGURE 10. Position tracking of the end-effect in case 1.

FIGURE 11. Position tracking error of the end-effect in case 1.

reference free from the influences of the system uncertainties
and unmodeled dynamics. To be more specific, the maxi-
mum path-tracking error of the end-effect is decreased by
54.6827%.
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TABLE 3. Tracking performance indexes of the joints in Case 1.

TABLE 4. Performance indexes of the end-effect in Case 1.

To show the comparison results more clearly, Table 3
and Table 4 present the quantitative performance indexes
of the actuated joints and end-effect, separately. According
to Table 3 and Table 4, the proposed method outperforms
the traditional method with respect to maximum, standard
derivation (SD), root mean error (RME) and integrated
time absolute error (ITAE). The experimental results ver-
ify the effectiveness and control superiority of the pro-
posed CIFT-tuned cascade controller, which can achieve
better dynamic path-tracking performance with higher accu-
racy. By employing the proposed cascade control method,
the dynamic tracking errors are reduced up to 1/2 than that
using the model-based method.

2)Case 2: To verify the robustness of the proposed cascade
controller against the external disturbances and systematic
uncertainties, the experiment is performed when the payload
is attached to the end-effect.

TABLE 5. The tuned parameters using CIFT method in Case 2.

For this case, the position trajectory keeps the same with
case 1 under a period of 6 s. The final tuned cascade control
parameters are shown in Table 5. Fig. 12 and Fig. 13 show the
position profile and the tracking error between the feedback
and the desired one, respectively. It should be mentioned
that coupling, pose position and orientation of the six-DOF
structure contribute to time-varying dynamics affecting the

FIGURE 12. Position path-tracking of each joint in case 2.

FIGURE 13. Position tracking error of each joint in case 2.

path-tracking performance of the robotic system. The experi-
mental test demonstrates that, by using the proposed method,
the path-tracking performance of each joint is enhanced
observably, especially for joints 2 and 5, where the system
dynamics change rapidly due to the pose position and the
additional payload.

As given in Table 6, we have provided the performances of
the joints in terms of the maximum value, SD, RME and the
traditional ITAE, which verifies that the CIFT-tuned cascade
controller can obtain better performance indexes. Take joint
5 for example, the ITAEs of the proposed controller and the
traditional controller is 194.0921 rad and 57.2985 rad, sepa-
rately. From the experimental results of Fig. 9 and Fig 14, it is
known that larger control inputs are needed to drive each joint
to limit the impact of the payload so that the end-effect can
achieve the desired position. Moreover, compared with the
model-based tuned cascade controller, the current vibration
of the joints has been significantly improved, resulting in
smoother position trajectories for all the actuated joints.

With regards to the final end-effect position-tracking, com-
pared to the conventional model-based tuning method, the
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TABLE 6. Tracking performance indexes of the joints in Case 2.

FIGURE 14. Control input of each joint in case 2.

FIGURE 15. Position tracking of the end-effect in case 2.

proposed CIFT-tuned cascade controller shows improved
path-tracking performance, as depicted in Fig. 15 and Fig. 16.
Comparing Fig. 16 (Case 2) and Fig. 11 (Case 1), the system
path-tracking errors of the joints are increased when attaching
the additional payload to the end-effect. Superior to the tradi-
tionalmodel-basedmethod, the resulting system canmaintain

FIGURE 16. Position tracking error of the end-effect in case 2.

TABLE 7. Performance indexes of the end-effect in Case 2.

superior dynamics under the control of the proposed method.
The quantitative performance indexes are provided in Table 7.
From the test, it is shown that the maximum value, SD, RMS
and ITAE can reach up to 51.5137%, 46.6985%, 49.4118%
and 53.2899%, respectively. Therefore, we can conclude that
our method guarantees the system robustness to against the
unknown disturbances, including lumped parametric uncer-
tainties, unmodeled dynamics and torque fluctuation.

V. CONCLUSIONS
In this paper, a CIFT-tuned cascade controller had been devel-
oped to achieve a robust path-tracking of a developed net-
worked industrial robot. The proposed CIFT-tuned method is
a data-based model-free method without explicit mathemati-
cal model information of the robotic system to be controlled.
By incorporating the tracking error and control input magni-
tude into the objective criterion, a multi-DOF CIFT method
was constructed to give an optimal design of the cascade con-
trol parameters. Theoretical analysis illustrated that the unbi-
ased estimate of the gradient and the asymptotic accuracy can
be guaranteed. Two comparative experiments were performed
to verify the effectiveness of the proposed method, and the
results indicated that this newly developed method possesses
control advantages in terms of robust path-tracking against
the parametric uncertainties and external disturbances. It was
also demonstrated that the resulting industrial robotic system
has an adaptive learning ability to accommodate different
operating situations. Thus, the practical CIFT cascade con-
trol method is potential for the networked industrial robots
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because of its model-free features, satisfactory tracking per-
formance, robust nature and simplicity for implementation.

Additionally, future work will be directed toward the com-
pensation techniques for data disturbances and intermittent
transmission to improve the position path-tracking perfor-
mance of the industrial robot. In this paper, the network
communication protocol ensures a stable data-transmission
between the robotic upper controller and the remote servo
drive control systems. Nevertheless, the control performance
of the resulting systems will be affected by measurement
noise and missing packages when the proposed method is
applied to a highly noisy application, which is considered and
eliminated in our ongoing research.
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